
Clam AntiVirus 0.100.0
User Manual

Contents 1

Contents

1 Introduction 4
1.1 Features . 4
1.2 Mailing lists and IRC channel . 6
1.3 Virus submitting . 6

2 Base package 7
2.1 Supported platforms . 7
2.2 Binary packages . 7

3 Installation 7
3.1 Requirements . 7
3.2 Installing on shell account . 8
3.3 Adding new system user and group . 9
3.4 Compilation of base package . 9
3.5 Compilation with clamav-milter enabled 10
3.6 Using the system LLVM . 10
3.7 Running unit tests . 10
3.8 Reporting a unit test failure bug . 12
3.9 Obtain Latest ClamAV anti-virus signature databases 12

4 Configuration 13
4.1 clamd . 13

4.1.1 On-access scanning . 13
4.2 clamav-milter . 13
4.3 Testing . 14
4.4 Setting up auto-updating . 15

4.4.1 Closest mirrors . 16

5 Usage 16
5.1 Clam daemon . 16
5.2 Clamdscan . 19
5.3 On-access Scanning . 19
5.4 Clamdtop . 20
5.5 Clamscan . 20
5.6 ClamBC . 21
5.7 Freshclam . 21
5.8 Clamconf . 21
5.9 Output format . 23

Contents 2

5.9.1 clamscan . 23
5.9.2 clamd . 23

6 LibClamAV 24
6.1 License . 24
6.2 Supported formats and features . 24

6.2.1 Executables . 24
6.2.2 Mail files . 25
6.2.3 Archives and compressed files 25
6.2.4 Documents . 26
6.2.5 Data Loss Prevention . 26
6.2.6 Others . 27

6.3 API . 27
6.3.1 Header file . 27
6.3.2 Initialization . 27
6.3.3 Database loading . 28
6.3.4 Error handling . 29
6.3.5 Engine structure . 29
6.3.6 Limits . 30
6.3.7 Database checks . 30
6.3.8 Data scan functions . 31
6.3.9 Memory . 33
6.3.10 Forking daemons . 34
6.3.11 clamav-config . 34
6.3.12 Example . 34

6.4 CVD format . 34
6.5 Graphics . 35
6.6 OpenAntiVirus . 35

Contents 3

ClamAV User Manual, 87d 88d 89d c© 2018 Cisco Systems, Inc. Authors: Tomasz
Kojm
This document is distributed under the terms of the GNU General Public License v2.

Clam AntiVirus is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License along with this
program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth
Floor, Boston, MA 02110-1301, USA.

ClamAV and Clam AntiVirus are trademarks of Cisco Systems, Inc.

1 Introduction 4

1 Introduction

Clam AntiVirus is an open source (GPL) anti-virus toolkit for UNIX, designed espe-
cially for e-mail scanning on mail gateways. It provides a number of utilities including
a flexible and scalable multi-threaded daemon, a command line scanner and advanced
tool for automatic database updates. The core of the package is an anti-virus engine
available in a form of shared library.

1.1 Features
• Licensed under the GNU General Public License, Version 2

• POSIX compliant, portable

• Fast scanning

• Supports on-access scanning (Linux only)

• Detects over 1 million viruses, worms and trojans, including Microsoft Office
macro viruses, mobile malware, and other threats

• Built-in bytecode interpreter allows the ClamAV signature writers to create and
distribute very complex detection routines and remotely enhance the scanner’s
functionality

• Scans within archives and compressed files (also protects against archive bombs),
built-in support includes:

– Zip (including SFX)

– RAR (including SFX)

– 7Zip

– ARJ (including SFX)

– Tar

– CPIO

– Gzip

– Bzip2

– DMG

– IMG

– ISO 9660

1 Introduction 5

– PKG

– HFS+ partition

– HFSX partition

– APM disk image

– GPT disk image

– MBR disk image

– XAR

– XZ

– MS OLE2

– MS Cabinet Files (including SFX)

– MS CHM (Compiled HTML)

– MS SZDD compression format

– BinHex

– SIS (SymbianOS packages)

– AutoIt

– InstallShield

• Supports Portable Executable (32/64-bit) files compressed or obfuscated with:

– AsPack

– UPX

– FSG

– Petite

– PeSpin

– NsPack

– wwpack32

– MEW

– Upack

– Y0da Cryptor

• Supports ELF and Mach-O files (both 32- and 64-bit)

• Supports almost all mail file formats

• Support for other special files/formats includes:

1 Introduction 6

– HTML

– RTF

– PDF

– Files encrypted with CryptFF and ScrEnc

– uuencode

– TNEF (winmail.dat)

• Advanced database updater with support for scripted updates, digital signatures
and DNS based database version queries

1.2 Mailing lists and IRC channel
If you have a trouble installing or using ClamAV try asking on our mailing lists. There
are four lists available:

• clamav-announce*lists.clamav.net - info about new versions, moderated1.

