libclamav/7z/LzmaDec.c
700cc7f7
 /* LzmaDec.c -- LZMA Decoder
 2008-11-06 : Igor Pavlov : Public domain */
 
 #include "LzmaDec.h"
 
 #include <string.h>
 
 #define kNumTopBits 24
 #define kTopValue ((UInt32)1 << kNumTopBits)
 
 #define kNumBitModelTotalBits 11
 #define kBitModelTotal (1 << kNumBitModelTotalBits)
 #define kNumMoveBits 5
 
 #define RC_INIT_SIZE 5
 
 #define NORMALIZE if (range < kTopValue) { range <<= 8; code = (code << 8) | (*buf++); }
 
 #define IF_BIT_0(p) ttt = *(p); NORMALIZE; bound = (range >> kNumBitModelTotalBits) * ttt; if (code < bound)
 #define UPDATE_0(p) range = bound; *(p) = (CLzmaProb)(ttt + ((kBitModelTotal - ttt) >> kNumMoveBits));
 #define UPDATE_1(p) range -= bound; code -= bound; *(p) = (CLzmaProb)(ttt - (ttt >> kNumMoveBits));
 #define GET_BIT2(p, i, A0, A1) IF_BIT_0(p) \
   { UPDATE_0(p); i = (i + i); A0; } else \
   { UPDATE_1(p); i = (i + i) + 1; A1; }
 #define GET_BIT(p, i) GET_BIT2(p, i, ; , ;)
 
 #define TREE_GET_BIT(probs, i) { GET_BIT((probs + i), i); }
 #define TREE_DECODE(probs, limit, i) \
   { i = 1; do { TREE_GET_BIT(probs, i); } while (i < limit); i -= limit; }
 
 /* #define _LZMA_SIZE_OPT */
 
 #ifdef _LZMA_SIZE_OPT
 #define TREE_6_DECODE(probs, i) TREE_DECODE(probs, (1 << 6), i)
 #else
 #define TREE_6_DECODE(probs, i) \
   { i = 1; \
   TREE_GET_BIT(probs, i); \
   TREE_GET_BIT(probs, i); \
   TREE_GET_BIT(probs, i); \
   TREE_GET_BIT(probs, i); \
   TREE_GET_BIT(probs, i); \
   TREE_GET_BIT(probs, i); \
   i -= 0x40; }
 #endif
 
 #define NORMALIZE_CHECK if (range < kTopValue) { if (buf >= bufLimit) return DUMMY_ERROR; range <<= 8; code = (code << 8) | (*buf++); }
 
 #define IF_BIT_0_CHECK(p) ttt = *(p); NORMALIZE_CHECK; bound = (range >> kNumBitModelTotalBits) * ttt; if (code < bound)
 #define UPDATE_0_CHECK range = bound;
 #define UPDATE_1_CHECK range -= bound; code -= bound;
 #define GET_BIT2_CHECK(p, i, A0, A1) IF_BIT_0_CHECK(p) \
   { UPDATE_0_CHECK; i = (i + i); A0; } else \
   { UPDATE_1_CHECK; i = (i + i) + 1; A1; }
 #define GET_BIT_CHECK(p, i) GET_BIT2_CHECK(p, i, ; , ;)
 #define TREE_DECODE_CHECK(probs, limit, i) \
   { i = 1; do { GET_BIT_CHECK(probs + i, i) } while (i < limit); i -= limit; }
 
 
 #define kNumPosBitsMax 4
 #define kNumPosStatesMax (1 << kNumPosBitsMax)
 
 #define kLenNumLowBits 3
 #define kLenNumLowSymbols (1 << kLenNumLowBits)
 #define kLenNumMidBits 3
 #define kLenNumMidSymbols (1 << kLenNumMidBits)
 #define kLenNumHighBits 8
 #define kLenNumHighSymbols (1 << kLenNumHighBits)
 
 #define LenChoice 0
 #define LenChoice2 (LenChoice + 1)
 #define LenLow (LenChoice2 + 1)
 #define LenMid (LenLow + (kNumPosStatesMax << kLenNumLowBits))
 #define LenHigh (LenMid + (kNumPosStatesMax << kLenNumMidBits))
 #define kNumLenProbs (LenHigh + kLenNumHighSymbols)
 
 
 #define kNumStates 12
 #define kNumLitStates 7
 
 #define kStartPosModelIndex 4
 #define kEndPosModelIndex 14
 #define kNumFullDistances (1 << (kEndPosModelIndex >> 1))
 
