
Creating signatures for ClamAV

1 Introduction

CVD (ClamAV Virus Database) is a digitally signed containerthat includes signa-
ture databases in various text formats. The header of the container is a 512 bytes
long string with colon separated fields:

ClamAV-VDB:build time:version:number of signatures:functionality
level required:MD5 checksum:digital signature:builder name:build
time (sec)

sigtool --info displays detailed information about a given CVD file:

zolw@localhost:/usr/local/share/clamav$ sigtool -i main.cvd
File: main.cvd
Build time: 09 Dec 2007 15:50 +0000
Version: 45
Signatures: 169676
Functionality level: 21
Builder: sven
MD5: b35429d8d5d60368eea9630062f7c75a
Digital signature: dxsusO/HWP3/GAA7VuZpxYwVsE9b+tCk+tPN6OyjVF/U8
JVh4vYmW8mZ62ZHYMlM903TMZFg5hZIxcjQB3SX0TapdF1SFNzoWjsyH53eXvMDY
eaPVNe2ccXLfEegoda4xU2TezbGfbSEGoU1qolyQYLX674sNA2Ni6l6/CEKYYh
Verification OK.

The ClamAV project distributes a number of CVD files, including main.cvdand
daily.cvd.

2 Signature formats

2.1 MD5

The easiest way to create signatures for ClamAV is to use MD5 checksums, how-
ever this method can be only used against static malware. To create a signature

1

for test.exe use the--md5 option of sigtool:

zolw@localhost:/tmp/test$ sigtool --md5 test.exe > test.hdb
zolw@localhost:/tmp/test$ cat test.hdb
48c4533230e1ae1c118c741c0db19dfb:17387:test.exe

That’s it! The signature is ready for use:

zolw@localhost:/tmp/test$ clamscan -d test.hdb test.exe
test.exe: test.exe FOUND

----------- SCAN SUMMARY -----------
Known viruses: 1
Scanned directories: 0
Engine version: 0.92.1
Scanned files: 1
Infected files: 1
Data scanned: 0.02 MB
Time: 0.024 sec (0 m 0 s)

You can change the name (by default sigtool uses the name of the file) and place
it inside a*.hdb file. A single database file can include any number of signatures.
To get them automatically loaded each time clamscan/clamd starts just copy the
database file(s) into the local virus database directory (eg. /usr/local/share/clamav).

2.2 MD5, PE section based

You can create a MD5 signature for a specific section in a PE file. Such signatures
shall be stored inside.mdb files in the following format:

PESectionSize:MD5:MalwareName

The easiest way to generate MD5 based section signatures is to extract target PE
sections into separate files and then run sigtool with the option --mdb

2.3 Body-based signatures

ClamAV stores all body-based signatures in a hexadecimal format. In this sec-
tion by a hex-signature we mean a fragment of malware’s body converted into a
hexadecimal string which can be additionally extended using various wildcards.

2

2.3.1 Hexadecimal format

You can usesigtool --hex-dump to convert any data into a hex-string:

zolw@localhost:/tmp/test$ sigtool --hex-dump
How do I look in hex?
486f7720646f2049206c6f6f6b20696e206865783f0a

2.3.2 Wildcards

ClamAV supports the following extensions for hex-signatures:

• ??
Match any byte.

• a?
Match a high nibble (the four high bits).
IMPORTANT NOTE: The nibble matching is only available in libcla-
mav with the functionality level 17 and higher therefore please only use
it with .ndb signatures followed by ”:17” (MinEngineFunctionalityLevel,
see 2.3.5).

• ?a
Match a low nibble (the four low bits).

• *
Match any number of bytes.

• {n}
Matchn bytes.

• {-n}
Matchn or less bytes.

• {n-}
Matchn or more bytes.

• {n-m}
Match betweenn andm bytes (m> n).

• (aa|bb|cc|..)
Match aa or bb or cc..

3

• !(aa|bb|cc|..)
Match any byte except aa and bb and cc.. (ClamAV≥0.96)

• HEXSIG[x-y]aa or aa[x-y]HEXSIG
Match aa anchored to a hex-signature, seehttps://wwws.clamav.net/
bugzilla/show_bug.cgi?id=776 for discussion and examples.

• (B)
Match word boundary (including file boundaries).

• (L)
Match CR, CRLF or file boundaries.

