libclamav/c++/llvm/include/llvm/CodeGen/SlotIndexes.h
5518b7d4
 //===- llvm/CodeGen/SlotIndexes.h - Slot indexes representation -*- C++ -*-===//
 //
 //                     The LLVM Compiler Infrastructure
 //
 // This file is distributed under the University of Illinois Open Source
 // License. See LICENSE.TXT for details.
 //
 //===----------------------------------------------------------------------===//
 //
 // This file implements SlotIndex and related classes. The purpuse of SlotIndex
 // is to describe a position at which a register can become live, or cease to
 // be live.
 //
 // SlotIndex is mostly a proxy for entries of the SlotIndexList, a class which
 // is held is LiveIntervals and provides the real numbering. This allows
 // LiveIntervals to perform largely transparent renumbering. The SlotIndex
 // class does hold a PHI bit, which determines whether the index relates to a
 // PHI use or def point, or an actual instruction. See the SlotIndex class
 // description for futher information.
 //===----------------------------------------------------------------------===//
 
 #ifndef LLVM_CODEGEN_SLOTINDEXES_H
 #define LLVM_CODEGEN_SLOTINDEXES_H
 
 #include "llvm/CodeGen/MachineBasicBlock.h"
79a10b48
 #include "llvm/CodeGen/MachineFunction.h"
5518b7d4
 #include "llvm/CodeGen/MachineFunctionPass.h"
79a10b48
 #include "llvm/ADT/PointerIntPair.h"
 #include "llvm/ADT/SmallVector.h"
 #include "llvm/ADT/DenseMap.h"
5518b7d4
 #include "llvm/Support/Allocator.h"
 
 namespace llvm {
 
   /// This class represents an entry in the slot index list held in the
   /// SlotIndexes pass. It should not be used directly. See the
   /// SlotIndex & SlotIndexes classes for the public interface to this
   /// information.
   class IndexListEntry {
     static const unsigned EMPTY_KEY_INDEX = ~0U & ~3U,
                           TOMBSTONE_KEY_INDEX = ~0U & ~7U;
 
     IndexListEntry *next, *prev;
     MachineInstr *mi;
     unsigned index;
 
   protected:
 
     typedef enum { EMPTY_KEY, TOMBSTONE_KEY } ReservedEntryType;
 
     // This constructor is only to be used by getEmptyKeyEntry
     // & getTombstoneKeyEntry. It sets index to the given
     // value and mi to zero.
     IndexListEntry(ReservedEntryType r) : mi(0) {
       switch(r) {
         case EMPTY_KEY: index = EMPTY_KEY_INDEX; break;
         case TOMBSTONE_KEY: index = TOMBSTONE_KEY_INDEX; break;
         default: assert(false && "Invalid value for constructor."); 
       }
       next = this;
       prev = this;
     }
 
   public:
 
     IndexListEntry(MachineInstr *mi, unsigned index) : mi(mi), index(index) {
79a10b48
       assert(index != EMPTY_KEY_INDEX && index != TOMBSTONE_KEY_INDEX &&
              "Attempt to create invalid index. "
              "Available indexes may have been exhausted?.");
5518b7d4
     }
 
91a09b94
     bool isValid() const {
       return (index != EMPTY_KEY_INDEX && index != TOMBSTONE_KEY_INDEX);
     }
 
5518b7d4
     MachineInstr* getInstr() const { return mi; }
     void setInstr(MachineInstr *mi) {
91a09b94
       assert(isValid() && "Attempt to modify reserved index.");
5518b7d4
       this->mi = mi;
     }
 
     unsigned getIndex() const { return index; }
     void setIndex(unsigned index) {
       assert(index != EMPTY_KEY_INDEX && index != TOMBSTONE_KEY_INDEX &&
              "Attempt to set index to invalid value.");
91a09b94
       assert(isValid() && "Attempt to reset reserved index value.");
5518b7d4
       this->index = index;
     }
     
     IndexListEntry* getNext() { return next; }
     const IndexListEntry* getNext() const { return next; }
     void setNext(IndexListEntry *next) {
91a09b94
       assert(isValid() && "Attempt to modify reserved index.");
5518b7d4
       this->next = next;
     }
 
     IndexListEntry* getPrev() { return prev; }
     const IndexListEntry* getPrev() const { return prev; }
     void setPrev(IndexListEntry *prev) {
91a09b94
       assert(isValid() && "Attempt to modify reserved index.");
5518b7d4
       this->prev = prev;
     }
 