 #define kNumPosSlotBits 6
 #define kNumLenToPosStates 4
 
 #define kNumAlignBits 4
 #define kAlignTableSize (1 << kNumAlignBits)
 
 #define kMatchMinLen 2
 #define kMatchSpecLenStart (kMatchMinLen + kLenNumLowSymbols + kLenNumMidSymbols + kLenNumHighSymbols)
 
 #define IsMatch 0
 #define IsRep (IsMatch + (kNumStates << kNumPosBitsMax))
 #define IsRepG0 (IsRep + kNumStates)
 #define IsRepG1 (IsRepG0 + kNumStates)
 #define IsRepG2 (IsRepG1 + kNumStates)
 #define IsRep0Long (IsRepG2 + kNumStates)
 #define PosSlot (IsRep0Long + (kNumStates << kNumPosBitsMax))
 #define SpecPos (PosSlot + (kNumLenToPosStates << kNumPosSlotBits))
 #define Align (SpecPos + kNumFullDistances - kEndPosModelIndex)
 #define LenCoder (Align + kAlignTableSize)
 #define RepLenCoder (LenCoder + kNumLenProbs)
 #define Literal (RepLenCoder + kNumLenProbs)
 
 #define LZMA_BASE_SIZE 1846
 #define LZMA_LIT_SIZE 768
 
 #define LzmaProps_GetNumProbs(p) ((UInt32)LZMA_BASE_SIZE + (LZMA_LIT_SIZE << ((p)->lc + (p)->lp)))
 
 #if Literal != LZMA_BASE_SIZE
 StopCompilingDueBUG
 #endif
 
 static const Byte kLiteralNextStates[kNumStates * 2] =
 {
   0, 0, 0, 0, 1, 2, 3,  4,  5,  6,  4,  5,
   7, 7, 7, 7, 7, 7, 7, 10, 10, 10, 10, 10
 };
 
 #define LZMA_DIC_MIN (1 << 12)
 
 /* First LZMA-symbol is always decoded.
 And it decodes new LZMA-symbols while (buf < bufLimit), but "buf" is without last normalization
 Out:
   Result:
     SZ_OK - OK
     SZ_ERROR_DATA - Error
   p->remainLen:
     < kMatchSpecLenStart : normal remain
     = kMatchSpecLenStart : finished
     = kMatchSpecLenStart + 1 : Flush marker
     = kMatchSpecLenStart + 2 : State Init Marker
 */
 
 static int MY_FAST_CALL LzmaDec_DecodeReal(CLzmaDec *p, SizeT limit, const Byte *bufLimit)
 {
   CLzmaProb *probs = p->probs;
 
   unsigned state = p->state;
   UInt32 rep0 = p->reps[0], rep1 = p->reps[1], rep2 = p->reps[2], rep3 = p->reps[3];
   unsigned pbMask = ((unsigned)1 << (p->prop.pb)) - 1;
   unsigned lpMask = ((unsigned)1 << (p->prop.lp)) - 1;
   unsigned lc = p->prop.lc;
 
   Byte *dic = p->dic;
   SizeT dicBufSize = p->dicBufSize;
   SizeT dicPos = p->dicPos;
   
   UInt32 processedPos = p->processedPos;
   UInt32 checkDicSize = p->checkDicSize;
   unsigned len = 0;
 
   const Byte *buf = p->buf;
   UInt32 range = p->range;
   UInt32 code = p->code;
 
   do
   {
     CLzmaProb *prob;
     UInt32 bound;
     unsigned ttt;
     unsigned posState = processedPos & pbMask;
 
     prob = probs + IsMatch + (state << kNumPosBitsMax) + posState;
     IF_BIT_0(prob)
     {
       unsigned symbol;
       UPDATE_0(prob);
       prob = probs + Literal;
       if (checkDicSize != 0 || processedPos != 0)
         prob += (LZMA_LIT_SIZE * (((processedPos & lpMask) << lc) +
         (dic[(dicPos == 0 ? dicBufSize : dicPos) - 1] >> (8 - lc))));
 