The range signatures* and{} virtually separate a hex-signature into two parts,
eg. aabbcc*bbaacc is treated as two sub-signaturesaabbcc andbbaacc with
any number of bytes between them. It’s a requirement that each sub-signature
includes a block of two static characters somewhere in its body.

2.3.3 Basic signature format

The simplest (and now deprecated) signature format is:

MalwareName=HexSignature

ClamAV will scan the entire file looking for HexSignature. All signatures of this
type must be placed inside*.db files.

2.3.4 Extended signature format

The extended signature format allows for specification of additional information
such as a target file type, virus offset or engine version, making the detection more
reliable. The format is:

MalwareName:TargetType:Offset:HexSignature[:MinFL:[MaxFL]]

whereTargetType is one of the following numbers specifying the type of the
target file:

• 0 = any file

• 1 = Portable Executable, both 32- and 64-bit.

4

• 2 = file inside OLE2 container (e.g. image, embedded executable, VBA
script). The OLE2 format is primarily used by MS Office and MSIinstalla-
tion files.

• 3 = HTML (normalized: whitespace transformed to spaces, tags/tag at-
tributes normalized, all lowercase), Javascript is normalized too: all strings
are normalized (hex encoding is decoded), numbers are parsed and normal-
ized, local variables/function names are normalized to ’n001’ format, argu-
ment to eval() is parsed as JS again, unescape() is handled, some simple JS
packers are handled, output is whitespace normalized.

• 4 = Mail file

• 5 = Graphics

• 6 = ELF

• 7 = ASCII text file (normalized)

• 8 = Unused

• 9 = Mach-O files

AndOffset is an asterisk or a decimal numbern possibly combined with a special
modifier:

• * = any

• n = absolute offset

• EOF-n = end of file minusn bytes

Signatures for PE, ELF and Mach-O files additionally support:

• EP+n = entry point plus n bytes (EP+0 for EP)

• EP-n = entry point minus n bytes

• Sx+n = start of sectionx’s (counted from 0) data plusn bytes

• Sx-n = start of sectionx’s data minusn bytes

• SL+n = start of last section plusn bytes

• SL-n = start of last section minusn bytes

5

All the above offsets except* can be turned intofloating offsetsand represented
asOffset,MaxShift whereMaxShift is an unsigned integer. A floating offset
will match every offset betweenOffset andOffset+MaxShift, eg. 10,5 will
match all offsets from 10 to 15 andEP+n,y will match all offsets fromEP+n to
EP+n+y. Versions of ClamAV older than 0.91 will silently ignore theMaxShift
extension and only useOffset.

OptionalMinFL andMaxFL parameters can restrict the signature to specific engine
releases. All signatures in the extended format must be placed inside*.ndb files.

2.3.5 Logical signatures

Logical signatures allow combining of multiple signaturesin extended format us-
ing logical operators. They can provide both more detailed and flexible pattern
matching. The logical sigs are stored inside*.ldb files in the following format:

SignatureName;TargetDescriptionBlock;LogicalExpression;Subsig0;
Subsig1;Subsig2;...

where:

• TargetDescriptionBlock provides information about the engine and tar-
get file with comma separatedArg:Val pairs, currently (as of 0.95.1) only
Target:X andEngine:X-Y are supported.

• LogicalExpression specifies the logical expression describing the rela-
tionship betweenSubsig0...SubsigN.
Basis clause: 0,1,...,N decimal indexes are SUB-EXPRESSIONS repre-
sentingSubsig0, Subsig1,...,SubsigN respectively.
Inductive clause: if A andB are SUB-EXPRESSIONS andX, Y are deci-
mal numbers then(A&B), (A|B), A=X, A=X,Y, A>X, A>X,Y, A<X andA<X,Y
are SUB-EXPRESSIONS

• SubsigN is n-th subsignature in extended format possibly preceded with an
offset. There can be specified up to 64 subsigs.

Keywords used inTargetDescriptionBlock:

• Target:X: Target file type

• Engine:X-Y: Required engine functionality (range; 0.96)

• FileSize:X-Y: Required file size (range in bytes; 0.96)

6

• EntryPoint: Entry point offset (range in bytes; 0.96)

• NumberOfSections: Required number of sections in executable (range;
0.96)

• Container:CL_TYPE_*: File type of the container which stores the scanned
file

Modifiers for subexpressions:

• A=X: If the SUB-EXPRESSION A refers to a single signature then this sig-
nature must get matched exactly X times; if it refers to a (logical) block of
signatures then this block must generate exactly X matches (with any of its
sigs).