     // This function returns the index list entry that is to be used for empty
     // SlotIndex keys.
     static IndexListEntry* getEmptyKeyEntry();
 
     // This function returns the index list entry that is to be used for
     // tombstone SlotIndex keys.
     static IndexListEntry* getTombstoneKeyEntry();
   };
 
   // Specialize PointerLikeTypeTraits for IndexListEntry.
   template <>
   class PointerLikeTypeTraits<IndexListEntry*> { 
   public:
     static inline void* getAsVoidPointer(IndexListEntry *p) {
       return p;
     }
     static inline IndexListEntry* getFromVoidPointer(void *p) {
       return static_cast<IndexListEntry*>(p);
     }
     enum { NumLowBitsAvailable = 3 };
   };
 
   /// SlotIndex - An opaque wrapper around machine indexes.
   class SlotIndex {
     friend class SlotIndexes;
     friend struct DenseMapInfo<SlotIndex>;
 
79a10b48
     enum Slot { LOAD, USE, DEF, STORE, NUM };
 
5518b7d4
     static const unsigned PHI_BIT = 1 << 2;
 
     PointerIntPair<IndexListEntry*, 3, unsigned> lie;
 
     SlotIndex(IndexListEntry *entry, unsigned phiAndSlot)
       : lie(entry, phiAndSlot) {
       assert(entry != 0 && "Attempt to construct index with 0 pointer.");
     }
 
     IndexListEntry& entry() const {
       return *lie.getPointer();
     }
 
     int getIndex() const {
       return entry().getIndex() | getSlot();
     }
 
79a10b48
     /// Returns the slot for this SlotIndex.
     Slot getSlot() const {
       return static_cast<Slot>(lie.getInt()  & ~PHI_BIT);
     }
 
5518b7d4
     static inline unsigned getHashValue(const SlotIndex &v) {
       IndexListEntry *ptrVal = &v.entry();
       return (unsigned((intptr_t)ptrVal) >> 4) ^
              (unsigned((intptr_t)ptrVal) >> 9);
     }
 
   public:
     static inline SlotIndex getEmptyKey() {
       return SlotIndex(IndexListEntry::getEmptyKeyEntry(), 0);
     }
 
     static inline SlotIndex getTombstoneKey() {
       return SlotIndex(IndexListEntry::getTombstoneKeyEntry(), 0);
     }
     
     /// Construct an invalid index.
     SlotIndex() : lie(IndexListEntry::getEmptyKeyEntry(), 0) {}
 
     // Construct a new slot index from the given one, set the phi flag on the
     // new index to the value of the phi parameter.
     SlotIndex(const SlotIndex &li, bool phi)
ae1be988
       : lie(&li.entry(), phi ? PHI_BIT | li.getSlot() : (unsigned)li.getSlot()){
5518b7d4
       assert(lie.getPointer() != 0 &&
              "Attempt to construct index with 0 pointer.");
     }
 
     // Construct a new slot index from the given one, set the phi flag on the
     // new index to the value of the phi parameter, and the slot to the new slot.
     SlotIndex(const SlotIndex &li, bool phi, Slot s)
ae1be988
       : lie(&li.entry(), phi ? PHI_BIT | s : (unsigned)s) {
5518b7d4
       assert(lie.getPointer() != 0 &&
              "Attempt to construct index with 0 pointer.");
     }
 
     /// Returns true if this is a valid index. Invalid indicies do
     /// not point into an index table, and cannot be compared.
     bool isValid() const {
91a09b94
       IndexListEntry *entry = lie.getPointer();
       return ((entry!= 0) && (entry->isValid()));
5518b7d4
     }
 
     /// Print this index to the given raw_ostream.
     void print(raw_ostream &os) const;
 
     /// Dump this index to stderr.
     void dump() const;
 
     /// Compare two SlotIndex objects for equality.
     bool operator==(SlotIndex other) const {
       return getIndex() == other.getIndex();
     }
     /// Compare two SlotIndex objects for inequality.
     bool operator!=(SlotIndex other) const {
       return getIndex() != other.getIndex(); 
     }
    
     /// Compare two SlotIndex objects. Return true if the first index
     /// is strictly lower than the second.
     bool operator<(SlotIndex other) const {
       return getIndex() < other.getIndex();
     }
     /// Compare two SlotIndex objects. Return true if the first index
     /// is lower than, or equal to, the second.
     bool operator<=(SlotIndex other) const {
       return getIndex() <= other.getIndex();
     }
 