       if (state < kNumLitStates)
       {
         symbol = 1;
         do { GET_BIT(prob + symbol, symbol) } while (symbol < 0x100);
       }
       else
       {
         unsigned matchByte = p->dic[(dicPos - rep0) + ((dicPos < rep0) ? dicBufSize : 0)];
         unsigned offs = 0x100;
         symbol = 1;
         do
         {
           unsigned bit;
           CLzmaProb *probLit;
           matchByte <<= 1;
           bit = (matchByte & offs);
           probLit = prob + offs + bit + symbol;
           GET_BIT2(probLit, symbol, offs &= ~bit, offs &= bit)
         }
         while (symbol < 0x100);
       }
       dic[dicPos++] = (Byte)symbol;
       processedPos++;
 
       state = kLiteralNextStates[state];
       /* if (state < 4) state = 0; else if (state < 10) state -= 3; else state -= 6; */
       continue;
     }
     else
     {
       UPDATE_1(prob);
       prob = probs + IsRep + state;
       IF_BIT_0(prob)
       {
         UPDATE_0(prob);
         state += kNumStates;
         prob = probs + LenCoder;
       }
       else
       {
         UPDATE_1(prob);
         if (checkDicSize == 0 && processedPos == 0)
           return SZ_ERROR_DATA;
         prob = probs + IsRepG0 + state;
         IF_BIT_0(prob)
         {
           UPDATE_0(prob);
           prob = probs + IsRep0Long + (state << kNumPosBitsMax) + posState;
           IF_BIT_0(prob)
           {
             UPDATE_0(prob);
             dic[dicPos] = dic[(dicPos - rep0) + ((dicPos < rep0) ? dicBufSize : 0)];
             dicPos++;
             processedPos++;
             state = state < kNumLitStates ? 9 : 11;
             continue;
           }
           UPDATE_1(prob);
         }
         else
         {
           UInt32 distance;
           UPDATE_1(prob);
           prob = probs + IsRepG1 + state;
           IF_BIT_0(prob)
           {
             UPDATE_0(prob);
             distance = rep1;
           }
           else
           {
             UPDATE_1(prob);
             prob = probs + IsRepG2 + state;
             IF_BIT_0(prob)
             {
               UPDATE_0(prob);
               distance = rep2;
             }
             else
             {
               UPDATE_1(prob);
               distance = rep3;
               rep3 = rep2;
             }
             rep2 = rep1;
           }
           rep1 = rep0;
           rep0 = distance;
         }
         state = state < kNumLitStates ? 8 : 11;
         prob = probs + RepLenCoder;
       }
       {
         unsigned limit, offset;
         CLzmaProb *probLen = prob + LenChoice;
         IF_BIT_0(probLen)
         {
           UPDATE_0(probLen);
           probLen = prob + LenLow + (posState << kLenNumLowBits);
           offset = 0;
           limit = (1 << kLenNumLowBits);
         }
         else
         {
           UPDATE_1(probLen);
           probLen = prob + LenChoice2;
           IF_BIT_0(probLen)
           {
             UPDATE_0(probLen);
             probLen = prob + LenMid + (posState << kLenNumMidBits);
             offset = kLenNumLowSymbols;
             limit = (1 << kLenNumMidBits);
           }
           else
           {
             UPDATE_1(probLen);
             probLen = prob + LenHigh;
             offset = kLenNumLowSymbols + kLenNumMidSymbols;
             limit = (1 << kLenNumHighBits);
           }
         }
         TREE_DECODE(probLen, limit, len);
         len += offset;
       }
 
       if (state >= kNumStates)
       {
         UInt32 distance;
         prob = probs + PosSlot +
             ((len < kNumLenToPosStates ? len : kNumLenToPosStates - 1) << kNumPosSlotBits);
         TREE_6_DECODE(prob, distance);
         if (distance >= kStartPosModelIndex)
         {
           unsigned posSlot = (unsigned)distance;
           int numDirectBits = (int)(((distance >> 1) - 1));
           distance = (2 | (distance & 1));
           if (posSlot < kEndPosModelIndex)
           {
             distance <<= numDirectBits;
             prob = probs + SpecPos + distance - posSlot - 1;
             {
               UInt32 mask = 1;
               unsigned i = 1;
               do
               {
                 GET_BIT2(prob + i, i, ; , distance |= mask);
                 mask <<= 1;
               }
               while (--numDirectBits != 0);
             }
           }
           else
           {
             numDirectBits -= kNumAlignBits;
             do
             {
               NORMALIZE
               range >>= 1;
               
