libclamav/bignum_fast.h
9ac4fb11
 /* TomsFastMath, a fast ISO C bignum library.
  * 
  * This project is meant to fill in where LibTomMath
  * falls short.  That is speed ;-)
  *
  * This project is public domain and free for all purposes.
  * 
  * Tom St Denis, tomstdenis@gmail.com
  */
a9d40672
 
 /* Oct 1, 2013
  * Adding clamav-config.h include here for size-checking on fall-through case
  */
 #if HAVE_CONFIG_H
 #include "clamav-config.h"
 #endif
 
9ac4fb11
 #ifndef TFM_H_
 #define TFM_H_
 
540aece0
 #if !defined(__GNUC__) || !defined(__x86_64__)
 /* on i686 we run out of registers with -fPIC, and on ia64 we miscompile.
  * Just enable this on x86-64 where we know it works */
9ac4fb11
 #define TFM_NO_ASM
 #endif
 
 #include <stdio.h>
 #include <string.h>
 #include <stdlib.h>
 #include <ctype.h>
 #include <limits.h>
 
 #ifndef MIN
    #define MIN(x,y) ((x)<(y)?(x):(y))
 #endif
 
 #ifndef MAX
    #define MAX(x,y) ((x)>(y)?(x):(y))
 #endif
 
 /* externally define this symbol to ignore the default settings, useful for changing the build from the make process */
 #ifndef TFM_ALREADY_SET
 
 /* do we want the large set of small multiplications ? 
    Enable these if you are going to be doing a lot of small (<= 16 digit) multiplications say in ECC
    Or if you're on a 64-bit machine doing RSA as a 1024-bit integer == 16 digits ;-)
  */
 #define TFM_SMALL_SET
 
 /* do we want huge code 
    Enable these if you are doing 20, 24, 28, 32, 48, 64 digit multiplications (useful for RSA)
    Less important on 64-bit machines as 32 digits == 2048 bits
  */
 #if 0
 #define TFM_MUL3
 #define TFM_MUL4
 #define TFM_MUL6
 #define TFM_MUL7
 #define TFM_MUL8
 #define TFM_MUL9
 #define TFM_MUL12
 #define TFM_MUL17
 #endif
 #define TFM_MUL20
 #define TFM_MUL24
 #define TFM_MUL28
 #define TFM_MUL32
bf69ec5f
 /*#define TFM_MUL48
 #define TFM_MUL64*/
9ac4fb11
 
 #if 0
 #define TFM_SQR3
 #define TFM_SQR4
 #define TFM_SQR6
 #define TFM_SQR7
 #define TFM_SQR8
 #define TFM_SQR9
 #define TFM_SQR12
 #define TFM_SQR17
 #endif
 #define TFM_SQR20
 #define TFM_SQR24
 #define TFM_SQR28
 #define TFM_SQR32
bf69ec5f
 /*#define TFM_SQR48
 #define TFM_SQR64*/
9ac4fb11
 
 /* do we want some overflow checks
    Not required if you make sure your numbers are within range (e.g. by default a modulus for fp_exptmod() can only be upto 2048 bits long)
  */
 #define TFM_CHECK
 
 /* Is the target a P4 Prescott
  */
 /* #define TFM_PRESCOTT */
 
 /* Do we want timing resistant fp_exptmod() ?
  * This makes it slower but also timing invariant with respect to the exponent 
  */
 /* #define TFM_TIMING_RESISTANT */
 
 #endif
 
 /* autodetect x86-64 and make sure we are using 64-bit digits with x86-64 asm */
 #if defined(__x86_64__)
    #if defined(TFM_X86) || defined(TFM_SSE2) || defined(TFM_ARM) 
        #error x86-64 detected, x86-32/SSE2/ARM optimizations are not valid!
    #endif
    #if !defined(TFM_X86_64) && !defined(TFM_NO_ASM)
       #define TFM_X86_64
    #endif
 #endif
 #if defined(TFM_X86_64)
     #if !defined(FP_64BIT)
        #define FP_64BIT
     #endif
 #endif
 
 /* try to detect x86-32 */
 #if defined(__i386__) && !defined(TFM_SSE2)
    #if defined(TFM_X86_64) || defined(TFM_ARM) 
        #error x86-32 detected, x86-64/ARM optimizations are not valid!
    #endif
    #if !defined(TFM_X86) && !defined(TFM_NO_ASM)
       #define TFM_X86
    #endif
 #endif
 
