libclamav/bignum.h
47d40feb
 /* LibTomMath, multiple-precision integer library -- Tom St Denis
  *
  * LibTomMath is a library that provides multiple-precision
  * integer arithmetic as well as number theoretic functionality.
  *
  * The library was designed directly after the MPI library by
  * Michael Fromberger but has been written from scratch with
  * additional optimizations in place.
  *
  * The library is free for all purposes without any express
  * guarantee it works.
  *
  * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
  */
 #ifndef __BIGNUM_H
 #define __BIGNUM_H
 
15b3dc23
 #ifdef HAVE_SYSTEM_TOMMATH
 #include <tommath.h>
 #else
47d40feb
 #include <stdio.h>
 #include <string.h>
 #include <stdlib.h>
 #include <ctype.h>
 #include <limits.h>
 
 /*
 #define BN_MP_INIT_C
 #define BN_MP_ZERO_C
 #define BN_MP_READ_RADIX_C
 #define BN_MP_RADIX_SMAP_C
 #define BN_MP_SET_INT_C
 #define BN_MP_MUL_2D_C
 #define BN_MP_MUL_D_C
 #define BN_MP_CLAMP_C
 #define BN_MP_ADD_D_C
 #define BN_S_MP_ADD_C
 #define BN_MP_LSHD_C
 #define BN_MP_GROW_C
 #define BN_MP_CMP_MAG_C
 #define BN_MP_COPY_C
 */
 
 #define LTM_ALL /* FIXME: tk: limit to the above class */
 #include "bignum_class.h"
 
 #ifndef MIN
    #define MIN(x,y) ((x)<(y)?(x):(y))
 #endif
 
 #ifndef MAX
    #define MAX(x,y) ((x)>(y)?(x):(y))
 #endif
 
 #ifdef __cplusplus
 extern "C" {
 
 /* C++ compilers don't like assigning void * to mp_digit * */
 #define  OPT_CAST(x)  (x *)
 
 #else
 
 /* C on the other hand doesn't care */
 #define  OPT_CAST(x)
 
 #endif
 
649a1759
 #if 0
 Don't enable this, some old gcc's have broken udivti3.
 Also divisions get translated into libcalls, not worth using this mode.
47d40feb
 /* detect 64-bit mode if possible */
 #if defined(__x86_64__) 
    #if !(defined(MP_64BIT) && defined(MP_16BIT) && defined(MP_8BIT))
       #define MP_64BIT
    #endif
 #endif
649a1759
 #endif
47d40feb
 
 /* some default configurations.
  *
  * A "mp_digit" must be able to hold DIGIT_BIT + 1 bits
  * A "mp_word" must be able to hold 2*DIGIT_BIT + 1 bits
  *
  * At the very least a mp_digit must be able to hold 7 bits
  * [any size beyond that is ok provided it doesn't overflow the data type]
  */
 #ifdef MP_8BIT
    typedef unsigned char      mp_digit;
    typedef unsigned short     mp_word;
 #elif defined(MP_16BIT)
    typedef unsigned short     mp_digit;
    typedef unsigned long      mp_word;
 #elif defined(MP_64BIT)
    /* for GCC only on supported platforms */
 #ifndef CRYPT
    typedef unsigned long long ulong64;
    typedef signed long long   long64;
 #endif
 
    typedef unsigned long      mp_digit;
    typedef unsigned long      mp_word __attribute__ ((mode(TI)));
 
    #define DIGIT_BIT          60
 #else
    /* this is the default case, 28-bit digits */
    
    /* this is to make porting into LibTomCrypt easier :-) */
 #ifndef CRYPT
    #if defined(_MSC_VER) || defined(__BORLANDC__) 
       typedef unsigned __int64   ulong64;
       typedef signed __int64     long64;
    #else
       typedef unsigned long long ulong64;
       typedef signed long long   long64;
    #endif
 #endif
 
    typedef unsigned long      mp_digit;
    typedef ulong64            mp_word;
 
 #ifdef MP_31BIT   
    /* this is an extension that uses 31-bit digits */
    #define DIGIT_BIT          31
 #else
    /* default case is 28-bit digits, defines MP_28BIT as a handy macro to test */
    #define DIGIT_BIT          28
    #define MP_28BIT
 #endif   
 #endif
 