               {
                 UInt32 t;
                 code -= range;
                 t = (0 - ((UInt32)code >> 31)); /* (UInt32)((Int32)code >> 31) */
                 distance = (distance << 1) + (t + 1);
                 code += range & t;
               }
               /*
               distance <<= 1;
               if (code >= range)
               {
                 code -= range;
                 distance |= 1;
               }
               */
             }
             while (--numDirectBits != 0);
             prob = probs + Align;
             distance <<= kNumAlignBits;
             {
               unsigned i = 1;
               GET_BIT2(prob + i, i, ; , distance |= 1);
               GET_BIT2(prob + i, i, ; , distance |= 2);
               GET_BIT2(prob + i, i, ; , distance |= 4);
               GET_BIT2(prob + i, i, ; , distance |= 8);
             }
             if (distance == (UInt32)0xFFFFFFFF)
             {
               len += kMatchSpecLenStart;
               state -= kNumStates;
               break;
             }
           }
         }
         rep3 = rep2;
         rep2 = rep1;
         rep1 = rep0;
         rep0 = distance + 1;
         if (checkDicSize == 0)
         {
           if (distance >= processedPos)
             return SZ_ERROR_DATA;
         }
         else if (distance >= checkDicSize)
           return SZ_ERROR_DATA;
         state = (state < kNumStates + kNumLitStates) ? kNumLitStates : kNumLitStates + 3;
         /* state = kLiteralNextStates[state]; */
       }
 
       len += kMatchMinLen;
 
       if (limit == dicPos)
         return SZ_ERROR_DATA;
       {
         SizeT rem = limit - dicPos;
         unsigned curLen = ((rem < len) ? (unsigned)rem : len);
         SizeT pos = (dicPos - rep0) + ((dicPos < rep0) ? dicBufSize : 0);
 
         processedPos += curLen;
 
         len -= curLen;
         if (pos + curLen <= dicBufSize)
         {
           Byte *dest = dic + dicPos;
           ptrdiff_t src = (ptrdiff_t)pos - (ptrdiff_t)dicPos;
           const Byte *lim = dest + curLen;
           dicPos += curLen;
           do
             *(dest) = (Byte)*(dest + src);
           while (++dest != lim);
         }
         else
         {
           do
           {
             dic[dicPos++] = dic[pos];
             if (++pos == dicBufSize)
               pos = 0;
           }
           while (--curLen != 0);
         }
       }
     }
   }
   while (dicPos < limit && buf < bufLimit);
   NORMALIZE;
   p->buf = buf;
   p->range = range;
   p->code = code;
   p->remainLen = len;
   p->dicPos = dicPos;
   p->processedPos = processedPos;
   p->reps[0] = rep0;
   p->reps[1] = rep1;
   p->reps[2] = rep2;
   p->reps[3] = rep3;
   p->state = state;
 
   return SZ_OK;
 }
 
 static void MY_FAST_CALL LzmaDec_WriteRem(CLzmaDec *p, SizeT limit)
 {
   if (p->remainLen != 0 && p->remainLen < kMatchSpecLenStart)
   {
     Byte *dic = p->dic;
     SizeT dicPos = p->dicPos;
     SizeT dicBufSize = p->dicBufSize;
     unsigned len = p->remainLen;
     UInt32 rep0 = p->reps[0];
     if (limit - dicPos < len)
       len = (unsigned)(limit - dicPos);
 
     if (p->checkDicSize == 0 && p->prop.dicSize - p->processedPos <= len)
       p->checkDicSize = p->prop.dicSize;
 
     p->processedPos += len;
     p->remainLen -= len;
     while (len-- != 0)
     {
       dic[dicPos] = dic[(dicPos - rep0) + ((dicPos < rep0) ? dicBufSize : 0)];
       dicPos++;
     }
     p->dicPos = dicPos;
   }
 }
 
 static int MY_FAST_CALL LzmaDec_DecodeReal2(CLzmaDec *p, SizeT limit, const Byte *bufLimit)
 {
   do
   {
     SizeT limit2 = limit;
     if (p->checkDicSize == 0)
     {
       UInt32 rem = p->prop.dicSize - p->processedPos;
       if (limit - p->dicPos > rem)
         limit2 = p->dicPos + rem;
     }
     RINOK(LzmaDec_DecodeReal(p, limit2, bufLimit));
     if (p->processedPos >= p->prop.dicSize)
       p->checkDicSize = p->prop.dicSize;
     LzmaDec_WriteRem(p, limit);
   }
   while (p->dicPos < limit && p->buf < bufLimit && p->remainLen < kMatchSpecLenStart);
 
