libclamav/nsis/infblock.c
84f4e2bb
 /*
  * This file is a part of the zlib compression module for NSIS.
  * 
  * Copyright and license information can be found below.
  * Modifications Copyright (C) 1999-2007 Nullsoft and Contributors
  * 
  * The original zlib source code is available at
  * http://www.zlib.net/
  * 
  * This software is provided 'as-is', without any express or implied
  * warranty.
  */
 
 /*
  * Copyright (C) 1995-1998 Jean-loup Gailly.
  * For conditions of distribution and use, see copyright notice in COPYING.nsis
  */
 
 #include "nsis_zutil.h"
 #include <string.h>
 
 #ifndef min
 #  define min(x,y) ((x<y)?x:y)
 #endif
 
 /* defines for inflate input/output */
 /*   update pointers and return */
 #define UPDBITS {s->bitb=b;s->bitk=k;}
 #define UPDIN {z->avail_in=n;z->next_in=p;}
 #define UPDOUT {s->write=q;}
 #define UPDATE {UPDBITS UPDIN UPDOUT}
 #define LEAVE(r) {UPDATE inflate_flush(z); return r;}
 
 /*   get bytes and bits */
 #define LOADIN {p=z->next_in;n=z->avail_in;b=s->bitb;k=s->bitk;}
 
 
 #define NEEDBYTE {if(!n)LEAVE(Z_OK)}
 #define NEXTBYTE (n--,*p++)
 #define NEEDBITS(j) {while(k<(j)){NEEDBYTE;b|=((uLong)NEXTBYTE)<<k;k+=8;}}
 
 #define DUMPBITS(j) {b>>=(j);k-=(j);}
 /*   output bytes */
 #define WAVAIL (uInt)(q<s->read?s->read-q-1:s->end-q)
 #define LOADOUT {q=s->write;m=(uInt)WAVAIL;}
 #define WRAP {if(q==s->end&&s->read!=s->window){q=s->window;m=(uInt)WAVAIL;}}
 #define FLUSH {UPDOUT inflate_flush(z); LOADOUT}
 #define NEEDOUT {if(m==0){WRAP if(m==0){FLUSH WRAP if(m==0) LEAVE(Z_OK)}}}
 #define OUTBYTE(a) {*q++=(Byte)(a);m--;}
 /*   load local pointers */
 #define LOAD {LOADIN LOADOUT}
 
 #define LAST (s->last == DRY)
 
 
 typedef struct inflate_blocks_state FAR inflate_blocks_statef;
 #define exop word.what.Exop
 #define bits word.what.Bits
 
 /* And'ing with mask[n] masks the lower n bits */
cadf86d4
 local const unsigned short inflate_mask[17] = {
84f4e2bb
     0x0000,
     0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
     0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
 }; /* use to reduce .data #define INFLATE_MASK(x, n) (x & (~((unsigned short) 0xFFFF << n))) */
 local const char border[] = { /* Order of the bit length code lengths */
         16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
 
 /* Tables for deflate from PKZIP's appnote.txt. */
 local const unsigned short  cplens[31] = { /* Copy lengths for literal codes 257..285 */
         3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
         35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
         /* see note #13 above about 258 */
 local const unsigned short  cplext[31] = { /* Extra bits for literal codes 257..285 */
         0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
         3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 112, 112}; /* 112==invalid */
 local const unsigned short  cpdist[30] = { /* Copy offsets for distance codes 0..29 */
         1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
         257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
         8193, 12289, 16385, 24577};
 local const unsigned short  cpdext[30] = { /* Extra bits for distance codes */
         0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
         7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
         12, 12, 13, 13};
 
 /* build fixed tables only once--keep them here */
cadf86d4
 /* local char fixed_built = 0; */
 /* local inflate_huft fixed_mem[FIXEDH]; */
 /* local uInt fixed_bl=9; */
 /* local uInt fixed_bd=5; */
 /* local inflate_huft *fixed_tl; */
 /* local inflate_huft *fixed_td; */
 
84f4e2bb
 
 /* copy as much as possible from the sliding window to the output area */
 local void ZEXPORT inflate_flush(nsis_z_streamp z)
 {
   inflate_blocks_statef *s = &z->blocks;
   uInt n;
   Bytef *q;
 