     /// Compare two SlotIndex objects. Return true if the first index
     /// is greater than the second.
     bool operator>(SlotIndex other) const {
       return getIndex() > other.getIndex();
     }
 
     /// Compare two SlotIndex objects. Return true if the first index
     /// is greater than, or equal to, the second.
     bool operator>=(SlotIndex other) const {
       return getIndex() >= other.getIndex();
     }
 
     /// Return the distance from this index to the given one.
     int distance(SlotIndex other) const {
       return other.getIndex() - getIndex();
     }
 
     /// Returns the state of the PHI bit.
     bool isPHI() const {
       return lie.getInt() & PHI_BIT;
     }
 
79a10b48
     /// isLoad - Return true if this is a LOAD slot.
     bool isLoad() const {
       return getSlot() == LOAD;
     }
 
     /// isDef - Return true if this is a DEF slot.
     bool isDef() const {
       return getSlot() == DEF;
     }
 
     /// isUse - Return true if this is a USE slot.
     bool isUse() const {
       return getSlot() == USE;
     }
 
     /// isStore - Return true if this is a STORE slot.
     bool isStore() const {
       return getSlot() == STORE;
     }
 
5518b7d4
     /// Returns the base index for associated with this index. The base index
     /// is the one associated with the LOAD slot for the instruction pointed to
     /// by this index.
     SlotIndex getBaseIndex() const {
       return getLoadIndex();
     }
 
     /// Returns the boundary index for associated with this index. The boundary
     /// index is the one associated with the LOAD slot for the instruction
     /// pointed to by this index.
     SlotIndex getBoundaryIndex() const {
       return getStoreIndex();
     }
 
     /// Returns the index of the LOAD slot for the instruction pointed to by
     /// this index.
     SlotIndex getLoadIndex() const {
       return SlotIndex(&entry(), SlotIndex::LOAD);
     }    
 
     /// Returns the index of the USE slot for the instruction pointed to by
     /// this index.
     SlotIndex getUseIndex() const {
       return SlotIndex(&entry(), SlotIndex::USE);
     }
 
     /// Returns the index of the DEF slot for the instruction pointed to by
     /// this index.
     SlotIndex getDefIndex() const {
       return SlotIndex(&entry(), SlotIndex::DEF);
     }
 
     /// Returns the index of the STORE slot for the instruction pointed to by
     /// this index.
     SlotIndex getStoreIndex() const {
       return SlotIndex(&entry(), SlotIndex::STORE);
     }    
 
     /// Returns the next slot in the index list. This could be either the
     /// next slot for the instruction pointed to by this index or, if this
     /// index is a STORE, the first slot for the next instruction.
     /// WARNING: This method is considerably more expensive than the methods
     /// that return specific slots (getUseIndex(), etc). If you can - please
     /// use one of those methods.
     SlotIndex getNextSlot() const {
       Slot s = getSlot();
       if (s == SlotIndex::STORE) {
         return SlotIndex(entry().getNext(), SlotIndex::LOAD);
       }
       return SlotIndex(&entry(), s + 1);
     }
 
     /// Returns the next index. This is the index corresponding to the this
     /// index's slot, but for the next instruction.
     SlotIndex getNextIndex() const {
       return SlotIndex(entry().getNext(), getSlot());
     }
 
     /// Returns the previous slot in the index list. This could be either the
     /// previous slot for the instruction pointed to by this index or, if this
     /// index is a LOAD, the last slot for the previous instruction.
     /// WARNING: This method is considerably more expensive than the methods
     /// that return specific slots (getUseIndex(), etc). If you can - please
     /// use one of those methods.
     SlotIndex getPrevSlot() const {
       Slot s = getSlot();
       if (s == SlotIndex::LOAD) {
         return SlotIndex(entry().getPrev(), SlotIndex::STORE);
       }
       return SlotIndex(&entry(), s - 1);
     }
 
     /// Returns the previous index. This is the index corresponding to this
     /// index's slot, but for the previous instruction.
     SlotIndex getPrevIndex() const {
       return SlotIndex(entry().getPrev(), getSlot());
     }
 
   };
 