 
 /* otherwise the bits per digit is calculated automatically from the size of a mp_digit */
 #ifndef DIGIT_BIT
    #define DIGIT_BIT     ((int)((CHAR_BIT * sizeof(mp_digit) - 1)))  /* bits per digit */
 #endif
 
 #define MP_DIGIT_BIT     DIGIT_BIT
 #define MP_MASK          ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)1))
 #define MP_DIGIT_MAX     MP_MASK
 
 /* equalities */
 #define MP_LT        -1   /* less than */
 #define MP_EQ         0   /* equal to */
 #define MP_GT         1   /* greater than */
 
 #define MP_ZPOS       0   /* positive integer */
 #define MP_NEG        1   /* negative */
 
 #define MP_OKAY       0   /* ok result */
 #define MP_MEM        -2  /* out of mem */
 #define MP_VAL        -3  /* invalid input */
 #define MP_RANGE      MP_VAL
 
 #define MP_YES        1   /* yes response */
 #define MP_NO         0   /* no response */
 
 /* Primality generation flags */
 #define LTM_PRIME_BBS      0x0001 /* BBS style prime */
 #define LTM_PRIME_SAFE     0x0002 /* Safe prime (p-1)/2 == prime */
 #define LTM_PRIME_2MSB_ON  0x0008 /* force 2nd MSB to 1 */
 
 typedef int           mp_err;
 
 /* you'll have to tune these... */
 extern int KARATSUBA_MUL_CUTOFF,
            KARATSUBA_SQR_CUTOFF,
            TOOM_MUL_CUTOFF,
            TOOM_SQR_CUTOFF;
 
 /* define this to use lower memory usage routines (exptmods mostly) */
 /* #define MP_LOW_MEM */
 
 /* default precision */
 #ifndef MP_PREC
    #ifndef MP_LOW_MEM
       #define MP_PREC                 32     /* default digits of precision */
    #else
       #define MP_PREC                 8      /* default digits of precision */
    #endif   
 #endif
 
 /* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */
 #define MP_WARRAY               (1 << (sizeof(mp_word) * CHAR_BIT - 2 * DIGIT_BIT + 1))
 
 /* the infamous mp_int structure */
 typedef struct  {
     int used, alloc, sign;
     mp_digit *dp;
 } mp_int;
 
 /* callback for mp_prime_random, should fill dst with random bytes and return how many read [upto len] */
 typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat);
 
 
 #define USED(m)    ((m)->used)
 #define DIGIT(m,k) ((m)->dp[(k)])
 #define SIGN(m)    ((m)->sign)
 
 /* error code to char* string */
 const char *mp_error_to_string(int code);
 
 /* ---> init and deinit bignum functions <--- */
 /* init a bignum */
 int mp_init(mp_int *a);
 
 /* free a bignum */
 void mp_clear(mp_int *a);
 
 /* init a null terminated series of arguments */
 int mp_init_multi(mp_int *mp, ...);
 
 /* clear a null terminated series of arguments */
 void mp_clear_multi(mp_int *mp, ...);
 
 /* exchange two ints */
 void mp_exch(mp_int *a, mp_int *b);
 
 /* shrink ram required for a bignum */
 int mp_shrink(mp_int *a);
 
 /* grow an int to a given size */
 int mp_grow(mp_int *a, int size);
 
 /* init to a given number of digits */
 int mp_init_size(mp_int *a, int size);
 
 /* ---> Basic Manipulations <--- */
 #define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO)
 #define mp_iseven(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 0)) ? MP_YES : MP_NO)
 #define mp_isodd(a)  (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? MP_YES : MP_NO)
 
 /* set to zero */
 void mp_zero(mp_int *a);
 
 /* set to a digit */
 void mp_set(mp_int *a, mp_digit b);
 
 /* set a 32-bit const */
 int mp_set_int(mp_int *a, unsigned long b);
 
 /* get a 32-bit value */
 unsigned long mp_get_int(mp_int * a);
 
 /* initialize and set a digit */
 int mp_init_set (mp_int * a, mp_digit b);
 
 /* initialize and set 32-bit value */
 int mp_init_set_int (mp_int * a, unsigned long b);
 
 /* copy, b = a */
 int mp_copy(mp_int *a, mp_int *b);
 
 /* inits and copies, a = b */
 int mp_init_copy(mp_int *a, mp_int *b);
 