   /* local copies of source and destination pointers */
   q = s->read;
 
 again:
   /* compute number of bytes to copy as far as end of window */
   n = (uInt)((q <= s->write ? s->write : s->end) - q);
   n = min(n, z->avail_out);
 
   /* update counters */
   z->avail_out -= n;
   /* z->total_out += n; */
 
   /* copy as far as end of window */
   zmemcpy(z->next_out, q, n);
   z->next_out += n;
   q += n;
 
   /* see if more to copy at beginning of window */
   if (q == s->end)
   {
     /* wrap pointers */
     q = s->window;
     if (s->write == s->end)
       s->write = s->window;
 
     /* do the same for the beginning of the window */
     goto again;
   }
 
   /* update pointers */
   s->read = q;
 }
 
 #define BMAX 15         /* maximum bit length of any code */
 
 local int ZEXPORT huft_build(
 uIntf *b,               /* code lengths in bits (all assumed <= BMAX) */
 uInt n,                 /* number of codes (assumed <= 288) */
 uInt s,                 /* number of simple-valued codes (0..s-1) */
 const unsigned short *d,         /* list of base values for non-simple codes */
 const unsigned short *e,         /* list of extra bits for non-simple codes */
 inflate_huft * FAR *t,  /* result: starting table */
 uIntf *m,               /* maximum lookup bits, returns actual */
 inflate_huft *hp,       /* space for trees */
513df2c8
 uInt *hn,               /* working area: values in order of bit length */
 uIntf *v)             /* work area for huft_build */
84f4e2bb
 {
   uInt a;                       /* counter for codes of length k */
   uInt c[BMAX+1];               /* bit length count table */
   uInt f;                       /* i repeats in table every f entries */
   int g;                        /* maximum code length */
   int h;                        /* table level */
   uInt i;              /* counter, current code */
   uInt j;              /* counter */
   int k;               /* number of bits in current code */
   int l;                        /* bits per table (returned in m) */
   uIntf *p;            /* pointer into c[], b[], or v[] */
   inflate_huft *q;              /* points to current table */
   struct inflate_huft_s r;      /* table entry for structure assignment */
   inflate_huft *u[BMAX];        /* table stack */
   int w;               /* bits before this table == (l * h) */
   uInt x[BMAX+1];               /* bit offsets, then code stack */
   uIntf *xp;                    /* pointer into x */
   int y;                        /* number of dummy codes added */
   uInt z;                       /* number of entries in current table */
 
 
   /* Generate counts for each bit length */
   p=c;
   y=16; while (y--) *p++ = 0;
   p = b;
   i = n;
   do {
     c[*p++]++;                  /* assume all entries <= BMAX */
   } while (--i);
   if (c[0] == n)                /* null input--all zero length codes */
   {
     *t = (inflate_huft *)Z_NULL;
     *m = 0;
     return Z_OK;
   }
 
 
   /* Find minimum and maximum length, bound *m by those */
   l = *m;
   for (j = 1; j <= BMAX; j++)
     if (c[j])
       break;
   k = j;                        /* minimum code length */
   if ((uInt)l < j)
     l = j;
   for (i = BMAX; i; i--)
     if (c[i])
       break;
   g = i;                        /* maximum code length */
   if ((uInt)l > i)
     l = i;
   *m = l;
 
 
   /* Adjust last length count to fill out codes, if needed */
   for (y = 1 << j; j < i; j++, y <<= 1)
     if ((y -= c[j]) < 0)
       return Z_DATA_ERROR;
   if ((y -= c[i]) < 0)
     return Z_DATA_ERROR;
   c[i] += y;
 
 
   /* Generate starting offsets into the value table for each length */
   x[1] = j = 0;
   p = c + 1;  xp = x + 2;
   while (--i) {                 /* note that i == g from above */
     *xp++ = (j += *p++);
   }
 
 
   /* Make a table of values in order of bit lengths */
   p = b;  i = 0;
   do {
     if ((j = *p++) != 0)
       v[x[j]++] = i;
   } while (++i < n);
   n = x[g];                     /* set n to length of v */
 