   if (p->remainLen > kMatchSpecLenStart)
   {
     p->remainLen = kMatchSpecLenStart;
   }
   return 0;
 }
 
 typedef enum
 {
   DUMMY_ERROR, /* unexpected end of input stream */
   DUMMY_LIT,
   DUMMY_MATCH,
   DUMMY_REP
 } ELzmaDummy;
 
 static ELzmaDummy LzmaDec_TryDummy(const CLzmaDec *p, const Byte *buf, SizeT inSize)
 {
   UInt32 range = p->range;
   UInt32 code = p->code;
   const Byte *bufLimit = buf + inSize;
   CLzmaProb *probs = p->probs;
   unsigned state = p->state;
   ELzmaDummy res;
 
   {
     CLzmaProb *prob;
     UInt32 bound;
     unsigned ttt;
     unsigned posState = (p->processedPos) & ((1 << p->prop.pb) - 1);
 
     prob = probs + IsMatch + (state << kNumPosBitsMax) + posState;
     IF_BIT_0_CHECK(prob)
     {
       UPDATE_0_CHECK
 
       /* if (bufLimit - buf >= 7) return DUMMY_LIT; */
 
       prob = probs + Literal;
       if (p->checkDicSize != 0 || p->processedPos != 0)
         prob += (LZMA_LIT_SIZE *
           ((((p->processedPos) & ((1 << (p->prop.lp)) - 1)) << p->prop.lc) +
           (p->dic[(p->dicPos == 0 ? p->dicBufSize : p->dicPos) - 1] >> (8 - p->prop.lc))));
 
       if (state < kNumLitStates)
       {
         unsigned symbol = 1;
         do { GET_BIT_CHECK(prob + symbol, symbol) } while (symbol < 0x100);
       }
       else
       {
         unsigned matchByte = p->dic[p->dicPos - p->reps[0] +
             ((p->dicPos < p->reps[0]) ? p->dicBufSize : 0)];
         unsigned offs = 0x100;
         unsigned symbol = 1;
         do
         {
           unsigned bit;
           CLzmaProb *probLit;
           matchByte <<= 1;
           bit = (matchByte & offs);
           probLit = prob + offs + bit + symbol;
           GET_BIT2_CHECK(probLit, symbol, offs &= ~bit, offs &= bit)
         }
         while (symbol < 0x100);
       }
       res = DUMMY_LIT;
     }
     else
     {
       unsigned len;
       UPDATE_1_CHECK;
 
       prob = probs + IsRep + state;
       IF_BIT_0_CHECK(prob)
       {
         UPDATE_0_CHECK;
         state = 0;
         prob = probs + LenCoder;
         res = DUMMY_MATCH;
       }
       else
       {
         UPDATE_1_CHECK;
         res = DUMMY_REP;
         prob = probs + IsRepG0 + state;
         IF_BIT_0_CHECK(prob)
         {
           UPDATE_0_CHECK;
           prob = probs + IsRep0Long + (state << kNumPosBitsMax) + posState;
           IF_BIT_0_CHECK(prob)
           {
             UPDATE_0_CHECK;
             NORMALIZE_CHECK;
             return DUMMY_REP;
           }
           else
           {
             UPDATE_1_CHECK;
           }
         }
         else
         {
           UPDATE_1_CHECK;
           prob = probs + IsRepG1 + state;
           IF_BIT_0_CHECK(prob)
           {
             UPDATE_0_CHECK;
           }
           else
           {
             UPDATE_1_CHECK;
             prob = probs + IsRepG2 + state;
             IF_BIT_0_CHECK(prob)
             {
               UPDATE_0_CHECK;
             }
             else
             {
               UPDATE_1_CHECK;
             }
           }
         }
         state = kNumStates;
         prob = probs + RepLenCoder;
       }
       {
         unsigned limit, offset;
         CLzmaProb *probLen = prob + LenChoice;
         IF_BIT_0_CHECK(probLen)
         {
           UPDATE_0_CHECK;
           probLen = prob + LenLow + (posState << kLenNumLowBits);
           offset = 0;
           limit = 1 << kLenNumLowBits;
         }
         else
         {
           UPDATE_1_CHECK;
           probLen = prob + LenChoice2;
           IF_BIT_0_CHECK(probLen)
           {
             UPDATE_0_CHECK;
             probLen = prob + LenMid + (posState << kLenNumMidBits);
             offset = kLenNumLowSymbols;
             limit = 1 << kLenNumMidBits;
           }
           else
           {
             UPDATE_1_CHECK;
             probLen = prob + LenHigh;
             offset = kLenNumLowSymbols + kLenNumMidSymbols;
             limit = 1 << kLenNumHighBits;
           }
         }
         TREE_DECODE_CHECK(probLen, limit, len);
         len += offset;
       }
 