 /* make sure we're 32-bit for x86-32/sse/arm/ppc32 */
 #if (defined(TFM_X86) || defined(TFM_SSE2) || defined(TFM_ARM) || defined(TFM_PPC32)) && defined(FP_64BIT)
    #warning x86-32, SSE2 and ARM, PPC32 optimizations require 32-bit digits (undefining)
    #undef FP_64BIT
 #endif
 
 /* multi asms? */
 #ifdef TFM_X86
    #define TFM_ASM
 #endif
 #ifdef TFM_X86_64
    #ifdef TFM_ASM
       #error TFM_ASM already defined!
    #endif
    #define TFM_ASM
 #endif
 #ifdef TFM_SSE2
    #ifdef TFM_ASM
       #error TFM_ASM already defined!
    #endif
    #define TFM_ASM
 #endif
 #ifdef TFM_ARM
    #ifdef TFM_ASM
       #error TFM_ASM already defined!
    #endif
    #define TFM_ASM
 #endif
 #ifdef TFM_PPC32
    #ifdef TFM_ASM
       #error TFM_ASM already defined!
    #endif
    #define TFM_ASM
 #endif
 #ifdef TFM_PPC64
    #ifdef TFM_ASM
       #error TFM_ASM already defined!
    #endif
    #define TFM_ASM
 #endif
 #ifdef TFM_AVR32
    #ifdef TFM_ASM
       #error TFM_ASM already defined!
    #endif
    #define TFM_ASM
 #endif
 
 /* we want no asm? */
 #ifdef TFM_NO_ASM
    #undef TFM_X86
    #undef TFM_X86_64
    #undef TFM_SSE2
    #undef TFM_ARM
    #undef TFM_PPC32
    #undef TFM_PPC64
    #undef TFM_AVR32
    #undef TFM_ASM   
 #endif
 
 /* ECC helpers */
 #ifdef TFM_ECC192
    #ifdef FP_64BIT
        #define TFM_MUL3
        #define TFM_SQR3
    #else
        #define TFM_MUL6
        #define TFM_SQR6
    #endif
 #endif
 
 #ifdef TFM_ECC224
    #ifdef FP_64BIT
        #define TFM_MUL4
        #define TFM_SQR4
    #else
        #define TFM_MUL7
        #define TFM_SQR7
    #endif
 #endif
 
 #ifdef TFM_ECC256
    #ifdef FP_64BIT
        #define TFM_MUL4
        #define TFM_SQR4
    #else
        #define TFM_MUL8
        #define TFM_SQR8
    #endif
 #endif
 
 #ifdef TFM_ECC384
    #ifdef FP_64BIT
        #define TFM_MUL6
        #define TFM_SQR6
    #else
        #define TFM_MUL12
        #define TFM_SQR12
    #endif
 #endif
 
 #ifdef TFM_ECC521
    #ifdef FP_64BIT
        #define TFM_MUL9
        #define TFM_SQR9
    #else
        #define TFM_MUL17
        #define TFM_SQR17
    #endif
 #endif
 
 
 /* some default configurations.
  */
 #if defined(FP_64BIT)
    /* for GCC only on supported platforms */
 #ifndef CRYPT
    typedef unsigned long ulong64;
 #endif
    typedef ulong64            fp_digit;
    typedef unsigned long      fp_word __attribute__ ((mode(TI)));
 #else
    /* this is to make porting into LibTomCrypt easier :-) */
 #ifndef CRYPT
    #if defined(_MSC_VER) || defined(__BORLANDC__) 
       typedef unsigned __int64   ulong64;
       typedef signed __int64     long64;
    #else
       typedef unsigned long long ulong64;
       typedef signed long long   long64;
    #endif
 #endif
a9d40672
    /* The code requires that fp_word be twice the size of fp_digit.
     * Add size-checking for special case (both long and long long are 64) */
    #if (SIZEOF_LONG == 8) && (SIZEOF_LONG_LONG == 8)
       typedef unsigned int       fp_digit;
    #else
       typedef unsigned long      fp_digit;
    #endif
9ac4fb11
    typedef ulong64            fp_word;
 #endif
 
 /* # of digits this is */
 #define DIGIT_BIT  (int)((CHAR_BIT) * sizeof(fp_digit))
3afedd07
 /* Max size of any number in bits.  Basically the largest size you will be multiplying
  * should be half [or smaller] of FP_MAX_SIZE-four_digit
  *
  * You can externally define this or it defaults to 4096-bits [allowing multiplications upto 2048x2048 bits ]
  */
 #ifndef FP_MAX_SIZE
    #define FP_MAX_SIZE           (8192+(8*DIGIT_BIT))
 #endif
 