 
   /* Generate the Huffman codes and for each, make the table entries */
   x[0] = i = 0;                 /* first Huffman code is zero */
   p = v;                        /* grab values in bit order */
   h = -1;                       /* no tables yet--level -1 */
   w = -l;                       /* bits decoded == (l * h) */
   u[0] = (inflate_huft *)Z_NULL;        /* just to keep compilers happy */
   q = (inflate_huft *)Z_NULL;   /* ditto */
   z = 0;                        /* ditto */
 
   r.base = 0;
 
   /* go through the bit lengths (k already is bits in shortest code) */
   for (; k <= g; k++)
   {
     a = c[k];
     while (a--)
     {
       int nextw=w;
       /* here i is the Huffman code of length k bits for value *p */
       /* make tables up to required level */
       while (k > (nextw=w + l))
       {
         h++;
 
         /* compute minimum size table less than or equal to l bits */
         z = g - nextw;
         z = z > (uInt)l ? (uInt)l : z;        /* table size upper limit */
         if ((f = 1 << (j = k - nextw)) > a + 1)     /* try a k-w bit table */
         {                       /* too few codes for k-w bit table */
           f -= a + 1;           /* deduct codes from patterns left */
           xp = c + k;
           if (j < z)
             while (++j < z && (f <<= 1) > *++xp)     /* try smaller tables up to z bits */
             {
               f -= *xp;         /* else deduct codes from patterns */
             }
         }
         z = 1 << j;             /* table entries for j-bit table */
 
         /* allocate new table */
         if (*hn + z > MANY)     /* (note: doesn't matter for fixed) */
           return Z_MEM_ERROR;   /* not enough memory */
         u[h] = q = hp + *hn;
         *hn += z;
 
         /* connect to last table, if there is one */
         if (h)
         {
           x[h] = i;             /* save pattern for backing up */
           r.bits = (Byte)l;     /* bits to dump before this table */
           r.exop = (Byte)j;     /* bits in this table */
           j = i >> w;
           r.base = (uInt)(q - u[h-1] - j);   /* offset to this table */
           u[h-1][j] = r;        /* connect to last table */
         }
         else
           *t = q;               /* first table is returned result */
         w=nextw;                 /* previous table always l bits */
       }
 
       /* set up table entry in r */
       r.bits = (Byte)(k - w);
       if (p >= v + n)
         r.exop = 128 + 64;      /* out of values--invalid code */
       else if (*p < s)
       {
         r.exop = (Byte)(*p < 256 ? 0 : 32 + 64);     /* 256 is end-of-block */
         r.base = *p++;          /* simple code is just the value */
       }
       else
       {
         r.exop = (Byte)(e[*p - s] + 16 + 64);/* non-simple--look up in lists */
         r.base = d[*p++ - s];
       }
 
       /* fill code-like entries with r */
       f = 1 << (k - w);
       for (j = i >> w; j < z; j += f)
         q[j] = r;
 
       /* backwards increment the k-bit code i */
       for (j = 1 << (k - 1); i & j; j >>= 1)
         i ^= j;
       i ^= j;
 
       /* backup over finished tables */
       while ((i & ((1 << w) - 1)) != x[h])
       {
         h--;                    /* don't need to update q */
         w -= l;
       }
     }
   }
 
 
   /* Return Z_BUF_ERROR if we were given an incomplete table */
   return (y != 0 && g != 1) ? Z_BUF_ERROR : Z_OK;
 }
 
 int ZEXPORT nsis_inflate(nsis_z_streamp z)
 {
   inflate_blocks_statef *s = &z->blocks;
   inflate_codes_statef *c = &s->sub.decode.t_codes;  /* codes state */
 
   /* lousy two bytes saved by doing this */
   struct
   {
     uInt t;               /* temporary storage */
     uLong b;              /* bit buffer */
     uInt k;               /* bits in bit buffer */
     Bytef *p;             /* input data pointer */
     uInt n;               /* bytes available there */
     Bytef *q;             /* output window write pointer */
     uInt m;               /* bytes to end of window or read pointer */
 
     /* CODES variables */
 
     inflate_huft *j;      /* temporary pointer */
     uInt e;               /* extra bits or operation */
     Bytef *f;             /* pointer to copy strings from */
   } _state;
 
