Creating signatures for ClamAvV

1 Introduction

CVD (ClamAV Virus Database) is a digitally signed contaitteat includes signa-
ture databases in various text formats. The header of thaioen is a 512 bytes
long string with colon separated fields:

Cl amAV- VDB: bui | d tine: version: number of signatures:functionality
| evel required: MD5 checksumdigital signature:builder nane:build
tine (sec)

sigtool --info displays detailed information about a given CVD file:

zol w@ ocal host : /usr/ | ocal / share/ cl amav$ sigtool -i main.cvd

File: main.cvd

Build time: 09 Dec 2007 15:50 +0000

Version: 45

Signatures: 169676

Functionality level: 21

Bui | der: sven

MD5: b35429d8d5d60368eea9630062f 7c75a

Digital signature: dxsusQ HWP3/ GAA7TVUZpx YWsE9b+t Ck+t PN6Oy| VF/ U3
JVh4vYmABnZ62ZHYM MBO3TMZFg5hZI xcj QB3SX0TapdF1SFNzoW syH53eXv MDY
eaPVNe2ccXLf EegodadxU2TezbG bSEGoULqol yQYLX674sNA2N 61 6/ CEKYYh
Verification OK

The ClamAV project distributes two CVD filesaain.cvd anddaily.cvd.

2 Signature formats

2.1 MD5

The easiest way to create signatures for ClamAV is to use Migsksums, how-
ever this method can be only used against static malware rekdeca signature
for t est. exe use the - nd5 option of sigtool:

1

zol w@ocal host:/tnp/test$ sigtool --md5 test.exe > test. hdb
zol w@ocal host:/tnp/test$ cat test.hdb
48c4533230elaelc118c741c0db19df b: 17387: t est. exe

That’s it! The signature is ready to use:

zol w@ ocal host:/tnp/test$ clamscan -d test.hdb test.exe
test.exe: test.exe FOUND

----------- SCAN SUMARY -----------
Known viruses: 1

Scanned directories: 0

Engi ne version: 0.92.1

Scanned files: 1

Infected files: 1

Data scanned: 0.02 MB

Time: 0.024 sec (0 mO s)

You can change the name (by default sigtool uses the name dfehand place
itinside a*. hdb file. A single database file can include any number of sigestur
To get them automatically loaded each time clamscan/claartsgust copy the
database file(s) into the local virus database directory/(eg/local/share/clamav).

2.2 MD5, PE section based

You can create a MD5 signature for a specific section in a PESikeh signatures
shall be stored insidemdb files in the following format:

PESecti onSi ze: MD5: Mal war eNamre

The easiest way to generate MD5 based section signatur@exsract target PE
sections into separate files and then run sigtool with theopt mdb

2.3 Hexadecimal signatures

ClamAV stores all signatures in a hexadecimal format. Byxagignature here we
mean a fragment of a malware’s body converted into a hexadeatring which
can be additionally extended with various wildcards.

2.3.1 Hexadecimal format

You can usesi gt ool - - hex- dunp to convert any data into a hex-string:

zol w@ocal host:/tnp/test$ sigtool --hex-dunmp
How do | look in hex?
486f 7720646f 2049206¢6f 6f 6b20696€206865783f 0a

2.3.2 Wildcards
ClamAV supports the following extensions inside hex signed:

e 7?7
Match any byte.

e a?
Match a high nibble (the four high bits).
IMPORTANT NOTE: The nibble matching is only available in libcla-
mav with the functionality level 17 and higher thereforegse only use
it with .ndb signatures followed by ":17” (MinEngineFunatialityLevel,
see 2.3.5).

e ?a
Match a low nibble (the four low bits).

*

Match any number of bytes.

e {n}
Matchn bytes.

o {-n}

Matchn or less bytes.

e {n-}

Matchn or more bytes.

e {n-n

Match betweem andm bytes (> n).

e (aal bb|cc|..)
Match aa or bb or cc..

e HEXSI d x-y] aa oraa[x- y] HEXSI G
Match aa anchored to a hex-signature, seteps: / / wws. ¢l amav. net/
bugzi | | a/ show_bug. cgi ?i d=776 for a discussion and examples.