   /// DenseMapInfo specialization for SlotIndex.
   template <>
   struct DenseMapInfo<SlotIndex> {
     static inline SlotIndex getEmptyKey() {
       return SlotIndex::getEmptyKey();
     }
     static inline SlotIndex getTombstoneKey() {
       return SlotIndex::getTombstoneKey();
     }
     static inline unsigned getHashValue(const SlotIndex &v) {
       return SlotIndex::getHashValue(v);
     }
     static inline bool isEqual(const SlotIndex &LHS, const SlotIndex &RHS) {
       return (LHS == RHS);
     }
   };
de5bf27b
   
   template <> struct isPodLike<SlotIndex> { static const bool value = true; };
 
5518b7d4
 
   inline raw_ostream& operator<<(raw_ostream &os, SlotIndex li) {
     li.print(os);
     return os;
   }
 
   typedef std::pair<SlotIndex, MachineBasicBlock*> IdxMBBPair;
 
   inline bool operator<(SlotIndex V, const IdxMBBPair &IM) {
     return V < IM.first;
   }
 
   inline bool operator<(const IdxMBBPair &IM, SlotIndex V) {
     return IM.first < V;
   }
 
   struct Idx2MBBCompare {
     bool operator()(const IdxMBBPair &LHS, const IdxMBBPair &RHS) const {
       return LHS.first < RHS.first;
     }
   };
 
   /// SlotIndexes pass.
   ///
   /// This pass assigns indexes to each instruction.
   class SlotIndexes : public MachineFunctionPass {
   private:
 
     MachineFunction *mf;
     IndexListEntry *indexListHead;
     unsigned functionSize;
 
     typedef DenseMap<const MachineInstr*, SlotIndex> Mi2IndexMap;
     Mi2IndexMap mi2iMap;
 
     /// MBB2IdxMap - The indexes of the first and last instructions in the
     /// specified basic block.
     typedef DenseMap<const MachineBasicBlock*,
                      std::pair<SlotIndex, SlotIndex> > MBB2IdxMap;
     MBB2IdxMap mbb2IdxMap;
 
     /// Idx2MBBMap - Sorted list of pairs of index of first instruction
     /// and MBB id.
     std::vector<IdxMBBPair> idx2MBBMap;
 
     typedef DenseMap<const MachineBasicBlock*, SlotIndex> TerminatorGapsMap;
     TerminatorGapsMap terminatorGaps;
 
     // IndexListEntry allocator.
     BumpPtrAllocator ileAllocator;
 
     IndexListEntry* createEntry(MachineInstr *mi, unsigned index) {
       IndexListEntry *entry =
         static_cast<IndexListEntry*>(
           ileAllocator.Allocate(sizeof(IndexListEntry),
fca6fe95
           alignofLLVM<IndexListEntry>()));
5518b7d4
 
       new (entry) IndexListEntry(mi, index);
 
       return entry;
     }
 
     void initList() {
       assert(indexListHead == 0 && "Zero entry non-null at initialisation.");
       indexListHead = createEntry(0, ~0U);
       indexListHead->setNext(0);
       indexListHead->setPrev(indexListHead);
     }
 
     void clearList() {
       indexListHead = 0;
       ileAllocator.Reset();
     }
 
     IndexListEntry* getTail() {
       assert(indexListHead != 0 && "Call to getTail on uninitialized list.");
       return indexListHead->getPrev();
     }
 
     const IndexListEntry* getTail() const {
       assert(indexListHead != 0 && "Call to getTail on uninitialized list.");
       return indexListHead->getPrev();
     }
 
     // Returns true if the index list is empty.
     bool empty() const { return (indexListHead == getTail()); }
 
     IndexListEntry* front() {
       assert(!empty() && "front() called on empty index list.");
       return indexListHead;
     }
 
     const IndexListEntry* front() const {
       assert(!empty() && "front() called on empty index list.");
       return indexListHead;
     }
 
     IndexListEntry* back() {
       assert(!empty() && "back() called on empty index list.");
       return getTail()->getPrev();
     }
 
     const IndexListEntry* back() const {
       assert(!empty() && "back() called on empty index list.");
       return getTail()->getPrev();
     }
 
     /// Insert a new entry before itr.
     void insert(IndexListEntry *itr, IndexListEntry *val) {
       assert(itr != 0 && "itr should not be null.");
       IndexListEntry *prev = itr->getPrev();
       val->setNext(itr);
       val->setPrev(prev);
       
       if (itr != indexListHead) {
         prev->setNext(val);
       }
       else {
         indexListHead = val;
       }
       itr->setPrev(val);
     }
 