 /* will this lib work? */
 #if (CHAR_BIT & 7)
    #error CHAR_BIT must be a multiple of eight.
 #endif
 
9ac4fb11
 #define FP_MASK    (fp_digit)(-1)
 #define FP_SIZE    (FP_MAX_SIZE/DIGIT_BIT)
 
 /* signs */
 #define FP_ZPOS     0
 #define FP_NEG      1
 
 /* return codes */
 #define FP_OKAY     0
 #define FP_VAL      1
 #define FP_MEM      2
 
 /* equalities */
 #define FP_LT        -1   /* less than */
 #define FP_EQ         0   /* equal to */
 #define FP_GT         1   /* greater than */
 
 /* replies */
 #define FP_YES        1   /* yes response */
 #define FP_NO         0   /* no response */
 
 /* a FP type */
 typedef struct {
     fp_digit dp[FP_SIZE];
     int      used, 
              sign;
 } fp_int;
 
 /* functions */
 
 /* returns a TFM ident string useful for debugging... */
 const char *fp_ident(void);
 
 /* initialize [or zero] an fp int */
 #define fp_init(a)  (void)memset((a), 0, sizeof(fp_int))
 #define fp_zero(a)  fp_init(a)
 
 /* zero/even/odd ? */
 #define fp_iszero(a) (((a)->used == 0) ? FP_YES : FP_NO)
 #define fp_iseven(a) (((a)->used >= 0 && (((a)->dp[0] & 1) == 0)) ? FP_YES : FP_NO)
 #define fp_isodd(a)  (((a)->used > 0  && (((a)->dp[0] & 1) == 1)) ? FP_YES : FP_NO)
 
 /* set to a small digit */
 void fp_set(fp_int *a, fp_digit b);
 
 /* copy from a to b */
 #define fp_copy(a, b)      (void)(((a) != (b)) && memcpy((b), (a), sizeof(fp_int)))
 #define fp_init_copy(a, b) fp_copy(b, a)
 
 /* clamp digits */
 #define fp_clamp(a)   { while ((a)->used && (a)->dp[(a)->used-1] == 0) --((a)->used); (a)->sign = (a)->used ? (a)->sign : FP_ZPOS; }
 
 /* negate and absolute */
 #define fp_neg(a, b)  { fp_copy(a, b); (b)->sign ^= 1; fp_clamp(b); }
 #define fp_abs(a, b)  { fp_copy(a, b); (b)->sign  = 0; }
 
 /* right shift x digits */
 void fp_rshd(fp_int *a, int x);
 
 /* left shift x digits */
 void fp_lshd(fp_int *a, int x);
 
 /* signed comparison */
 int fp_cmp(fp_int *a, fp_int *b);
 
 /* unsigned comparison */
 int fp_cmp_mag(fp_int *a, fp_int *b);
 
 /* power of 2 operations */
 void fp_div_2d(fp_int *a, int b, fp_int *c, fp_int *d);
 void fp_mod_2d(fp_int *a, int b, fp_int *c);
 void fp_mul_2d(fp_int *a, int b, fp_int *c);
 void fp_2expt (fp_int *a, int b);
 void fp_mul_2(fp_int *a, fp_int *c);
 void fp_div_2(fp_int *a, fp_int *c);
 
 /* Counts the number of lsbs which are zero before the first zero bit */
 int fp_cnt_lsb(fp_int *a);
 
 /* c = a + b */
 void fp_add(fp_int *a, fp_int *b, fp_int *c);
 
 /* c = a - b */
 void fp_sub(fp_int *a, fp_int *b, fp_int *c);
 
 /* c = a * b */
 void fp_mul(fp_int *a, fp_int *b, fp_int *c);
 
 /* b = a*a  */
 void fp_sqr(fp_int *a, fp_int *b);
 
 /* a/b => cb + d == a */
 int fp_div(fp_int *a, fp_int *b, fp_int *c, fp_int *d);
 
 /* c = a mod b, 0 <= c < b  */
 int fp_mod(fp_int *a, fp_int *b, fp_int *c);
 
 /* compare against a single digit */
 int fp_cmp_d(fp_int *a, fp_digit b);
 