 #define t _state.t
 #define b _state.b
 #define k _state.k
 #define p _state.p
 #define n _state.n
 #define q _state.q
 #define m _state.m
 
   /* copy input/output information to locals (UPDATE macro restores) */
   LOAD
 
   /* process input based on current state */
   for (;;) switch (s->mode)
   {
     case TYPE:
       NEEDBITS(3)
       t = (uInt)b & 7;
       DUMPBITS(3)
       s->last = (t & 1) ? DRY : TYPE;
       switch (t >> 1)
       {
         case 0:                         /* stored */
           Tracev((stderr, "inflate:     stored block%s\n",
                  LAST ? " (last)" : ""));
           DUMPBITS(k&7)
           s->mode = LENS;               /* get length of stored block */
           break;
         case 1:                         /* fixed */
           Tracev((stderr, "inflate:     fixed codes block%s\n",
                  LAST ? " (last)" : ""));
           {
cadf86d4
             if (!s->zs.fixed_built)
84f4e2bb
             {
               int _k;              /* temporary variable */
               uInt f = 0;         /* number of hufts used in fixed_mem */
513df2c8
               
84f4e2bb
               /* literal table */
               for (_k = 0; _k < 288; _k++)
               {
                 char v=8;
                 if (_k > 143)
                 {
                   if (_k < 256) v++;
                   else if (_k < 280) v--;
                 }
513df2c8
                 s->zs.lc[_k] = v;
84f4e2bb
               }
 
513df2c8
               huft_build(s->zs.lc, 288, 257, cplens, cplext, &s->zs.fixed_tl, &s->zs.fixed_bl, s->zs.fixed_mem, &f, s->zs.v);
84f4e2bb
 
               /* distance table */
513df2c8
               for (_k = 0; _k < 30; _k++) s->zs.lc[_k] = 5;
84f4e2bb
 
513df2c8
               huft_build(s->zs.lc, 30, 0, cpdist, cpdext, &s->zs.fixed_td, &s->zs.fixed_bd, s->zs.fixed_mem, &f, s->zs.v);
84f4e2bb
 
               /* done */
cadf86d4
               s->zs.fixed_built++;
84f4e2bb
             }
 
             /* s->sub.decode.t_codes.mode = CODES_START; */
cadf86d4
             s->sub.decode.t_codes.lbits = (Byte)s->zs.fixed_bl;
             s->sub.decode.t_codes.dbits = (Byte)s->zs.fixed_bd;
             s->sub.decode.t_codes.ltree = s->zs.fixed_tl;
             s->sub.decode.t_codes.dtree = s->zs.fixed_td;
84f4e2bb
           }
           s->mode = CODES_START;
           break;
         case 2:                         /* dynamic */
           Tracev((stderr, "inflate:     dynamic codes block%s\n",
                  LAST ? " (last)" : ""));
           s->mode = TABLE;
           break;
         case 3:                         /* illegal */
           /* the only illegal value possible is 3 because we check only 2 bits */
           goto bad;
       }
       break;
     case LENS:
       NEEDBITS(16)
       s->sub.left = (uInt)b & 0xffff;
       b = k = 0;                      /* dump bits */
       Tracev((stderr, "inflate:       stored length %u\n", s->sub.left));
       s->mode = s->sub.left ? STORED : (inflate_mode)s->last;
       break;
     case STORED:
     {
       uInt mn;
 
       if (n == 0)
         LEAVE(Z_OK)
       NEEDOUT
       mn = min(m, n);
       t = min(s->sub.left, mn);
       zmemcpy(q, p, t);
       p += t;  n -= t;
       q += t;  m -= t;
       if (!(s->sub.left -= t))
         s->mode = (inflate_mode)s->last;
       break;
     }
     case TABLE:
       NEEDBITS(14)
       s->sub.trees.table = t = (uInt)b & 0x3fff;
       if ((t & 0x1f) > 29 || ((t >> 5) & 0x1f) > 29)
       {
         s->mode = NZ_BAD;
         LEAVE(Z_DATA_ERROR);
       }
       /* t = 258 + (t & 0x1f) + ((t >> 5) & 0x1f); */
       DUMPBITS(14)
       s->sub.trees.index = 0;
       Tracev((stderr, "inflate:       table sizes ok\n"));
       s->mode = BTREE;
     case BTREE:
       while (s->sub.trees.index < 4 + (s->sub.trees.table >> 10))
       {
         NEEDBITS(3)
         s->sub.trees.t_blens[(int)border[s->sub.trees.index++]] = (uInt)b & 7;
         DUMPBITS(3)
       }
       while (s->sub.trees.index < 19)
         s->sub.trees.t_blens[(int)border[s->sub.trees.index++]] = 0;
       s->sub.trees.bb = 7;
 