     /// Push a new entry on to the end of the list.
     void push_back(IndexListEntry *val) {
       insert(getTail(), val);
     }
 
   public:
     static char ID;
 
79a10b48
     SlotIndexes() : MachineFunctionPass(ID), indexListHead(0) {}
5518b7d4
 
     virtual void getAnalysisUsage(AnalysisUsage &au) const;
     virtual void releaseMemory(); 
 
     virtual bool runOnMachineFunction(MachineFunction &fn);
 
     /// Dump the indexes.
     void dump() const;
 
     /// Renumber the index list, providing space for new instructions.
     void renumberIndexes();
 
     /// Returns the zero index for this analysis.
     SlotIndex getZeroIndex() {
       assert(front()->getIndex() == 0 && "First index is not 0?");
       return SlotIndex(front(), 0);
     }
 
79a10b48
     /// Returns the base index of the last slot in this analysis.
     SlotIndex getLastIndex() {
       return SlotIndex(back(), 0);
     }
 
5518b7d4
     /// Returns the invalid index marker for this analysis.
     SlotIndex getInvalidIndex() {
       return getZeroIndex();
     }
 
     /// Returns the distance between the highest and lowest indexes allocated
     /// so far.
     unsigned getIndexesLength() const {
       assert(front()->getIndex() == 0 &&
              "Initial index isn't zero?");
 
       return back()->getIndex();
     }
 
     /// Returns the number of instructions in the function.
     unsigned getFunctionSize() const {
       return functionSize;
     }
 
     /// Returns true if the given machine instr is mapped to an index,
     /// otherwise returns false.
     bool hasIndex(const MachineInstr *instr) const {
       return (mi2iMap.find(instr) != mi2iMap.end());
     }
 
     /// Returns the base index for the given instruction.
     SlotIndex getInstructionIndex(const MachineInstr *instr) const {
       Mi2IndexMap::const_iterator itr = mi2iMap.find(instr);
       assert(itr != mi2iMap.end() && "Instruction not found in maps.");
       return itr->second;
     }
 
     /// Returns the instruction for the given index, or null if the given
     /// index has no instruction associated with it.
     MachineInstr* getInstructionFromIndex(SlotIndex index) const {
       return index.entry().getInstr();
     }
 
     /// Returns the next non-null index.
     SlotIndex getNextNonNullIndex(SlotIndex index) {
       SlotIndex nextNonNull = index.getNextIndex();
 
       while (&nextNonNull.entry() != getTail() &&
              getInstructionFromIndex(nextNonNull) == 0) {
         nextNonNull = nextNonNull.getNextIndex();
       }
 
       return nextNonNull;
     }
 
     /// Returns the first index in the given basic block.
     SlotIndex getMBBStartIdx(const MachineBasicBlock *mbb) const {
       MBB2IdxMap::const_iterator itr = mbb2IdxMap.find(mbb);
       assert(itr != mbb2IdxMap.end() && "MBB not found in maps.");
       return itr->second.first;
     }
 
     /// Returns the last index in the given basic block.
     SlotIndex getMBBEndIdx(const MachineBasicBlock *mbb) const {
       MBB2IdxMap::const_iterator itr = mbb2IdxMap.find(mbb);
       assert(itr != mbb2IdxMap.end() && "MBB not found in maps.");
       return itr->second.second;
     }
 
     /// Returns the terminator gap for the given index.
     SlotIndex getTerminatorGap(const MachineBasicBlock *mbb) {
       TerminatorGapsMap::iterator itr = terminatorGaps.find(mbb);
       assert(itr != terminatorGaps.end() &&
              "All MBBs should have terminator gaps in their indexes.");
       return itr->second;
     }
 
     /// Returns the basic block which the given index falls in.
     MachineBasicBlock* getMBBFromIndex(SlotIndex index) const {
       std::vector<IdxMBBPair>::const_iterator I =
         std::lower_bound(idx2MBBMap.begin(), idx2MBBMap.end(), index);
       // Take the pair containing the index
       std::vector<IdxMBBPair>::const_iterator J =
         ((I != idx2MBBMap.end() && I->first > index) ||
          (I == idx2MBBMap.end() && idx2MBBMap.size()>0)) ? (I-1): I;
 
       assert(J != idx2MBBMap.end() && J->first <= index &&
ae1be988
              index < getMBBEndIdx(J->second) &&
5518b7d4
              "index does not correspond to an MBB");
       return J->second;
     }
 
     bool findLiveInMBBs(SlotIndex start, SlotIndex end,
                         SmallVectorImpl<MachineBasicBlock*> &mbbs) const {
       std::vector<IdxMBBPair>::const_iterator itr =
         std::lower_bound(idx2MBBMap.begin(), idx2MBBMap.end(), start);
       bool resVal = false;
 
       while (itr != idx2MBBMap.end()) {
         if (itr->first >= end)
           break;
         mbbs.push_back(itr->second);
         resVal = true;
         ++itr;
       }
       return resVal;
     }
 