 /* trim unused digits */
 void mp_clamp(mp_int *a);
 
 /* ---> digit manipulation <--- */
 
 /* right shift by "b" digits */
 void mp_rshd(mp_int *a, int b);
 
 /* left shift by "b" digits */
 int mp_lshd(mp_int *a, int b);
 
 /* c = a / 2**b */
 int mp_div_2d(mp_int *a, int b, mp_int *c, mp_int *d);
 
 /* b = a/2 */
 int mp_div_2(mp_int *a, mp_int *b);
 
 /* c = a * 2**b */
 int mp_mul_2d(mp_int *a, int b, mp_int *c);
 
 /* b = a*2 */
 int mp_mul_2(mp_int *a, mp_int *b);
 
 /* c = a mod 2**d */
 int mp_mod_2d(mp_int *a, int b, mp_int *c);
 
 /* computes a = 2**b */
 int mp_2expt(mp_int *a, int b);
 
 /* Counts the number of lsbs which are zero before the first zero bit */
 int mp_cnt_lsb(mp_int *a);
 
 /* I Love Earth! */
 
 /* makes a pseudo-random int of a given size */
 int mp_rand(mp_int *a, int digits);
 
 /* ---> binary operations <--- */
 /* c = a XOR b  */
 int mp_xor(mp_int *a, mp_int *b, mp_int *c);
 
 /* c = a OR b */
 int mp_or(mp_int *a, mp_int *b, mp_int *c);
 
 /* c = a AND b */
 int mp_and(mp_int *a, mp_int *b, mp_int *c);
 
 /* ---> Basic arithmetic <--- */
 
 /* b = -a */
 int mp_neg(mp_int *a, mp_int *b);
 
 /* b = |a| */
 int mp_abs(mp_int *a, mp_int *b);
 
 /* compare a to b */
 int mp_cmp(mp_int *a, mp_int *b);
 
 /* compare |a| to |b| */
 int mp_cmp_mag(mp_int *a, mp_int *b);
 
 /* c = a + b */
 int mp_add(mp_int *a, mp_int *b, mp_int *c);
 
 /* c = a - b */
 int mp_sub(mp_int *a, mp_int *b, mp_int *c);
 
 /* c = a * b */
 int mp_mul(mp_int *a, mp_int *b, mp_int *c);
 
 /* b = a*a  */
 int mp_sqr(mp_int *a, mp_int *b);
 
 /* a/b => cb + d == a */
 int mp_div(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
 
 /* c = a mod b, 0 <= c < b  */
 int mp_mod(mp_int *a, mp_int *b, mp_int *c);
 
 /* ---> single digit functions <--- */
 
 /* compare against a single digit */
 int mp_cmp_d(mp_int *a, mp_digit b);
 
 /* c = a + b */
 int mp_add_d(mp_int *a, mp_digit b, mp_int *c);
 
 /* c = a - b */
 int mp_sub_d(mp_int *a, mp_digit b, mp_int *c);
 
 /* c = a * b */
 int mp_mul_d(mp_int *a, mp_digit b, mp_int *c);
 
 /* a/b => cb + d == a */
 int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d);
 
 /* a/3 => 3c + d == a */
 int mp_div_3(mp_int *a, mp_int *c, mp_digit *d);
 
 /* c = a**b */
 int mp_expt_d(mp_int *a, mp_digit b, mp_int *c);
 
 /* c = a mod b, 0 <= c < b  */
 int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c);
 
 /* ---> number theory <--- */
 
 /* d = a + b (mod c) */
 int mp_addmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
 
 /* d = a - b (mod c) */
 int mp_submod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
 
 /* d = a * b (mod c) */
 int mp_mulmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
 
 /* c = a * a (mod b) */
 int mp_sqrmod(mp_int *a, mp_int *b, mp_int *c);
 
 /* c = 1/a (mod b) */
 int mp_invmod(mp_int *a, mp_int *b, mp_int *c);
 
 /* c = (a, b) */
 int mp_gcd(mp_int *a, mp_int *b, mp_int *c);
 
 /* produces value such that U1*a + U2*b = U3 */
 int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3);
 
 /* c = [a, b] or (a*b)/(a, b) */
 int mp_lcm(mp_int *a, mp_int *b, mp_int *c);
 