       {
         uInt hn = 0;          /* hufts used in space */
 
         t = huft_build(s->sub.trees.t_blens, 19, 19, Z_NULL, Z_NULL,
513df2c8
 		       &s->sub.trees.tb, &s->sub.trees.bb, s->hufts, &hn, s->zs.v);
84f4e2bb
         if (t != Z_OK || !s->sub.trees.bb)
         {
           s->mode = NZ_BAD;
           break;
         }
       }
 
       s->sub.trees.index = 0;
       Tracev((stderr, "inflate:       bits tree ok\n"));
       s->mode = DTREE;
     case DTREE:
       while (t = s->sub.trees.table,
              s->sub.trees.index < 258 + (t & 0x1f) + ((t >> 5) & 0x1f))
       {
         inflate_huft *h;
         uInt i, j, d;
 
         t = s->sub.trees.bb;
         NEEDBITS(t)
         h = s->sub.trees.tb + ((uInt)b & (uInt)inflate_mask[t]);
         t = h->bits;
         d = h->base;
         if (d < 16)
         {
           DUMPBITS(t)
           s->sub.trees.t_blens[s->sub.trees.index++] = d;
         }
         else /* d == 16..18 */
         {
           if (d == 18)
           {
             i=7;
             j=11;
           }
           else
           {
             i=d-14;
             j=3;
           }
           NEEDBITS(t+i)
           DUMPBITS(t)
           j += (uInt)b & (uInt)inflate_mask[i];
           DUMPBITS(i)
           i = s->sub.trees.index;
           t = s->sub.trees.table;
           if (i + j > 258 + (t & 0x1f) + ((t >> 5) & 0x1f) ||
               (d == 16 && i < 1))
           {
             s->mode = NZ_BAD;
             LEAVE(Z_DATA_ERROR);
           }
           d = d == 16 ? s->sub.trees.t_blens[i - 1] : 0;
           do {
             s->sub.trees.t_blens[i++] = d;
           } while (--j);
           s->sub.trees.index = i;
         }
       }
       s->sub.trees.tb = Z_NULL;
       {
         uInt hn = 0;          /* hufts used in space */
         uInt bl, bd;
         inflate_huft *tl, *td;
         int nl,nd;
         t = s->sub.trees.table;
 
         nl = 257 + (t & 0x1f);
         nd = 1 + ((t >> 5) & 0x1f);
         bl = 9;         /* must be <= 9 for lookahead assumptions */
         bd = 6;         /* must be <= 9 for lookahead assumptions */
 
513df2c8
         t = huft_build(s->sub.trees.t_blens, nl, 257, cplens, cplext, &tl, &bl, s->hufts, &hn, s->zs.v);
84f4e2bb
         if (bl == 0) t = Z_DATA_ERROR;
         if (t == Z_OK)
         {
           /* build distance tree */
513df2c8
           t = huft_build(s->sub.trees.t_blens + nl, nd, 0, cpdist, cpdext, &td, &bd, s->hufts, &hn, s->zs.v);
84f4e2bb
         }
         if (t != Z_OK || (bd == 0 && nl > 257))
         {
           s->mode = NZ_BAD;
           LEAVE(Z_DATA_ERROR);
         }
         Tracev((stderr, "inflate:       trees ok\n"));
 
         /* s->sub.decode.t_codes.mode = CODES_START; */
         s->sub.decode.t_codes.lbits = (Byte)bl;
         s->sub.decode.t_codes.dbits = (Byte)bd;
         s->sub.decode.t_codes.ltree = tl;
         s->sub.decode.t_codes.dtree = td;
       }
       s->mode = CODES_START;
 
 #define j (_state.j)
 #define e (_state.e)
 #define f (_state.f)
 