     /// Return a list of MBBs that can be reach via any branches or
     /// fall-throughs.
     bool findReachableMBBs(SlotIndex start, SlotIndex end,
                            SmallVectorImpl<MachineBasicBlock*> &mbbs) const {
       std::vector<IdxMBBPair>::const_iterator itr =
         std::lower_bound(idx2MBBMap.begin(), idx2MBBMap.end(), start);
 
       bool resVal = false;
       while (itr != idx2MBBMap.end()) {
         if (itr->first > end)
           break;
         MachineBasicBlock *mbb = itr->second;
         if (getMBBEndIdx(mbb) > end)
           break;
         for (MachineBasicBlock::succ_iterator si = mbb->succ_begin(),
              se = mbb->succ_end(); si != se; ++si)
           mbbs.push_back(*si);
         resVal = true;
         ++itr;
       }
       return resVal;
     }
 
     /// Returns the MBB covering the given range, or null if the range covers
     /// more than one basic block.
     MachineBasicBlock* getMBBCoveringRange(SlotIndex start, SlotIndex end) const {
 
       assert(start < end && "Backwards ranges not allowed.");
 
       std::vector<IdxMBBPair>::const_iterator itr =
         std::lower_bound(idx2MBBMap.begin(), idx2MBBMap.end(), start);
 
       if (itr == idx2MBBMap.end()) {
         itr = prior(itr);
         return itr->second;
       }
 
       // Check that we don't cross the boundary into this block.
       if (itr->first < end)
         return 0;
 
       itr = prior(itr);
 
       if (itr->first <= start)
         return itr->second;
 
       return 0;
     }
 
     /// Insert the given machine instruction into the mapping. Returns the
     /// assigned index.
     SlotIndex insertMachineInstrInMaps(MachineInstr *mi,
                                         bool *deferredRenumber = 0) {
       assert(mi2iMap.find(mi) == mi2iMap.end() && "Instr already indexed.");
 
       MachineBasicBlock *mbb = mi->getParent();
 
       assert(mbb != 0 && "Instr must be added to function.");
 
       MBB2IdxMap::iterator mbbRangeItr = mbb2IdxMap.find(mbb);
 
       assert(mbbRangeItr != mbb2IdxMap.end() &&
              "Instruction's parent MBB has not been added to SlotIndexes.");
 
       MachineBasicBlock::iterator miItr(mi);
       bool needRenumber = false;
       IndexListEntry *newEntry;
79a10b48
       // Get previous index, considering that not all instructions are indexed.
5518b7d4
       IndexListEntry *prevEntry;
79a10b48
       for (;;) {
5518b7d4
         // If mi is at the mbb beginning, get the prev index from the mbb.
79a10b48
         if (miItr == mbb->begin()) {
           prevEntry = &mbbRangeItr->second.first.entry();
           break;
         }
         // Otherwise rewind until we find a mapped instruction.
         Mi2IndexMap::const_iterator itr = mi2iMap.find(--miItr);
         if (itr != mi2iMap.end()) {
           prevEntry = &itr->second.entry();
           break;
         }
5518b7d4
       }
 
       // Get next entry from previous entry.
       IndexListEntry *nextEntry = prevEntry->getNext();
 
       // Get a number for the new instr, or 0 if there's no room currently.
       // In the latter case we'll force a renumber later.
       unsigned dist = nextEntry->getIndex() - prevEntry->getIndex();
       unsigned newNumber = dist > SlotIndex::NUM ?
         prevEntry->getIndex() + ((dist >> 1) & ~3U) : 0;
 
       if (newNumber == 0) {
         needRenumber = true;
       }
 
       // Insert a new list entry for mi.
       newEntry = createEntry(mi, newNumber);
       insert(nextEntry, newEntry);
   