The range signaturésand{} virtually separate a hex-signature into two parts,
eg. aabbcc*bbaacc is treated as two sub-signaturegbbcc andbbaacc with
any number of bytes between them. It's a requirement that sab-signature
includes a block of two static characters somewhere in itlybo

2.3.3 Basic signature format

The simplest (and now deprecated) signature format is:

Mal war eName=HexSi gnat ur e

ClamAV will scan the entire file looking for HexSignature.lAlgnatures of this
type must be placed inside db files.
2.3.4 Extended signature format

The extended signature format allows for specification afitewhal information
such as a target file type, virus offset or engine version jnggke detection more
reliable. The format is:

Mal war eName: Tar get Type: O f set : HexSi gnat ur e[: M nEngi neFuncti onal i t yLevel : [Max]]

whereTar get Type is one of the following numbers specifying the type of the
target file:

0 = any file

1 = Portable Executable, both 32- and 64-hit.

2 = file inside OLE2 container (e.g. image, embedded exejtsBA
script). The OLE2 format is primarily used by MS Office and Mi&italla-
tion files.

3 = HTML (normalized: whitespace transformed to spacess/tag at-
tributes normalized, all lowercase), Javascript is noizedltoo: all strings
are normalized (hex encoding is decoded), numbers aredhansenormal-
ized, local variables/function names are normalized t®Ii@ormat, argu-
ment to eval() is parsed as JS again, unescape() is handiad,smple JS
packers are handled, output is whitespace normalized.

4

4 = Malil file

5 = Graphics
e 6=ELF
e 7 = ASCII text file (normalized)

And O f set is an asterisk or a decimal numbepossibly combined with a special
modifier:

e * =any
e n = absolute offset
e ECF-n = end of file minus bytes
Signatures for PE and ELF files additionally support:
e EP+n = entry point plus n byte€pP+0 for EP)
e EP-n = entry point minus n bytes
e Sx+n = start of sectiox’s (counted from 0) data plusbytes
e Sx- n = start of sectionx’s data minus bytes
e SL+n = start of last section plusbytes
e SL-n = start of last section minusbytes

All the above offsets exceptcan be turned intfloating offsetsand represented
asO f set, MaxShi ft whereMaxShi ft is an unsigned integer. A floating offset
will match every offset betwee@f f set andOf f set +MaxShi ft, eg. 10, 5 will
match all offsets from 10 to 15 ari&P+n, y will match all offsets fromEP+n to
EP+n+y. Versions of ClamAV older than 0.91 will silently ignore tiaxShi f t
extension and only us# f set .

All signatures in the extended format must be placed insiaeb files.

2.3.5 Logical signatures

Logical signatures allow combining of multiple signatuneextended format us-
ing logical operators. They can provide both more detailedl ffexible pattern
matching. The logical sigs are stored instdé db files in the following format:

Si gnat ur eNane; Tar get Descri pti onBl ock; Logi cal Expr essi on; Subsi g0;
Subsi gl; Subsi g2; . ..

where:

e Target Descri ptionBl ock provides information about the engine and tar-
get file with comma separated g: Val pairs, currently (as of 0.95.1) only
Tar get : XandEngi ne: X- Y are supported.

e Logi cal Expressi on specifies the logical expression describing the rela-
tionship betweesubsi g0. . . Subsi gN.
Basis clause:0,1,...,N decimal indexes are SUB-EXPRESSIONS repre-
sentingSubsi g0, Subsigl, ..., Subsi gNrespectively.
Inductive clause: if AandB are SUB-EXPRESSIONS ari{] Y are deci-
mal numbers the(A&B) , (A| B) , A=X, A=X, Y, A>X, A>X, Y, A<X andA<X, Y
are SUB-EXPRESSIONS

e Subsi gNis n-th subsignature in extended format possibly precedtédam
offset. There can be specified up to 64 subsigs.

Modifiers for subexpressions:

o A=X: If the SUB-EXPRESSION A refers to a single signature thes $ig-
nature must get matched exactly X times; if it refers to ailaly block of
signatures then this block must generate exactly X matchigls &ny of its

sigs).
e A=0 specifies negation (signature or block of signatures cammatatched)

e A=X Y: If the SUB-EXPRESSION A refers to a single signature thasa th
signature must be matched exactly X times; if it refers t@gi@al) block of
signatures then this block must generate X matches andsttYedifferent
signatures must get matched.

o ASX: If the SUB-EXPRESSION A refers to a single signature thes $ig-
nature must get matched more than X times; if it refers to gi¢kd) block
of signatures then this block must generate more than X reatghith any
of its sigs).

e A>X Y: If the SUB-EXPRESSION A refers to a single signature thasa th
signature must get matched more than X times; if it refers (gical)
block of signatures then this block must generate more thara¥hes and
at least Y different signatures must be matched.