     /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
 
     case CODES_START:         /* x: set up for LEN */
       c->sub.code.need = c->lbits;
       c->sub.code.tree = c->ltree;
       s->mode = CODES_LEN;
     case CODES_LEN:           /* i: get length/literal/eob next */
       t = c->sub.code.need;
       NEEDBITS(t)
       j = c->sub.code.tree + ((uInt)b & (uInt)inflate_mask[t]);
       DUMPBITS(j->bits)
       e = (uInt)(j->exop);
       if (e == 0)               /* literal */
       {
         c->sub.lit = j->base;
         s->mode = CODES_LIT;
         break;
       }
       if (e & 16)               /* length */
       {
         c->sub.copy.get = e & 15;
         c->len = j->base;
         s->mode = CODES_LENEXT;
         break;
       }
       if ((e & 64) == 0)        /* next table */
       {
         c->sub.code.need = e;
         c->sub.code.tree = j + j->base;
         break;
       }
       if (e & 32)               /* end of block */
       {
         s->mode = CODES_WASH;
         break;
       }
     goto bad;
     case CODES_LENEXT:        /* i: getting length extra (have base) */
       t = c->sub.copy.get;
       NEEDBITS(t)
       c->len += (uInt)b & (uInt)inflate_mask[t];
       DUMPBITS(t)
       c->sub.code.need = c->dbits;
       c->sub.code.tree = c->dtree;
       s->mode = CODES_DIST;
     case CODES_DIST:          /* i: get distance next */
       t = c->sub.code.need;
       NEEDBITS(t)
       j = c->sub.code.tree + ((uInt)b & (uInt)inflate_mask[t]);
       DUMPBITS(j->bits)
       e = (uInt)(j->exop);
       if (e & 16)               /* distance */
       {
         c->sub.copy.get = e & 15;
         c->sub.copy.dist = j->base;
         s->mode = CODES_DISTEXT;
         break;
       }
       if ((e & 64) == 0)        /* next table */
       {
         c->sub.code.need = e;
         c->sub.code.tree = j + j->base;
         break;
       }
       goto bad;        /* invalid code */
     case CODES_DISTEXT:       /* i: getting distance extra */
       t = c->sub.copy.get;
       NEEDBITS(t)
       c->sub.copy.dist += (uInt)b & (uInt)inflate_mask[t];
       DUMPBITS(t)
       s->mode = CODES_COPY;
     case CODES_COPY:          /* o: copying bytes in window, waiting for space */
       f = (uInt)(q - s->window) < c->sub.copy.dist ?
           s->end - (c->sub.copy.dist - (q - s->window)) :
           q - c->sub.copy.dist;
 
       while (c->len)
       {
         NEEDOUT
         OUTBYTE(*f++)
         if (f == s->end)
           f = s->window;
         c->len--;
       }
       s->mode = CODES_START;
       break;
     case CODES_LIT:           /* o: got literal, waiting for output space */
       NEEDOUT
       OUTBYTE(c->sub.lit)
       s->mode = CODES_START;
       break;
     case CODES_WASH:          /* o: got eob, possibly more output */
       if (k > 7)        /* return unused byte, if any */
       {
         k -= 8;
         n++;
         p--;            /* can always return one */
       }
       /* flushing will be done in DRY */
 
 #undef j
 #undef e
 #undef f
 
     case DRY:
       FLUSH
       if (s->write != s->read)
         LEAVE(Z_OK)
       if (s->mode == CODES_WASH)
       {
         Tracev((stderr, "inflate:       codes end, %lu total out\n",
                z->total_out + (q >= s->read ? q - s->read :
                (s->end - s->read) + (q - s->window))));
       }
       /* DRY if last, TYPE if not */
       s->mode = (inflate_mode)s->last;
       if (s->mode == TYPE)
         break;
       LEAVE(Z_STREAM_END)
     /*case BAD:
       r = Z_DATA_ERROR;
       LEAVE
     */
     default: /* we'll call Z_STREAM_ERROR if BAD anyway */
     bad:
       s->mode = NZ_BAD;
       LEAVE(Z_STREAM_ERROR)
   }
 }
 
 #undef t
 #undef b
 #undef k
 #undef p
 #undef n
 #undef q
 #undef m