
Phishing signatures creation HOWTO

Török Edwin

1 Database file format

1.1 PDB format
This file contains urls/hosts that are target of phishing attempts. It contains lines in the
following format:

R[Filter]:RealURL:DisplayedURL[:FuncLevelSpec]
H[Filter]:DisplayedHostname[:FuncLevelSpec]

R regular expression, for the concatenated URL

H matches the DisplayedHostname as a simple pattern (literally, no regular expres-
sion)

• the pattern can match either the full hostname

• or a subdomain of the specified hostname

• to avoid false matches in case of subdomain matches, the engine checks
that there is a dot(.) or a space() before the matched portion

Filter an (optional) 3-digit hexadecimal number representing flags that should be fil-
tered.

• flag filtering only makes sense in .pdb files. (however clamav won’t com-
plain if you put flags in .wdb files, it will just skip them)

• for details on how to construct a flag number see section Section 1.7

RealURL is the URL the user is sent to

DisplayedURL is the URL description displayed to the user, that is where it is claimed
they are sent, the most obvious example is that of an html anchor (<a>tag): its
href attribute is the REALURL, and its contents is the DISPLAYEDURL

DisplayedHostname is the hostname portion of the [DisplayedURL]

FuncLevelSpec an (optional) functionality level, 2 formats are possible:

• minlevel all engines having functionality level >= minlevel will load this
line

• minlevel-maxlevel engines with functionality level >= minlevel, and
< maxlevel will load this line

1

1.2 WDB format
This file contains whitelisted url pairs It contains lines in the following format:

X:RealURL:DisplayedURL[:FuncLevelSpec]
M:RealHostname:DisplayedHostname[:FuncLevelSpec]

X regular expression, for the ENTIRE URL, not just the hostname

• The regular expression is by default anchored to start-of-line and end-of-
line, as if you have used ^RegularExpression$

• A trailing / is automatically added both to the regex, and the input string
to avoid false matches
• The regular expression matches the CONCATENATION of RealURL, a colon(:),

and DisplayedURL as a single string. It doesn’t separately match RealURL
and DisplayedURL!

M matches hostname, or subdomain of it, see notes for H above

1.3 Hints
• empty lines are ignored

• the colons are mandatory

• Don’t leave extra spaces on the end of a line!

• if any of the lines don’t conform to this format, clamav will abort with a Mal-
formed Database Error

• see section 1.4.3 on the following page for more details on REALURL/DISPLAYEDURL

1.3.1 Example

The following line:
R http://www\.google\.(com|ro|it) www\.google\.com
Means: R - this is a regex.
Example of url pairs matching: http://www.google.com www.google.com, http://www.google.it

www.google.com.
Example of url pairs not matching: http://www.google.c0m www.google.com

1.4 How matching works
1.4.1 RealURL, displayedURL concatenation

The phishing detection module processes pairs of realURL/displayedURL, and the
matching against daily.wdb/daily.pdb is done as follows: the realURL is concatenated
with a space, and with the displayedURL, then that line is matched against the lines in
daily.wdb/daily.pdb

So if you have a line like
www.google.ro www.google.com

and a href like: www.google.com, then it
will match, but: www.google.com will not
match.

If you use the H flag, then the 2nd href will match too.

2

1.4.2 What happens when a match is found

In the case of the whitelist, a match means that the realURL/displayedURL combina-
tion is considered CLEAN, and no further checks are performed on it.

In the case of the domainlist, a match means that the realURL/displayedURL is
going to be checked for phishing attempts. This is only done if you don’t run clamav
with the alldomains option (since then all urls are checked). Furthermore you can
restrict what checks are to be performed by specifying the 3-digit hexnumber.

1.4.3 Extraction of REALURL, DISPLAYEDURL from HTML tags

The html parser extracts pairs of REALURL/DISPLAYEDURL based on the following
rules:

a (anchor) the href is the REALURL, its contents is the DISPLAYEDURL

contents is the tag-stripped contents of the <a> tags, so for example tags
are stripped (but not their contents)

nesting another <a> tag withing an <a> tag (besides being invalid html) is treated
as a <a..

form the action attribute is the REALURL, and a nested <a> tag is the DISPLAYEDURL

img/area if nested within an <a> tag, the REALURL is the href of the a tag, and the
src/dynsrc/area is the DISPLAYEDURL of the img

if nested withing a form tag, then the action attribute of the form tag is the RE-
ALURL

iframe if nested withing an <a> tag the src attribute is the displayedURL, and the href
of its parent a tag is the REALURL

if nested withing a form tag, then the action attribute of the form tag is the RE-
ALURL

1.4.4 Example

Consider this html file:

www.paypal.com

click here to sign in

<form action=”evilurl_form”>

Please sign in to Ebay using this form

<input type=’text’ name=’username’>Username</input>

....