 /* finds one of the b'th root of a, such that |c|**b <= |a|
  *
  * returns error if a < 0 and b is even
  */
 int mp_n_root(mp_int *a, mp_digit b, mp_int *c);
 
 /* special sqrt algo */
 int mp_sqrt(mp_int *arg, mp_int *ret);
 
 /* is number a square? */
 int mp_is_square(mp_int *arg, int *ret);
 
 /* computes the jacobi c = (a | n) (or Legendre if b is prime)  */
 int mp_jacobi(mp_int *a, mp_int *n, int *c);
 
 /* used to setup the Barrett reduction for a given modulus b */
 int mp_reduce_setup(mp_int *a, mp_int *b);
 
 /* Barrett Reduction, computes a (mod b) with a precomputed value c
  *
  * Assumes that 0 < a <= b*b, note if 0 > a > -(b*b) then you can merely
  * compute the reduction as -1 * mp_reduce(mp_abs(a)) [pseudo code].
  */
 int mp_reduce(mp_int *a, mp_int *b, mp_int *c);
 
 /* setups the montgomery reduction */
 int mp_montgomery_setup(mp_int *a, mp_digit *mp);
 
 /* computes a = B**n mod b without division or multiplication useful for
  * normalizing numbers in a Montgomery system.
  */
 int mp_montgomery_calc_normalization(mp_int *a, mp_int *b);
 
 /* computes x/R == x (mod N) via Montgomery Reduction */
 int mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
 
 /* returns 1 if a is a valid DR modulus */
 int mp_dr_is_modulus(mp_int *a);
 
 /* sets the value of "d" required for mp_dr_reduce */
 void mp_dr_setup(mp_int *a, mp_digit *d);
 
 /* reduces a modulo b using the Diminished Radix method */
 int mp_dr_reduce(mp_int *a, mp_int *b, mp_digit mp);
 
 /* returns true if a can be reduced with mp_reduce_2k */
 int mp_reduce_is_2k(mp_int *a);
 
 /* determines k value for 2k reduction */
 int mp_reduce_2k_setup(mp_int *a, mp_digit *d);
 
 /* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
 int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d);
 
 /* returns true if a can be reduced with mp_reduce_2k_l */
 int mp_reduce_is_2k_l(mp_int *a);
 
 /* determines k value for 2k reduction */
 int mp_reduce_2k_setup_l(mp_int *a, mp_int *d);
 
 /* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
 int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d);
 
 /* d = a**b (mod c) */
 int mp_exptmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
 
 /* ---> Primes <--- */
 
 /* number of primes */
 #ifdef MP_8BIT
    #define PRIME_SIZE      31
 #else
    #define PRIME_SIZE      256
 #endif
 
 /* table of first PRIME_SIZE primes */
 extern const mp_digit ltm_prime_tab[];
 
 /* result=1 if a is divisible by one of the first PRIME_SIZE primes */
 int mp_prime_is_divisible(mp_int *a, int *result);
 
 /* performs one Fermat test of "a" using base "b".
  * Sets result to 0 if composite or 1 if probable prime
  */
 int mp_prime_fermat(mp_int *a, mp_int *b, int *result);
 
 /* performs one Miller-Rabin test of "a" using base "b".
  * Sets result to 0 if composite or 1 if probable prime
  */
 int mp_prime_miller_rabin(mp_int *a, mp_int *b, int *result);
 
 /* This gives [for a given bit size] the number of trials required
  * such that Miller-Rabin gives a prob of failure lower than 2^-96 
  */
 int mp_prime_rabin_miller_trials(int size);
 
 /* performs t rounds of Miller-Rabin on "a" using the first
  * t prime bases.  Also performs an initial sieve of trial
  * division.  Determines if "a" is prime with probability
  * of error no more than (1/4)**t.
  *
  * Sets result to 1 if probably prime, 0 otherwise
  */
 int mp_prime_is_prime(mp_int *a, int t, int *result);
 
 /* finds the next prime after the number "a" using "t" trials
  * of Miller-Rabin.
  *
  * bbs_style = 1 means the prime must be congruent to 3 mod 4
  */
 int mp_prime_next_prime(mp_int *a, int t, int bbs_style);
 