 /* c = a + b */
 void fp_add_d(fp_int *a, fp_digit b, fp_int *c);
 
 /* c = a - b */
 void fp_sub_d(fp_int *a, fp_digit b, fp_int *c);
 
 /* c = a * b */
 void fp_mul_d(fp_int *a, fp_digit b, fp_int *c);
 
 /* a/b => cb + d == a */
 int fp_div_d(fp_int *a, fp_digit b, fp_int *c, fp_digit *d);
 
 /* c = a mod b, 0 <= c < b  */
 int fp_mod_d(fp_int *a, fp_digit b, fp_digit *c);
 
 /* ---> number theory <--- */
 /* d = a + b (mod c) */
 int fp_addmod(fp_int *a, fp_int *b, fp_int *c, fp_int *d);
 
 /* d = a - b (mod c) */
 int fp_submod(fp_int *a, fp_int *b, fp_int *c, fp_int *d);
 
 /* d = a * b (mod c) */
 int fp_mulmod(fp_int *a, fp_int *b, fp_int *c, fp_int *d);
 
 /* c = a * a (mod b) */
 int fp_sqrmod(fp_int *a, fp_int *b, fp_int *c);
 
 /* c = 1/a (mod b) */
 int fp_invmod(fp_int *a, fp_int *b, fp_int *c);
 
 /* c = (a, b) */
 void fp_gcd(fp_int *a, fp_int *b, fp_int *c);
 
 /* c = [a, b] */
 void fp_lcm(fp_int *a, fp_int *b, fp_int *c);
 
 /* setups the montgomery reduction */
 int fp_montgomery_setup(fp_int *a, fp_digit *mp);
 
 /* computes a = B**n mod b without division or multiplication useful for
  * normalizing numbers in a Montgomery system.
  */
 void fp_montgomery_calc_normalization(fp_int *a, fp_int *b);
 
 /* computes x/R == x (mod N) via Montgomery Reduction */
 void fp_montgomery_reduce(fp_int *a, fp_int *m, fp_digit mp);
 
 /* d = a**b (mod c) */
 int fp_exptmod(fp_int *a, fp_int *b, fp_int *c, fp_int *d);
 
 /* primality stuff */
 
 /* perform a Miller-Rabin test of a to the base b and store result in "result" */
 void fp_prime_miller_rabin (fp_int * a, fp_int * b, int *result);
 
 /* 256 trial divisions + 8 Miller-Rabins, returns FP_YES if probable prime  */
 int fp_isprime(fp_int *a);
 
 /* Primality generation flags */
 #define TFM_PRIME_BBS      0x0001 /* BBS style prime */
 #define TFM_PRIME_SAFE     0x0002 /* Safe prime (p-1)/2 == prime */
 #define TFM_PRIME_2MSB_OFF 0x0004 /* force 2nd MSB to 0 */
 #define TFM_PRIME_2MSB_ON  0x0008 /* force 2nd MSB to 1 */
 
 /* callback for fp_prime_random, should fill dst with random bytes and return how many read [upto len] */
 typedef int tfm_prime_callback(unsigned char *dst, int len, void *dat);
 
 #define fp_prime_random(a, t, size, bbs, cb, dat) fp_prime_random_ex(a, t, ((size) * 8) + 1, (bbs==1)?TFM_PRIME_BBS:0, cb, dat)
 
 int fp_prime_random_ex(fp_int *a, int t, int size, int flags, tfm_prime_callback cb, void *dat);
 
7cd9337a
 /* radix conversions */
9ac4fb11
 int fp_count_bits(fp_int *a);
 
 int fp_unsigned_bin_size(fp_int *a);
 void fp_read_unsigned_bin(fp_int *a, const unsigned char *b, int c);
 void fp_to_unsigned_bin(fp_int *a, unsigned char *b);
 
 int fp_signed_bin_size(fp_int *a);
 void fp_read_signed_bin(fp_int *a, unsigned char *b, int c);
 void fp_to_signed_bin(fp_int *a, unsigned char *b);
 
 int fp_read_radix(fp_int *a, const char *str, int radix);
 int fp_toradix(fp_int *a, char *str, int radix);
 int fp_toradix_n(fp_int * a, char *str, int radix, int maxlen);
 
 
 /* VARIOUS LOW LEVEL STUFFS */
 void s_fp_add(fp_int *a, fp_int *b, fp_int *c);
 void s_fp_sub(fp_int *a, fp_int *b, fp_int *c);
 void fp_reverse(unsigned char *s, int len);
 
 void fp_mul_comba(fp_int *A, fp_int *B, fp_int *C);
 