e A<X andA<X Y as above with the change of "more” to "less”.
Examples:

Sigl; Target: 0; (0&1&2&3) &(4| 1) ; 6b6f 74656b; 616¢61; 7a6f 6¢77; 7374656
6616e; deadbeef

Si g2; Target: 0; ((0| 1| 2)>5, 2) &(3| 1) ; 6b6f 74656b; 616c61; 7a6f 6¢77; 737
46566616e

Si g3; Target: 0; ((0] 1| 2| 3) =2) & 4| 1) ; 6b6f 74656b; 616¢61; 7a6f 6¢77; 737
46566616€; deadbeef

Si g4; Target: 1, Engi ne: 18- 20; ((0] 1) &(2| 3)) &4; EP+123: 33c06834f 04100
f2aef 7d14951684cf 04100e8110a00; S2+78: 22??232¢2d252229{ - 15} 66573
(63| 64)61706528; S+50: 68ef a311c3b9963chlee8e586d32aeh9043e; f 9¢58d
cf 43987e4f 519d629b103375; SL+550: 6300680065005¢0046006900

2.4 Signatures based on archive metadata

Signatures based on metadata inside archive files can prawmiéffective protec-
tion against malware that spreads via encrypted zip or ciuias. The format of
a metadata signature is:

virname: encrypted: fil enane: nornal size:csize:crc32:cnethod: fileno: max depth
where the corresponding fields are:
e \irus name

Encryption flag (1 — encrypted, 0 — not encrypted)

File name (this is a regular expression - * to ignore)

Normal (uncompressed) size (* to ignore)

Compressed size (* to ignore)

CRC32 (*to ignore)

e Compression method (* to ignore)

e File position in archive (* to ignore)

Maximum number of nested archives (* to ignore)

The database file should have the extensiarzofl or. r nd for zip or rar metadata
respectively.

2.5

Whitelist databases

To whitelist a specific file use the MD5 signature format anacplit inside a
database file with the extension.dfp.

To whitelist a specific signature inside main.cvd add théowaihg entry into
daily.ign or a local file local.ign:

db_nane: | i ne_nunber: si gnat ure_nane

2.6

Signature names

ClamAV uses the following prefixes for signature names:

Worm for Internet worms
Trojan for backdoor programs
Adware for adware

Flooder for flooders

HTML for HTML files
Email for email messages
IRC for IRC trojans

JSfor Java Script malware
PHP for PHP malware
ASP for ASP malware
VBSfor VBS malware

BAT for BAT malware

WO7M, W2000M for Word macro viruses
X97M, X2000M for Excel macro viruses

097M, O2000M for generic Office macro viruses

DoSfor Denial of Service attack software

DOSfor old DOS malware

Exploit for popular exploits

VirTool for virus construction kits

Dialer for dialers

Joke for hoaxes

Important rules of the naming convention:
e always use a -zippwd suffix in the malware name for signatoirgge zmd,
e always use a -rarpwd suffix in the malware name for signatfrggpe rmd,

e only use alphanumeric characters, dash (-), dot (.), undes () in mal-
ware names, never use space, apostrophe or quote mark.

3 Special files

3.1 HTML

ClamAV contains a special HTML normalisation code whichps¢b detect HTML
exploits. Runningi gt ool --htm -normal i se ona HTML file should generate
the following files:

e nocomment.html - the file is normalized, lower-case, witlt@ainments and
superflous white space removed

e notags.html - as above but with all HTML tags removed

The code automatically decodes JScript.encode parts andedfts (e.g.8f).
You need to create a signature against one of the createdTidediminate poten-
tial false positive alerts the target type should be set to 3.

3.2 Textfiles

Similarly to HTML all ASCII text files get normalized (conved to lower-case,
all superflous white space and control characters remowedl,efore scanning.
Usecl anscan --1| eave-t enps to obtain a normalized file then create a signature
with the target type 7.

3.3 Compressed Portable Executable files

If the file is compressed with UPX, FSG, Petite or other PE paskipported by
libclamav, runcl anmscan with - - debug - -1 eave-tenps. Example output for a
FSG compressed file:

Li bCl amAV debug: UPX/ FSG MEW enpty section found - assum ng conpression
Li bCl amAV debug: FSG found old EP @19e0

Li bCl amAV debug: FSG Unpacked and rebuilt executable saved in

/[tnp/ cl amav- f 592b20f 9329ac1c91f 0el2137bccebe

Next create a type 1 signature famp/ cl amav- f 592b20f 9329ac1c91f 0e12137bccebe

10