       if (state < 4)
       {
         unsigned posSlot;
         prob = probs + PosSlot +
             ((len < kNumLenToPosStates ? len : kNumLenToPosStates - 1) <<
             kNumPosSlotBits);
         TREE_DECODE_CHECK(prob, 1 << kNumPosSlotBits, posSlot);
         if (posSlot >= kStartPosModelIndex)
         {
           int numDirectBits = ((posSlot >> 1) - 1);
 
           /* if (bufLimit - buf >= 8) return DUMMY_MATCH; */
 
           if (posSlot < kEndPosModelIndex)
           {
             prob = probs + SpecPos + ((2 | (posSlot & 1)) << numDirectBits) - posSlot - 1;
           }
           else
           {
             numDirectBits -= kNumAlignBits;
             do
             {
               NORMALIZE_CHECK
               range >>= 1;
               code -= range & (((code - range) >> 31) - 1);
               /* if (code >= range) code -= range; */
             }
             while (--numDirectBits != 0);
             prob = probs + Align;
             numDirectBits = kNumAlignBits;
           }
           {
             unsigned i = 1;
             do
             {
               GET_BIT_CHECK(prob + i, i);
             }
             while (--numDirectBits != 0);
           }
         }
       }
     }
   }
   NORMALIZE_CHECK;
   return res;
 }
 
 
 static void LzmaDec_InitRc(CLzmaDec *p, const Byte *data)
 {
   p->code = ((UInt32)data[1] << 24) | ((UInt32)data[2] << 16) | ((UInt32)data[3] << 8) | ((UInt32)data[4]);
   p->range = 0xFFFFFFFF;
   p->needFlush = 0;
 }
 
 void LzmaDec_InitDicAndState(CLzmaDec *p, Bool initDic, Bool initState)
 {
   p->needFlush = 1;
   p->remainLen = 0;
   p->tempBufSize = 0;
 
   if (initDic)
   {
     p->processedPos = 0;
     p->checkDicSize = 0;
     p->needInitState = 1;
   }
   if (initState)
     p->needInitState = 1;
 }
 
 void LzmaDec_Init(CLzmaDec *p)
 {
   p->dicPos = 0;
   LzmaDec_InitDicAndState(p, True, True);
 }
 
 static void LzmaDec_InitStateReal(CLzmaDec *p)
 {
   UInt32 numProbs = Literal + ((UInt32)LZMA_LIT_SIZE << (p->prop.lc + p->prop.lp));
   UInt32 i;
   CLzmaProb *probs = p->probs;
   for (i = 0; i < numProbs; i++)
     probs[i] = kBitModelTotal >> 1;
   p->reps[0] = p->reps[1] = p->reps[2] = p->reps[3] = 1;
   p->state = 0;
   p->needInitState = 0;
 }
 
 SRes LzmaDec_DecodeToDic(CLzmaDec *p, SizeT dicLimit, const Byte *src, SizeT *srcLen,
     ELzmaFinishMode finishMode, ELzmaStatus *status)
 {
   SizeT inSize = *srcLen;
   (*srcLen) = 0;
   LzmaDec_WriteRem(p, dicLimit);
   
   *status = LZMA_STATUS_NOT_SPECIFIED;
 
   while (p->remainLen != kMatchSpecLenStart)
   {
       int checkEndMarkNow;
 
       if (p->needFlush != 0)
       {
         for (; inSize > 0 && p->tempBufSize < RC_INIT_SIZE; (*srcLen)++, inSize--)
           p->tempBuf[p->tempBufSize++] = *src++;
         if (p->tempBufSize < RC_INIT_SIZE)
         {
           *status = LZMA_STATUS_NEEDS_MORE_INPUT;
           return SZ_OK;
         }
         if (p->tempBuf[0] != 0)
           return SZ_ERROR_DATA;
 