• A=0 specifies negation (signature or block of signatures cannotbe matched)

• A=X,Y: If the SUB-EXPRESSION A refers to a single signature then this
signature must be matched exactly X times; if it refers to a (logical) block of
signatures then this block must generate X matches and at least Y different
signatures must get matched.

• A>X: If the SUB-EXPRESSION A refers to a single signature then this sig-
nature must get matched more than X times; if it refers to a (logical) block
of signatures then this block must generate more than X matches (with any
of its sigs).

• A>X,Y: If the SUB-EXPRESSION A refers to a single signature then this
signature must get matched more than X times; if it refers to a(logical)
block of signatures then this block must generate more than Xmatches and
at least Y different signatures must be matched.

• A<X andA<X,Y as above with the change of ”more” to ”less”.

Examples:

Sig1;Target:0;(0&1&2&3)&(4|1);6b6f74656b;616c61;7a6f6c77;7374656
6616e;deadbeef

Sig2;Target:0;((0|1|2)>5,2)&(3|1);6b6f74656b;616c61;7a6f6c77;737
46566616e

Sig3;Target:0;((0|1|2|3)=2)&(4|1);6b6f74656b;616c61;7a6f6c77;737
46566616e;deadbeef

7

Sig4;Target:1,Engine:18-20;((0|1)&(2|3))&4;EP+123:33c06834f04100
f2aef7d14951684cf04100e8110a00;S2+78:22??232c2d252229{-15}6e6573
(63|64)61706528;S+50:68efa311c3b9963cb1ee8e586d32aeb9043e;f9c58d
cf43987e4f519d629b103375;SL+550:6300680065005c0046006900

ClamAV 0.96 introduced support for special macro subsignatures in the following
format: ${min-max}MACROID$, whereMACROID points to a group of signatures
and{min-max} specifies the offset range at which one of the group signatures
should match. The range is calculated against the match offset of the previous sub-
signature. The macro subsignature makes its preceding subsignature considered
a match only if both of them get matched. For more informationand examples
please seehttps://wwws.clamav.net/bugzilla/show_bug.cgi?id=164.

2.4 Icon signatures for PE files

ClamAV 0.96 includes an approximate/fuzzy icon matcher to help detecting ma-
licious executables disguising themselves as innocent looking image files, office
documents and the like.

Icon matching is only triggered via .ldb signatures using the special attribute
tokensIconGroup1 orIconGroup2. These identify two (optional) groups of icons
defined in a .idb database file. The format of the .idb file is:

ICONNAME:GROUP1:GROUP2:ICON_HASH

where:

• ICON_NAME is a unique string identifier for a specific icon,

• GROUP1 is a string identifier for the first group of icons (IconGroup1)

• GROUP2 is a string identifier for the second group of icons (IconGroup2),

• ICON_HASH is a fuzzy hash of the icon image

The ICON_HASH field can be obtained from the debug output of libclamav. For
example:

LibClamAV debug: ICO SIGNATURE:
ICON_NAME:GROUP1:GROUP2:18e2e0304ce60a0cc3a09053a30000414100057e
000afe0000e 80006e510078b0a08910d11ad04105e0811510f084e01040c080
a1d0b0021000a39002a41

8

2.5 Signatures for Version Information metadata in PE files

Starting with ClamAV 0.96 it is possible to easily match certain information built
into PE files (executables and dynamic link libraries). Whenever you lookup the
properties of a PE executable file in windows, you are presented with a bunch of
details about the file itself.

These info are stored in a special area of the file resources which goes under
the name ofVS_VERSION_INFORMATION (or versioninfo for short). It is divided
into 2 parts. The first part (which is rather uninteresting) is really a bunch of num-
bers and flags indicating the product and file version. It was originally intended
for use with installers which, after parsing it, should be able to determine whether
a certain executable or library are to be upgraded/overwritten or are already up
to date. Suffice to say, this approach never really worked andis generally never
used.

The second block is much more interesting: it is a simple listof key/value
strings, intended for user information and completely ignored by the OS. For ex-
ample, if you look at ping.exe you can see the company being”Microsoft Corpo-
ration” , the description”TCP/IP Ping command”, the internal name”ping.exe”
and so on... Depending on the OS version, some keys may be given peculiar
visibility in the file properties dialog, however they are internally all the same.