 /* makes a truly random prime of a given size (bytes),
  * call with bbs = 1 if you want it to be congruent to 3 mod 4 
  *
  * You have to supply a callback which fills in a buffer with random bytes.  "dat" is a parameter you can
  * have passed to the callback (e.g. a state or something).  This function doesn't use "dat" itself
  * so it can be NULL
  *
  * The prime generated will be larger than 2^(8*size).
  */
 #define mp_prime_random(a, t, size, bbs, cb, dat) mp_prime_random_ex(a, t, ((size) * 8) + 1, (bbs==1)?LTM_PRIME_BBS:0, cb, dat)
 
 /* makes a truly random prime of a given size (bits),
  *
  * Flags are as follows:
  * 
  *   LTM_PRIME_BBS      - make prime congruent to 3 mod 4
  *   LTM_PRIME_SAFE     - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS)
  *   LTM_PRIME_2MSB_OFF - make the 2nd highest bit zero
  *   LTM_PRIME_2MSB_ON  - make the 2nd highest bit one
  *
  * You have to supply a callback which fills in a buffer with random bytes.  "dat" is a parameter you can
  * have passed to the callback (e.g. a state or something).  This function doesn't use "dat" itself
  * so it can be NULL
  *
  */
 int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat);
 
 /* ---> radix conversion <--- */
 int mp_count_bits(mp_int *a);
 
 int mp_unsigned_bin_size(mp_int *a);
 int mp_read_unsigned_bin(mp_int *a, const unsigned char *b, int c);
 int mp_to_unsigned_bin(mp_int *a, unsigned char *b);
 int mp_to_unsigned_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen);
 
 int mp_signed_bin_size(mp_int *a);
 int mp_read_signed_bin(mp_int *a, const unsigned char *b, int c);
 int mp_to_signed_bin(mp_int *a,  unsigned char *b);
 int mp_to_signed_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen);
 
 int mp_read_radix(mp_int *a, const char *str, int radix);
 int mp_toradix(mp_int *a, char *str, int radix);
 int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen);
 int mp_radix_size(mp_int *a, int radix, int *size);
 
 int mp_fread(mp_int *a, int radix, FILE *stream);
 int mp_fwrite(mp_int *a, int radix, FILE *stream);
 
 #define mp_read_raw(mp, str, len) mp_read_signed_bin((mp), (str), (len))
 #define mp_raw_size(mp)           mp_signed_bin_size(mp)
 #define mp_toraw(mp, str)         mp_to_signed_bin((mp), (str))
 #define mp_read_mag(mp, str, len) mp_read_unsigned_bin((mp), (str), (len))
 #define mp_mag_size(mp)           mp_unsigned_bin_size(mp)
 #define mp_tomag(mp, str)         mp_to_unsigned_bin((mp), (str))
 
 #define mp_tobinary(M, S)  mp_toradix((M), (S), 2)
 #define mp_tooctal(M, S)   mp_toradix((M), (S), 8)
 #define mp_todecimal(M, S) mp_toradix((M), (S), 10)
 #define mp_tohex(M, S)     mp_toradix((M), (S), 16)
 
 /* lowlevel functions, do not call! */
 int s_mp_add(mp_int *a, mp_int *b, mp_int *c);
 int s_mp_sub(mp_int *a, mp_int *b, mp_int *c);
 #define s_mp_mul(a, b, c) s_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1)
 int fast_s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
 int s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
 int fast_s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
 int s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
 int fast_s_mp_sqr(mp_int *a, mp_int *b);
 int s_mp_sqr(mp_int *a, mp_int *b);
 int mp_karatsuba_mul(mp_int *a, mp_int *b, mp_int *c);
 int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c);
 int mp_karatsuba_sqr(mp_int *a, mp_int *b);
 int mp_toom_sqr(mp_int *a, mp_int *b);
 int fast_mp_invmod(mp_int *a, mp_int *b, mp_int *c);
 int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c);
 int fast_mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
 int mp_exptmod_fast(mp_int *G, mp_int *X, mp_int *P, mp_int *Y, int mode);
 int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int mode);
 void bn_reverse(unsigned char *s, int len);
 
 extern const char *mp_s_rmap;
 
 #ifdef __cplusplus
    }
 #endif
 
15b3dc23
 #endif /* HAVE_SYSTEM_TOMMATH */
 
47d40feb
 #endif
 
 
 /* $Source: /cvs/libtom/libtommath/tommath.h,v $ */
 /* $Revision: 1.8 $ */
 /* $Date: 2006/03/31 14:18:44 $ */