         LzmaDec_InitRc(p, p->tempBuf);
         p->tempBufSize = 0;
       }
 
       checkEndMarkNow = 0;
       if (p->dicPos >= dicLimit)
       {
         if (p->remainLen == 0 && p->code == 0)
         {
           *status = LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK;
           return SZ_OK;
         }
         if (finishMode == LZMA_FINISH_ANY)
         {
           *status = LZMA_STATUS_NOT_FINISHED;
           return SZ_OK;
         }
         if (p->remainLen != 0)
         {
           *status = LZMA_STATUS_NOT_FINISHED;
           return SZ_ERROR_DATA;
         }
         checkEndMarkNow = 1;
       }
 
       if (p->needInitState)
         LzmaDec_InitStateReal(p);
   
       if (p->tempBufSize == 0)
       {
         SizeT processed;
         const Byte *bufLimit;
         if (inSize < LZMA_REQUIRED_INPUT_MAX || checkEndMarkNow)
         {
           int dummyRes = LzmaDec_TryDummy(p, src, inSize);
           if (dummyRes == DUMMY_ERROR)
           {
             memcpy(p->tempBuf, src, inSize);
             p->tempBufSize = (unsigned)inSize;
             (*srcLen) += inSize;
             *status = LZMA_STATUS_NEEDS_MORE_INPUT;
             return SZ_OK;
           }
           if (checkEndMarkNow && dummyRes != DUMMY_MATCH)
           {
             *status = LZMA_STATUS_NOT_FINISHED;
             return SZ_ERROR_DATA;
           }
           bufLimit = src;
         }
         else
           bufLimit = src + inSize - LZMA_REQUIRED_INPUT_MAX;
         p->buf = src;
         if (LzmaDec_DecodeReal2(p, dicLimit, bufLimit) != 0)
           return SZ_ERROR_DATA;
         processed = (SizeT)(p->buf - src);
         (*srcLen) += processed;
         src += processed;
         inSize -= processed;
       }
       else
       {
         unsigned rem = p->tempBufSize, lookAhead = 0;
         while (rem < LZMA_REQUIRED_INPUT_MAX && lookAhead < inSize)
           p->tempBuf[rem++] = src[lookAhead++];
         p->tempBufSize = rem;
         if (rem < LZMA_REQUIRED_INPUT_MAX || checkEndMarkNow)
         {
           int dummyRes = LzmaDec_TryDummy(p, p->tempBuf, rem);
           if (dummyRes == DUMMY_ERROR)
           {
             (*srcLen) += lookAhead;
             *status = LZMA_STATUS_NEEDS_MORE_INPUT;
             return SZ_OK;
           }
           if (checkEndMarkNow && dummyRes != DUMMY_MATCH)
           {
             *status = LZMA_STATUS_NOT_FINISHED;
             return SZ_ERROR_DATA;
           }
         }
         p->buf = p->tempBuf;
         if (LzmaDec_DecodeReal2(p, dicLimit, p->buf) != 0)
           return SZ_ERROR_DATA;
         lookAhead -= (rem - (unsigned)(p->buf - p->tempBuf));
         (*srcLen) += lookAhead;
         src += lookAhead;
         inSize -= lookAhead;
         p->tempBufSize = 0;
       }
   }
   if (p->code == 0)
     *status = LZMA_STATUS_FINISHED_WITH_MARK;
   return (p->code == 0) ? SZ_OK : SZ_ERROR_DATA;
 }
 
 SRes LzmaDec_DecodeToBuf(CLzmaDec *p, Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status)
 {
   SizeT outSize = *destLen;
   SizeT inSize = *srcLen;
   *srcLen = *destLen = 0;
   for (;;)
   {
     SizeT inSizeCur = inSize, outSizeCur, dicPos;
     ELzmaFinishMode curFinishMode;
     SRes res;
     if (p->dicPos == p->dicBufSize)
       p->dicPos = 0;
     dicPos = p->dicPos;
     if (outSize > p->dicBufSize - dicPos)
     {
       outSizeCur = p->dicBufSize;
       curFinishMode = LZMA_FINISH_ANY;
     }
     else
     {
       outSizeCur = dicPos + outSize;
       curFinishMode = finishMode;
     }
 
     res = LzmaDec_DecodeToDic(p, outSizeCur, src, &inSizeCur, curFinishMode, status);
     src += inSizeCur;
     inSize -= inSizeCur;
     *srcLen += inSizeCur;
     outSizeCur = p->dicPos - dicPos;
     memcpy(dest, p->dic + dicPos, outSizeCur);
     dest += outSizeCur;
     outSize -= outSizeCur;
     *destLen += outSizeCur;
     if (res != 0)
       return res;
     if (outSizeCur == 0 || outSize == 0)
       return SZ_OK;
   }
 }
 
 void LzmaDec_FreeProbs(CLzmaDec *p, ISzAlloc *alloc)
 {
   alloc->Free(alloc, p->probs);
   p->probs = 0;
 }
 
 static void LzmaDec_FreeDict(CLzmaDec *p, ISzAlloc *alloc)
 {
   alloc->Free(alloc, p->dic);
   p->dic = 0;
 }
 
 void LzmaDec_Free(CLzmaDec *p, ISzAlloc *alloc)
 {
   LzmaDec_FreeProbs(p, alloc);
   LzmaDec_FreeDict(p, alloc);
 }
 