To match a versioninfo key/value pair, the special file offset anchorVI was
introduced. This is similar to the other anchors (likeEP andSL) except that, in-
stead of matching the hex pattern against a single offset, itchecks it against each
and every key/value pair in the file. TheVI token doesn’t need nor accept a+/-
offset like e.g.EP+1. As for the hex signature itself, it’s just the utf16 dump of the
key and value. Only the?? and(aa|bb) wildcards are allowed in the signature.
Usually, you don’t need to bother figuring it out: each key/value pair together with
the corresponding VI-based signature is printed byclamscan when the--debug
option is given.

For exampleclamscan --debug freecell.exe produces:

[...]
Recognized MS-EXE/DLL file
in cli_peheader
versioninfo_cb: type: 10, name: 1, lang: 410, rva: 9608
cli_peheader: parsing version info @ rva 9608 (1/1)
VersionInfo (d2de): ’CompanyName’=’Microsoft Corporation’ -
VI:43006f006d00700061006e0079004e0061006d006500000000004d006900
630072006f0073006f0066007400200043006f00720070006f0072006100740
069006f006e000000
VersionInfo (d32a): ’FileDescription’=’Entertainment Pack
FreeCell Game’ - VI:460069006c006500440065007300630072006900700

9

0740069006f006e000000000045006e007400650072007400610069006e006d
0065006e00740020005000610063006b0020004600720065006500430065006
c006c002000470061006d0065000000
VersionInfo (d396): ’FileVersion’=’5.1.2600.0 (xpclient.010817
-1148)’ - VI:460069006c006500560065007200730069006f006e00000000
0035002e0031002e0032003600300030002e003000200028007800700063006
c00690065006e0074002e003000310030003800310037002d00310031003400
380029000000
VersionInfo (d3fa): ’InternalName’=’freecell’ - VI:49006e007400
650072006e0061006c004e0061006d006500000066007200650065006300650
06c006c000000
VersionInfo (d4ba): ’OriginalFilename’=’freecell’ - VI:4f007200
6900670069006e0061006c00460069006c0065006e0061006d0065000000660
0720065006500630065006c006c000000
VersionInfo (d4f6): ’ProductName’=’Sistema operativo Microsoft
Windows’ - VI:500072006f0064007500630074004e0061006d00650000000
000530069007300740065006d00610020006f00700065007200610074006900
76006f0020004d006900630072006f0073006f0066007400ae0020005700690
06e0064006f0077007300ae000000
VersionInfo (d562): ’ProductVersion’=’5.1.2600.0’ - VI:50007200
6f006400750063007400560065007200730069006f006e00000035002e00310
02e0032003600300030002e0030000000
[...]

Although VI-based signatures are intended for use in logical signatures you can
test them using ordinary.ndb files. For example:

my_test_vi_sig:1:VI:paste_your_hex_sig_here

Final note. If you want to decode a VI-based signature into a human readable
form you can use:

echo hex_string | xxd -r -p | strings -el

For example:

$ echo 460069006c0065004400650073006300720069007000740069006f006e
000000000045006e007400650072007400610069006e006d0065006e007400200
05000610063006b0020004600720065006500430065006c006c00200047006100
6d0065000000 | xxd -r -p | strings -el

10

FileDescription
Entertainment Pack FreeCell Game

2.6 Signatures based on container metadata

ClamAV 0.96 allows creating generic signatures matching files stored inside dif-
ferent container types which meet specific conditions. The signature format is

VirusName:ContainerType:ContainerSize:FileNameREGEX:
FileSizeInContainer:FileSizeReal:IsEncrypted:FilePos:
Res1:Res2[:MinFL[:MaxFL]]

where the corresponding fields are:

• VirusName: Virus name to be displayed when signature matches

• ContainerType: one ofCL_TYPE_ZIP, CL_TYPE_RAR, CL_TYPE_ARJ,
CL_TYPE_CAB,CL_TYPE_7Z,CL_TYPE_MAIL,CL_TYPE_(POSIX|OLD)_TAR,
CL_TYPE_CPIO_(OLD|ODC|NEWC|CRC) or * to match any of the container
types listed here

• ContainerSize: size of the container file itself (eg. size of the zip archive)
specified in bytes as absolute value or rangex-y