 #ifdef TFM_SMALL_SET
 void fp_mul_comba_small(fp_int *A, fp_int *B, fp_int *C);
 #endif
 
 #ifdef TFM_MUL3
 void fp_mul_comba3(fp_int *A, fp_int *B, fp_int *C);
 #endif
 #ifdef TFM_MUL4
 void fp_mul_comba4(fp_int *A, fp_int *B, fp_int *C);
 #endif
 #ifdef TFM_MUL6
 void fp_mul_comba6(fp_int *A, fp_int *B, fp_int *C);
 #endif
 #ifdef TFM_MUL7
 void fp_mul_comba7(fp_int *A, fp_int *B, fp_int *C);
 #endif
 #ifdef TFM_MUL8
 void fp_mul_comba8(fp_int *A, fp_int *B, fp_int *C);
 #endif
 #ifdef TFM_MUL9
 void fp_mul_comba9(fp_int *A, fp_int *B, fp_int *C);
 #endif
 #ifdef TFM_MUL12
 void fp_mul_comba12(fp_int *A, fp_int *B, fp_int *C);
 #endif
 #ifdef TFM_MUL17
 void fp_mul_comba17(fp_int *A, fp_int *B, fp_int *C);
 #endif
 
 #ifdef TFM_MUL20
 void fp_mul_comba20(fp_int *A, fp_int *B, fp_int *C);
 #endif
 #ifdef TFM_MUL24
 void fp_mul_comba24(fp_int *A, fp_int *B, fp_int *C);
 #endif
 #ifdef TFM_MUL28
 void fp_mul_comba28(fp_int *A, fp_int *B, fp_int *C);
 #endif
 #ifdef TFM_MUL32
 void fp_mul_comba32(fp_int *A, fp_int *B, fp_int *C);
 #endif
 #ifdef TFM_MUL48
 void fp_mul_comba48(fp_int *A, fp_int *B, fp_int *C);
 #endif
 #ifdef TFM_MUL64
 void fp_mul_comba64(fp_int *A, fp_int *B, fp_int *C);
 #endif
 
 void fp_sqr_comba(fp_int *A, fp_int *B);
 
 #ifdef TFM_SMALL_SET
 void fp_sqr_comba_small(fp_int *A, fp_int *B);
 #endif
 
 #ifdef TFM_SQR3
 void fp_sqr_comba3(fp_int *A, fp_int *B);
 #endif
 #ifdef TFM_SQR4
 void fp_sqr_comba4(fp_int *A, fp_int *B);
 #endif
 #ifdef TFM_SQR6
 void fp_sqr_comba6(fp_int *A, fp_int *B);
 #endif
 #ifdef TFM_SQR7
 void fp_sqr_comba7(fp_int *A, fp_int *B);
 #endif
 #ifdef TFM_SQR8
 void fp_sqr_comba8(fp_int *A, fp_int *B);
 #endif
 #ifdef TFM_SQR9
 void fp_sqr_comba9(fp_int *A, fp_int *B);
 #endif
 #ifdef TFM_SQR12
 void fp_sqr_comba12(fp_int *A, fp_int *B);
 #endif
 #ifdef TFM_SQR17
 void fp_sqr_comba17(fp_int *A, fp_int *B);
 #endif
 
 #ifdef TFM_SQR20
 void fp_sqr_comba20(fp_int *A, fp_int *B);
 #endif
 #ifdef TFM_SQR24
 void fp_sqr_comba24(fp_int *A, fp_int *B);
 #endif
 #ifdef TFM_SQR28
 void fp_sqr_comba28(fp_int *A, fp_int *B);
 #endif
 #ifdef TFM_SQR32
 void fp_sqr_comba32(fp_int *A, fp_int *B);
 #endif
 #ifdef TFM_SQR48
 void fp_sqr_comba48(fp_int *A, fp_int *B);
 #endif
 #ifdef TFM_SQR64
 void fp_sqr_comba64(fp_int *A, fp_int *B);
 #endif
 extern const char *fp_s_rmap;
 
 #endif
 
 
 /* $Source: /cvs/libtom/tomsfastmath/src/headers/tfm.h,v $ */
 /* $Revision: 1.3 $ */
 /* $Date: 2007/02/27 02:38:44 $ */