
Creating signatures for ClamAV

1 Introduction

CVD (ClamAV Virus Database) is a digitally signed containerthat includes signa-
ture databases in various text formats. The header of the container is a 512 bytes
long string with colon separated fields:

ClamAV-VDB:build time:version:number of signatures:functionality
level required:MD5 checksum:digital signature:builder name:build
time (sec)

sigtool --info displays detailed information about a given CVD file:

zolw@localhost:/usr/local/share/clamav$ sigtool -i main.cvd
File: main.cvd
Build time: 09 Dec 2007 15:50 +0000
Version: 45
Signatures: 169676
Functionality level: 21
Builder: sven
MD5: b35429d8d5d60368eea9630062f7c75a
Digital signature: dxsusO/HWP3/GAA7VuZpxYwVsE9b+tCk+tPN6OyjVF/U8
JVh4vYmW8mZ62ZHYMlM903TMZFg5hZIxcjQB3SX0TapdF1SFNzoWjsyH53eXvMDY
eaPVNe2ccXLfEegoda4xU2TezbGfbSEGoU1qolyQYLX674sNA2Ni6l6/CEKYYh
Verification OK.

The ClamAV project distributes two CVD files:main.cvd anddaily.cvd.

2 Signature formats

2.1 MD5

The easiest way to create signatures for ClamAV is to use MD5 checksums, how-
ever this method can be only used against static malware. To create a signature
for test.exe use the--md5 option of sigtool:

1

zolw@localhost:/tmp/test$ sigtool --md5 test.exe > test.hdb
zolw@localhost:/tmp/test$ cat test.hdb
48c4533230e1ae1c118c741c0db19dfb:17387:test.exe

That’s it! The signature is ready to use:

zolw@localhost:/tmp/test$ clamscan -d test.hdb test.exe
test.exe: test.exe FOUND

----------- SCAN SUMMARY -----------
Known viruses: 1
Scanned directories: 0
Engine version: 0.92.1
Scanned files: 1
Infected files: 1
Data scanned: 0.02 MB
Time: 0.024 sec (0 m 0 s)

You can change the name (by default sigtool uses the name of the file) and place
it inside a*.hdb file. A single database file can include any number of signatures.
To get them automatically loaded each time clamscan/clamd starts just copy the
database file(s) into the local virus database directory (eg. /usr/local/share/clamav).

2.2 MD5, PE section based

You can create a MD5 signature for a specific section in a PE file. Such signatures
shall be stored inside.mdb files in the following format:

PESectionSize:MD5:MalwareName

The easiest way to generate MD5 based section signatures is to extract target PE
sections into separate files and then run sigtool with the option --mdb

2.3 Hexadecimal signatures

ClamAV stores all signatures in a hexadecimal format. By a hex-signature here we
mean a fragment of a malware’s body converted into a hexadecimal string which
can be additionally extended with various wildcards.

2

2.3.1 Hexadecimal format

You can usesigtool --hex-dump to convert any data into a hex-string:

zolw@localhost:/tmp/test$ sigtool --hex-dump
How do I look in hex?
486f7720646f2049206c6f6f6b20696e206865783f0a

2.3.2 Wildcards

ClamAV supports the following extensions inside hex signatures:

• ??
Match any byte.

• a?
Match a high nibble (the four high bits).
IMPORTANT NOTE: The nibble matching is only available in libcla-
mav with the functionality level 17 and higher therefore please only use
it with .ndb signatures followed by ”:17” (MinEngineFunctionalityLevel,
see 2.3.5).

• ?a
Match a low nibble (the four low bits).

• *
Match any number of bytes.

• {n}
Matchn bytes.

• {-n}
Matchn or less bytes.

• {n-}
Matchn or more bytes.

• {n-m}
Match betweenn andm bytes (m > n).

• (aa|bb|cc|..)
Match aa or bb or cc..

3

• !(aa|bb|cc|..)
Match any byte except aa and bb and cc..

• HEXSIG[x-y]aa or aa[x-y]HEXSIG
Match aa anchored to a hex-signature, seehttps://wwws.clamav.net/
bugzilla/show_bug.cgi?id=776 for a discussion and examples.

The range signatures* and{} virtually separate a hex-signature into two parts,
eg. aabbcc*bbaacc is treated as two sub-signaturesaabbcc andbbaacc with
any number of bytes between them. It’s a requirement that each sub-signature
includes a block of two static characters somewhere in its body.