• FileNameREGEX: regular expression describing name of the target file

• FileSizeInContainer: usually compressed size; for MAIL, TAR and
CPIO ==FileSizeReal; specified in bytes as absolute value or range

• FileSizeReal: usually uncompressed size; for MAIL, TAR and CPIO ==
FileSizeInContainer; absolute value or range

• IsEncrypted: 1 if the target file is encrypted, 0 if it’s not and* to ignore

• FilePos: file position in container (counting from 1); absolute value or
range

• Res1: whenContainerType is CL_TYPE_ZIP or CL_TYPE_RAR this field is
treated as a CRC sum of the target file specified in hexadecimalformat; for
other container types it’s ignored

• Res2: not used as of ClamAV 0.96

The signatures for container files are stored inside.cdb files.

11

2.7 Signatures based on ZIP/RAR metadata (obsolete)

The (now obsolete) archive metadata signatures can be only applied to ZIP and
RAR files and have the following format:

virname:encrypted:filename:normal size:csize:crc32:cmethod:
fileno:max depth

where the corresponding fields are:

• Virus name

• Encryption flag (1 – encrypted, 0 – not encrypted)

• File name (this is a regular expression - * to ignore)

• Normal (uncompressed) size (* to ignore)

• Compressed size (* to ignore)

• CRC32 (* to ignore)

• Compression method (* to ignore)

• File position in archive (* to ignore)

• Maximum number of nested archives (* to ignore)

The database file should have the extension of.zmd or.rmd for zip or rar metadata
respectively.

2.8 Whitelist databases

To whitelist a specific file use the MD5 signature format and place it inside a
database file with the extension of.fp.

To whitelist a specific signature from the database you just add its name into a
local file called local.ign2 stored inside the database directory. You can addition-
ally follow the signature name with the MD5 of the entire database entry for this
signature, eg:

Eicar-Test-Signature:bc356bae4c42f19a3de16e333ba3569c

In such a case, the signature will no longer be whitelisted when its entry in the
database gets modified (eg. the signature gets updated to avoid false alerts).

12

2.9 Signature names

ClamAV uses the following prefixes for signature names:

• Wormfor Internet worms

• Trojan for backdoor programs

• Adwarefor adware

• Flooder for flooders

• HTML for HTML files

• Email for email messages

• IRC for IRC trojans

• JSfor Java Script malware

• PHP for PHP malware

• ASPfor ASP malware

• VBSfor VBS malware

• BAT for BAT malware

• W97M, W2000Mfor Word macro viruses

• X97M, X2000Mfor Excel macro viruses

• O97M, O2000Mfor generic Office macro viruses

• DoSfor Denial of Service attack software

• DOSfor old DOS malware

• Exploit for popular exploits

• VirTool for virus construction kits

• Dialer for dialers

• Jokefor hoaxes

Important rules of the naming convention:

• always use a -zippwd suffix in the malware name for signaturesof type zmd,

13

• always use a -rarpwd suffix in the malware name for signaturesof type rmd,

• only use alphanumeric characters, dash (-), dot (.), underscores () in mal-
ware names, never use space, apostrophe or quote mark.

3 Special files

3.1 HTML

ClamAV contains a special HTML normalisation code which helps to detect HTML
exploits. Runningsigtool --html-normalise on a HTML file should generate
the following files:

• nocomment.html - the file is normalized, lower-case, with all comments and
superflous white space removed

• notags.html - as above but with all HTML tags removed

The code automatically decodes JScript.encode parts and char ref’s (e.g.f).
You need to create a signature against one of the created files. To eliminate poten-
tial false positive alerts the target type should be set to 3.

3.2 Text files

Similarly to HTML all ASCII text files get normalized (converted to lower-case,
all superflous white space and control characters removed, etc.) before scanning.
Useclamscan --leave-temps to obtain a normalized file then create a signature
with the target type 7.

3.3 Compressed Portable Executable files

If the file is compressed with UPX, FSG, Petite or other PE packer supported by
libclamav, runclamscan with --debug --leave-temps. Example output for a
FSG compressed file:

LibClamAV debug: UPX/FSG/MEW: empty section found - assuming compression
LibClamAV debug: FSG: found old EP @119e0
LibClamAV debug: FSG: Unpacked and rebuilt executable saved in
/tmp/clamav-f592b20f9329ac1c91f0e12137bcce6c

Next create a type 1 signature for/tmp/clamav-f592b20f9329ac1c91f0e12137bcce6c

14