       SlotIndex newIndex(newEntry, SlotIndex::LOAD);
       mi2iMap.insert(std::make_pair(mi, newIndex));
 
       if (miItr == mbb->end()) {
         // If this is the last instr in the MBB then we need to fix up the bb
         // range:
         mbbRangeItr->second.second = SlotIndex(newEntry, SlotIndex::STORE);
       }
 
       // Renumber if we need to.
       if (needRenumber) {
         if (deferredRenumber == 0)
           renumberIndexes();
         else
           *deferredRenumber = true;
       }
 
       return newIndex;
     }
 
     /// Add all instructions in the vector to the index list. This method will
     /// defer renumbering until all instrs have been added, and should be 
     /// preferred when adding multiple instrs.
     void insertMachineInstrsInMaps(SmallVectorImpl<MachineInstr*> &mis) {
       bool renumber = false;
 
       for (SmallVectorImpl<MachineInstr*>::iterator
            miItr = mis.begin(), miEnd = mis.end();
            miItr != miEnd; ++miItr) {
         insertMachineInstrInMaps(*miItr, &renumber);
       }
 
       if (renumber)
         renumberIndexes();
     }
 
 
     /// Remove the given machine instruction from the mapping.
     void removeMachineInstrFromMaps(MachineInstr *mi) {
       // remove index -> MachineInstr and
       // MachineInstr -> index mappings
       Mi2IndexMap::iterator mi2iItr = mi2iMap.find(mi);
       if (mi2iItr != mi2iMap.end()) {
         IndexListEntry *miEntry(&mi2iItr->second.entry());        
         assert(miEntry->getInstr() == mi && "Instruction indexes broken.");
         // FIXME: Eventually we want to actually delete these indexes.
         miEntry->setInstr(0);
         mi2iMap.erase(mi2iItr);
       }
     }
 
     /// ReplaceMachineInstrInMaps - Replacing a machine instr with a new one in
     /// maps used by register allocator.
     void replaceMachineInstrInMaps(MachineInstr *mi, MachineInstr *newMI) {
       Mi2IndexMap::iterator mi2iItr = mi2iMap.find(mi);
       if (mi2iItr == mi2iMap.end())
         return;
       SlotIndex replaceBaseIndex = mi2iItr->second;
       IndexListEntry *miEntry(&replaceBaseIndex.entry());
       assert(miEntry->getInstr() == mi &&
              "Mismatched instruction in index tables.");
       miEntry->setInstr(newMI);
       mi2iMap.erase(mi2iItr);
       mi2iMap.insert(std::make_pair(newMI, replaceBaseIndex));
     }
 
79a10b48
     /// Add the given MachineBasicBlock into the maps.
     void insertMBBInMaps(MachineBasicBlock *mbb) {
       MachineFunction::iterator nextMBB =
         llvm::next(MachineFunction::iterator(mbb));
       IndexListEntry *startEntry = createEntry(0, 0);
       IndexListEntry *terminatorEntry = createEntry(0, 0); 
       IndexListEntry *nextEntry = 0;
 
       if (nextMBB == mbb->getParent()->end()) {
         nextEntry = getTail();
       } else {
         nextEntry = &getMBBStartIdx(nextMBB).entry();
       }
 
       insert(nextEntry, startEntry);
       insert(nextEntry, terminatorEntry);
 
       SlotIndex startIdx(startEntry, SlotIndex::LOAD);
       SlotIndex terminatorIdx(terminatorEntry, SlotIndex::PHI_BIT);
       SlotIndex endIdx(nextEntry, SlotIndex::LOAD);
 
       terminatorGaps.insert(
         std::make_pair(mbb, terminatorIdx));
 
       mbb2IdxMap.insert(
         std::make_pair(mbb, std::make_pair(startIdx, endIdx)));
 
       idx2MBBMap.push_back(IdxMBBPair(startIdx, mbb));
 
       if (MachineFunction::iterator(mbb) != mbb->getParent()->begin()) {
         // Have to update the end index of the previous block.
         MachineBasicBlock *priorMBB =
           llvm::prior(MachineFunction::iterator(mbb));
         mbb2IdxMap[priorMBB].second = startIdx;
       }
 
       renumberIndexes();
       std::sort(idx2MBBMap.begin(), idx2MBBMap.end(), Idx2MBBCompare());
 
     }
 
5518b7d4
   };
 
 
 }
 
 #endif // LLVM_CODEGEN_LIVEINDEX_H