2.3.3 Basic signature format

The simplest (and now deprecated) signature format is:

MalwareName=HexSignature

ClamAV will scan the entire file looking for HexSignature. All signatures of this
type must be placed inside*.db files.

2.3.4 Extended signature format

The extended signature format allows for specification of additional information
such as a target file type, virus offset or engine version, making the detection more
reliable. The format is:

MalwareName:TargetType:Offset:HexSignature[:MinEngineFunctionalityLevel:[Max]]

whereTargetType is one of the following numbers specifying the type of the
target file:

• 0 = any file

• 1 = Portable Executable, both 32- and 64-bit.

• 2 = file inside OLE2 container (e.g. image, embedded executable, VBA
script). The OLE2 format is primarily used by MS Office and MSIinstalla-
tion files.

4

• 3 = HTML (normalized: whitespace transformed to spaces, tags/tag at-
tributes normalized, all lowercase), Javascript is normalized too: all strings
are normalized (hex encoding is decoded), numbers are parsed and normal-
ized, local variables/function names are normalized to ’n001’ format, argu-
ment to eval() is parsed as JS again, unescape() is handled, some simple JS
packers are handled, output is whitespace normalized.

• 4 = Mail file

• 5 = Graphics

• 6 = ELF

• 7 = ASCII text file (normalized)

• 8 = Disassembler data

• 9 = Mach-O files

AndOffset is an asterisk or a decimal numbern possibly combined with a special
modifier:

• * = any

• n = absolute offset

• EOF-n = end of file minusn bytes

Signatures for PE, ELF and Mach-O files additionally support:

• EP+n = entry point plus n bytes (EP+0 for EP)

• EP-n = entry point minus n bytes

• Sx+n = start of sectionx’s (counted from 0) data plusn bytes

• Sx-n = start of sectionx’s data minusn bytes

• SL+n = start of last section plusn bytes

• SL-n = start of last section minusn bytes

All the above offsets except* can be turned intofloating offsetsand represented
asOffset,MaxShift whereMaxShift is an unsigned integer. A floating offset
will match every offset betweenOffset andOffset+MaxShift, eg. 10,5 will
match all offsets from 10 to 15 andEP+n,y will match all offsets fromEP+n to
EP+n+y. Versions of ClamAV older than 0.91 will silently ignore theMaxShift
extension and only useOffset.

All signatures in the extended format must be placed inside*.ndb files.

5

2.3.5 Logical signatures

Logical signatures allow combining of multiple signaturesin extended format us-
ing logical operators. They can provide both more detailed and flexible pattern
matching. The logical sigs are stored inside*.ldb files in the following format:

SignatureName;TargetDescriptionBlock;LogicalExpression;Subsig0;
Subsig1;Subsig2;...

where:

• TargetDescriptionBlock provides information about the engine and tar-
get file with comma separatedArg:Val pairs, currently (as of 0.95.1) only
Target:X andEngine:X-Y are supported.

• LogicalExpression specifies the logical expression describing the rela-
tionship betweenSubsig0...SubsigN.
Basis clause: 0,1,...,N decimal indexes are SUB-EXPRESSIONS repre-
sentingSubsig0, Subsig1,...,SubsigN respectively.
Inductive clause: if A andB are SUB-EXPRESSIONS andX, Y are deci-
mal numbers then(A&B), (A|B), A=X, A=X,Y, A>X, A>X,Y, A<X andA<X,Y
are SUB-EXPRESSIONS

• SubsigN is n-th subsignature in extended format possibly preceded with an
offset. There can be specified up to 64 subsigs.

Modifiers for subexpressions:

• A=X: If the SUB-EXPRESSION A refers to a single signature then this sig-
nature must get matched exactly X times; if it refers to a (logical) block of
signatures then this block must generate exactly X matches (with any of its
sigs).

• A=0 specifies negation (signature or block of signatures cannotbe matched)

• A=X,Y: If the SUB-EXPRESSION A refers to a single signature then this
signature must be matched exactly X times; if it refers to a (logical) block of
signatures then this block must generate X matches and at least Y different
signatures must get matched.

• A>X: If the SUB-EXPRESSION A refers to a single signature then this sig-
nature must get matched more than X times; if it refers to a (logical) block
of signatures then this block must generate more than X matches (with any
of its sigs).

6

• A>X,Y: If the SUB-EXPRESSION A refers to a single signature then this
signature must get matched more than X times; if it refers to a(logical)
block of signatures then this block must generate more than Xmatches and
at least Y different signatures must be matched.