</form>

The resulting REALURL/DISPLAYEDURL pairs will be (note that one tag can generate
multiple pairs):

3

• evilurl / www.paypal.com

• evilurl2 / click here to sign in

• evilurl2 / www.ebay.com

• evilurl_form / cgi.ebay.com

• cgi.ebay.com / Ebay

• evilurl / image.paypal.com/secure.jpg

1.5 Simple patterns
Simple patterns are matched literally, i.e. if you say:

www.google.com

it is going to match www.google.com, and only that. The . (dot) character has no special
meaning (see the section on regexes 1.6 for how the .(dot) character behaves there)

1.6 Regular expressions
POSIX regular expressions are supported, and you can consider that internally it is
wrapped by ^, and $. In other words, this means that the regular expression has to
match the entire concatenated (see section 1.4.1 on page 2 for details on concatenation)
url.

It is recomended that you read section 2 on page 6 to learn how to write regular
expressions, and then come back and read this for hints.

Be advised that clamav contains an internal, very basic regex matcher to reduce the
load on the regex matching core. Thus it is recomended that you avoid using regex
syntax not supported by it at the very beginning of regexes (at least the first few char-
acters).

Currently the clamav regex matcher supports:

• . (dot) character

• \ (escaping special characters)

• | (pipe) alternatives

• [] (character classes)

• () (paranthesis for grouping, but no group extraction is performed)

• other non-special characters

Thus the following are not supported:

• + repetition

• * repetition

• {} repetition

• backreferences

4

• lookaround

• other “advanced” features not listed in the supported list ;)

This however shouldn’t discourage you from using the “not directly supported features
“, because if the internal engine encounters unsupported syntax, it passes it on to the
POSIX regex core (beginning from the first unsupported token, everything before that
is still processed by the internal matcher). An example might make this more clear:

www\.google\.(com|ro|it) ([a-zA-Z])+\.google\.(com|ro|it)
Everything till ([a-zA-Z])+ is processed internally, that paranthesis (and everything

beyond) is processed by the posix core.
Examples of url pairs that match:

• www.google.ro images.google.ro

• www.google.com images.google.ro

Example of url pairs that don’t match:

• www.google.ro images1.google.ro

• images.google.com image.google.com

1.7 Flags
Flags are a binary OR of the following numbers:

HOST_SUFFICIENT 1

DOMAIN_SUFFICIENT 2

DO_REVERSE_LOOKUP 4

CHECK_REDIR 8

CHECK_SSL 16

CHECK_CLOAKING 32

CLEANUP_URL 64

CHECK_DOMAIN_REVERSE 128

CHECK_IMG_URL 256

DOMAINLIST_REQUIRED 512

The names of the constants are self-explanatory.
These constants are defined in libclamav/phishcheck.h, you can check there for the

latest flags.
There is a default set of flags that are enabled, these are currently: (CLEANUP_URL|DOMAIN_SUFFICIENT|CHECK_SSL|CHECK_CLOAKING|DOMAINLIST_REQUIRED|CHECK_IMG_URL),

ssl checking is performed only for a tags currently.
You must decide for each line in the domainlist if you want to filter any flags (that

is you don’t want certain checks to be done), and then calculate the binary OR of

5

those constants, and then convert it into a 3-digit hexnumber. For example you de-
vide that domain_sufficient shouldn’t be used for ebay.com, and you don’t want to
check images either, so you come up with this flag number: 2|256⇒258(decimal)⇒
102(hexadecimal)

So you add this line to daily.wdb:

• R102 www.ebay.com .+

2 Introduction to regular expressions
Recomended reading:

• http://www.regular-expressions.info/quickstart.html

• http://www.regular-expressions.info/tutorial.html

• regex(7) man-page: http://www.tin.org/bin/man.cgi?section=7&topic=regex

2.1 Special characters
[the opening square bracket - it marks the beginning of a character class, see sec-

tion 2.2 on the following page

\ the backslash - escapes special characters, see section 2.3 on the next page

ˆ the caret - matches the beginning of a line (not needed in clamav regexes, this is
implied)

$ the dollar sign - matches the end of a line (not needed in clamav regexes, this is
implied)

˙ the period or dot - matches any character

| the vertical bar or pipe symbol - matches either of the token on its left and right side,
see section 2.4 on the following page

? the question mark - matches optionally the left-side token, see section 2.5 on the
next page

* the asterisk or star - matches 0 or more occurences of the left-side token, see sec-
tion 2.5 on the following page

+ the plus sign - matches 1 or more occurences of the left-side token, see section 2.5
on the next page

(the opening round bracket - m̧arks beginning of a group, see section 2.6 on the fol-
lowing page

) the closing round bracket - marks end of a group, see section 2.6 on the next page

6

2.2 Character classes

2.3 Escaping
Escaping has two purposes:

• it allows you to actually match the special characters themselves, for example to
match the literal +, you would write \+

• it also allows you to match non-printable characters, such as the tab (\t), newline
(\n), ..

However since non-printable characters are not valid inside an url, you won’t have a
reason to use them.

2.4 Alternation

2.5 Optional matching, and repetition

2.6 Groups
Groups are usually used together with repetition, or alternation. For example: (com|it)+
means: match 1 or more repetitions of com or it, that is it matches: com, it, comcom,
comcomcom, comit, itit, ititcom,... you get the idea.

Groups can also be used to extract substring, but this is not supported by the clam
engine, and not needed either in this case.

3 How to create database files

3.1 How to create and maintain the whitelist (daily.wdb)
If the phishing code claims that a certain mail is phishing, but its not, you have 2
choices:

• examine your rules daily.pdb, and fix them if necessary (see: section 3.2 on the
following page)

• add it to the whitelist (discussed here)

Lets assume you are having problems because of links like this in a mail:

http://www.bcentral.it/

After investigating those sites further, you decide they are no threat, and create a line
like this in daily.wdb:

R http://www\.bcentral\.it/.+ http://69\.0\.241\.57/bCentral/L\.asp?L=.+

Note: urls like the above can be used to track unique mail recipients, and thus know if
somebody actually reads mails (so they can send more spam). However since this site
required no authentication information, it is safe from a phishing point of view.

7

3.2 How to create and maintain the domainlist (daily.pdb)
When not using –phish-scan-alldomains (production environments for example), you
need to decide which urls you are going to check.

Although at a first glance it might seem a good idea to check everything, it would
produce false positives. Particularly newsletters, ads, etc. are likely to use URLs that
look like phishing attempts.

Lets assume that you’ve recently seen many phishing attempts claiming they come
from Paypal. Thus you need to add paypal to daily.pdb:

R .+ .+\.paypal\.com

The above line will block (detect as phishing) mails that contain urls that claim to lead
to paypal, but they don’t in fact.

Be carefull not to create regexes that match a too broad range of urls though.

3.3 Dealing with false positives, and undetected phishing mails
3.3.1 False positives

Whenever you see a false positive (mail that is detected as phishing, but its not),
you need to examine why clamav decided that its phishing. You can do this easily
by building clamav with debugging (./configure –enable-experimental –enable-debug),
and then running a tool:

$contrib/phishing/why.py phishing.eml

This will show the url that triggers the phish verdict, and a reason why that url is
considered phishing attempt.

Once you know the reason, you might need to modify daily.pdb (if one of yours
rules inthere are too broad), or you need to add the url to daily.wdb. If you think
the algorithm is incorrect, please file a bugreport on bugzilla.clamav.net, including the
output of why.py.

3.3.2 Undetected phish mails

Using why.py doesn’t help here unfortunately (it will say: clean), so all you can do is:

$clamscan/clamscan –phish-scan-alldomains undetected.eml

And see if the mail is detected, if yes, then you need to add an appropiate line to
daily.pdb (see section 3.2).

If the mail is not detected, then try using:

$clamscan/clamscan –debug undetected.eml|less

Then see what urls are being checked, see if any of them is in a whitelist, see if all
urls are detected, etc.

4 Hints and recomandations

5 Examples

8