 SRes LzmaProps_Decode(CLzmaProps *p, const Byte *data, unsigned size)
 {
   UInt32 dicSize;
   Byte d;
   
   if (size < LZMA_PROPS_SIZE)
     return SZ_ERROR_UNSUPPORTED;
   else
     dicSize = data[1] | ((UInt32)data[2] << 8) | ((UInt32)data[3] << 16) | ((UInt32)data[4] << 24);
  
   if (dicSize < LZMA_DIC_MIN)
     dicSize = LZMA_DIC_MIN;
   p->dicSize = dicSize;
 
   d = data[0];
   if (d >= (9 * 5 * 5))
     return SZ_ERROR_UNSUPPORTED;
 
   p->lc = d % 9;
   d /= 9;
   p->pb = d / 5;
   p->lp = d % 5;
 
   return SZ_OK;
 }
 
 static SRes LzmaDec_AllocateProbs2(CLzmaDec *p, const CLzmaProps *propNew, ISzAlloc *alloc)
 {
   UInt32 numProbs = LzmaProps_GetNumProbs(propNew);
   if (p->probs == 0 || numProbs != p->numProbs)
   {
     LzmaDec_FreeProbs(p, alloc);
     p->probs = (CLzmaProb *)alloc->Alloc(alloc, numProbs * sizeof(CLzmaProb));
     p->numProbs = numProbs;
     if (p->probs == 0)
       return SZ_ERROR_MEM;
   }
   return SZ_OK;
 }
 
 SRes LzmaDec_AllocateProbs(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAlloc *alloc)
 {
   CLzmaProps propNew;
   RINOK(LzmaProps_Decode(&propNew, props, propsSize));
   RINOK(LzmaDec_AllocateProbs2(p, &propNew, alloc));
   p->prop = propNew;
   return SZ_OK;
 }
 
 SRes LzmaDec_Allocate(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAlloc *alloc)
 {
   CLzmaProps propNew;
   SizeT dicBufSize;
   RINOK(LzmaProps_Decode(&propNew, props, propsSize));
   RINOK(LzmaDec_AllocateProbs2(p, &propNew, alloc));
   dicBufSize = propNew.dicSize;
   if (p->dic == 0 || dicBufSize != p->dicBufSize)
   {
     LzmaDec_FreeDict(p, alloc);
     p->dic = (Byte *)alloc->Alloc(alloc, dicBufSize);
     if (p->dic == 0)
     {
       LzmaDec_FreeProbs(p, alloc);
       return SZ_ERROR_MEM;
     }
   }
   p->dicBufSize = dicBufSize;
   p->prop = propNew;
   return SZ_OK;
 }
 
 SRes LzmaDecode(Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen,
     const Byte *propData, unsigned propSize, ELzmaFinishMode finishMode,
     ELzmaStatus *status, ISzAlloc *alloc)
 {
   CLzmaDec p;
   SRes res;
   SizeT inSize = *srcLen;
   SizeT outSize = *destLen;
   *srcLen = *destLen = 0;
   if (inSize < RC_INIT_SIZE)
     return SZ_ERROR_INPUT_EOF;
 
   LzmaDec_Construct(&p);
   res = LzmaDec_AllocateProbs(&p, propData, propSize, alloc);
   if (res != 0)
     return res;
   p.dic = dest;
   p.dicBufSize = outSize;
 
   LzmaDec_Init(&p);
   
   *srcLen = inSize;
   res = LzmaDec_DecodeToDic(&p, outSize, src, srcLen, finishMode, status);
 
   if (res == SZ_OK && *status == LZMA_STATUS_NEEDS_MORE_INPUT)
     res = SZ_ERROR_INPUT_EOF;
 
   (*destLen) = p.dicPos;
   LzmaDec_FreeProbs(&p, alloc);
   return res;
 }