• A<X andA<X,Y as above with the change of ”more” to ”less”.

Examples:

Sig1;Target:0;(0&1&2&3)&(4|1);6b6f74656b;616c61;7a6f6c77;7374656
6616e;deadbeef

Sig2;Target:0;((0|1|2)>5,2)&(3|1);6b6f74656b;616c61;7a6f6c77;737
46566616e

Sig3;Target:0;((0|1|2|3)=2)&(4|1);6b6f74656b;616c61;7a6f6c77;737
46566616e;deadbeef

Sig4;Target:1,Engine:18-20;((0|1)&(2|3))&4;EP+123:33c06834f04100
f2aef7d14951684cf04100e8110a00;S2+78:22??232c2d252229{-15}6e6573
(63|64)61706528;S+50:68efa311c3b9963cb1ee8e586d32aeb9043e;f9c58d
cf43987e4f519d629b103375;SL+550:6300680065005c0046006900

2.4 Signatures based on archive metadata

Signatures based on metadata inside archive files can provide an effective protec-
tion against malware that spreads via encrypted zip or rar archives. The format of
a metadata signature is:

virname:encrypted:filename:normal size:csize:crc32:cmethod:fileno:max depth

where the corresponding fields are:

• Virus name

• Encryption flag (1 – encrypted, 0 – not encrypted)

• File name (this is a regular expression - * to ignore)

• Normal (uncompressed) size (* to ignore)

• Compressed size (* to ignore)

• CRC32 (* to ignore)

7

• Compression method (* to ignore)

• File position in archive (* to ignore)

• Maximum number of nested archives (* to ignore)

The database file should have the extension of.zmd or.rmd for zip or rar metadata
respectively.

2.5 Whitelist databases

To whitelist a specific file use the MD5 signature format and place it inside a
database file with the extension of.fp.

To whitelist a specific signature inside main.cvd add the following entry into
daily.ign or a local file local.ign:

db_name:line_number:signature_name

2.6 Signature names

ClamAV uses the following prefixes for signature names:

• Worm for Internet worms

• Trojan for backdoor programs

• Adware for adware

• Flooder for flooders

• HTML for HTML files

• Email for email messages

• IRC for IRC trojans

• JS for Java Script malware

• PHP for PHP malware

• ASP for ASP malware

• VBS for VBS malware

• BAT for BAT malware

8

• W97M, W2000M for Word macro viruses

• X97M, X2000M for Excel macro viruses

• O97M, O2000M for generic Office macro viruses

• DoS for Denial of Service attack software

• DOS for old DOS malware

• Exploit for popular exploits

• VirTool for virus construction kits

• Dialer for dialers

• Joke for hoaxes

Important rules of the naming convention:

• always use a -zippwd suffix in the malware name for signaturesof type zmd,

• always use a -rarpwd suffix in the malware name for signaturesof type rmd,

• only use alphanumeric characters, dash (-), dot (.), underscores () in mal-
ware names, never use space, apostrophe or quote mark.

3 Special files

3.1 HTML

ClamAV contains a special HTML normalisation code which helps to detect HTML
exploits. Runningsigtool --html-normalise on a HTML file should generate
the following files:

• nocomment.html - the file is normalized, lower-case, with all comments and
superflous white space removed

• notags.html - as above but with all HTML tags removed

The code automatically decodes JScript.encode parts and char ref’s (e.g.f).
You need to create a signature against one of the created files. To eliminate poten-
tial false positive alerts the target type should be set to 3.

9

3.2 Text files

Similarly to HTML all ASCII text files get normalized (converted to lower-case,
all superflous white space and control characters removed, etc.) before scanning.
Useclamscan --leave-temps to obtain a normalized file then create a signature
with the target type 7.

3.3 Compressed Portable Executable files

If the file is compressed with UPX, FSG, Petite or other PE packer supported by
libclamav, runclamscan with --debug --leave-temps. Example output for a
FSG compressed file:

LibClamAV debug: UPX/FSG/MEW: empty section found - assuming compression
LibClamAV debug: FSG: found old EP @119e0
LibClamAV debug: FSG: Unpacked and rebuilt executable saved in
/tmp/clamav-f592b20f9329ac1c91f0e12137bcce6c

Next create a type 1 signature for/tmp/clamav-f592b20f9329ac1c91f0e12137bcce6c

10