• clamav-users*lists.clamav.net - user questions

• clamav-devel*lists.clamav.net - technical discussions

• clamav-virusdb*lists.clamav.net - database update announcements, moderated

You can subscribe and search the mailing list archives at: http://www.clamav.net/
contact.html#ml
Alternatively you can try asking on the #clamav IRC channel - launch your favourite
irc client and type:

/server irc.freenode.net
/join #clamav

1.3 Virus submitting
If you have got a virus which is not detected by your ClamAV with the latest databases,
please submit the sample at our website:

http://www.clamav.net/malware-sample

1Subscribers are not allowed to post to the mailing list

3 Installation 7

2 Base package

2.1 Supported platforms
Clam AntiVirus is regularly tested on:

• GNU/Linux

• Solaris

• FreeBSD

• macOS

• Windows

2.2 Binary packages
You can find the up-to-date list of binary packages at our website: http://www.clamav.
net/download.html#otherversions

3 Installation

3.1 Requirements

The following components are required to compile ClamAV under UNIX: 2

• zlib and zlib-devel packages

• openssl version 0.9.8 or higher and libssl-devel packages

• gcc compiler suite (tested with 2.9x, 3.x and 4.x series)
If you are compiling with higher optimization levels than the default one (-O2
for gcc), be aware that there have been reports of misoptimizations. The
build system of ClamAV only checks for bugs affecting the default settings,
it is your responsibility to check that your compiler version doesn’t have any
bugs.

• GNU make (gmake)

The following packages are optional but highly recommended:

2For Windows instructions please see win32/README in the main source code directory.

3 Installation 8

• bzip2 and bzip2-devel library

• libxml2 and libxml2-dev library

• check unit testing framework 3.

The following packages are optional, but required for bytecode JIT support: 4

• GCC C and C++ compilers (minimum 4.1.3, recommended 4.3.4 or newer)
the package for these compilers are usually called: gcc, g++, or gcc-c++. 5

• OSX Xcode versions prior to 5.0 use a g++ compiler frontend (llvm-gcc) that is
not compatible with ClamAV JIT. It is recommended to either compile ClamAV
JIT with clang++ or to compile ClamAV without JIT.

• A supported CPU for the JIT, either of: X86, X86-64, PowerPC, PowerPC64

The following packages are optional, but needed for the JIT unit tests:

• GNU Make (version 3.79, recommended 3.81)

• Python (version 2.5.4 or newer), for running the JIT unit tests

The following packages are optional, but required for clamsubmit:

• libcurl-devel library

• libjson-c-dev library

3.2 Installing on shell account
To install ClamAV locally on an unprivileged shell account you need not create any
additional users or groups. Assuming your home directory is /home/gary you should
build it as follows:

$./configure --prefix=/home/gary/clamav --disable-clamav
$ make; make install

To test your installation execute:

3See section 3.7 on how to run the unit tests
4if not available ClamAV will fall back to an interpreter
5Note that several versions of GCC have bugs when compiling LLVM, see http://llvm.org/docs/

GettingStarted.html#brokengcc for a full list.

3 Installation 9

$ ˜/clamav/bin/freshclam
$ ˜/clamav/bin/clamscan ˜

The --disable-clamav switch disables the check for existence of the clamav user and
group but clamscan would still require an unprivileged account to work in a superuser
mode.

3.3 Adding new system user and group
If you are installing ClamAV for the first time, you have to add a new user and group to
your system:

groupadd clamav
useradd -g clamav -s /bin/false -c "Clam AntiVirus" clamav

Consult a system manual if your OS has not groupadd and useradd utilities. Don’t
forget to lock access to the account!

3.4 Compilation of base package
Once you have created the clamav user and group, please extract the archive:

$ zcat clamav-x.yz.tar.gz | tar xvf -
$ cd clamav-x.yz

Assuming you want to install the configuration files in /etc, configure and build the
software as follows:

$./configure --sysconfdir=/etc
$ make
$ su -c "make install"

In the last step the software is installed into the /usr/local directory and the config files
into /etc. WARNING: Never enable the SUID or SGID bits for Clam AntiVirus
binaries.

3 Installation 10

3.5 Compilation with clamav-milter enabled
libmilter and its development files are required. To enable clamav-milter, configure
ClamAV with

$./configure --enable-milter

See section /refsec:clamavmilter for more details on clamav-milter.

3.6 Using the system LLVM
Some problems have been reported when compiling ClamAV’s built-in LLVM with
recent C++ compiler releases. These problems may be avoided by installing and using
an external LLVM system library. To configure ClamAV to use LLVM that is installed
as a system library instead of the built-in LLVM JIT, use following:

$./configure --with-system-llvm=/myllvm/bin/llvm-config
$ make
$ sudo make install

The argument to --with-system-llvm is optional, indicating the path name of the
LLVM configuration utility (llvm-config). With no argument to --with-system-llvm,
./configure will search for LLVM in /usr/local/ and then /usr.

Recommended versions of LLVM are 3.2, 3.3, 3.4, 3.5, and 3.6. Some installations
have reported problems using earlier LLVM versions. Versions of LLVM beyond 3.6
are not currently supported in ClamAV.

3.7 Running unit tests
ClamAV includes unit tests that allow you to test that the compiled binaries work cor-
rectly on your platform.

The first step is to use your OS’s package manager to install the check package. If your
OS doesn’t have that package, you can download it from http://check.sourceforge.
net/, build it and install it.

To help clamav’s configure script locate check, it is recommended that you install
pkg-config, preferably using your OS’s package manager, or from http://pkg-config.
freedesktop.org.

3 Installation 11

The recommended way to run unit-tests is the following, which ensures you will get
an error if unit tests cannot be built: 6

$./configure --enable-check
$ make
$ make check

When make check is finished, you should get a message similar to this:

==================
All 8 tests passed
==================

If a unit test fails, you get a message similar to the following. Note that in older versions
of make check may report failures due to the absence of optional packages. Please make
sure you have the latest versions of the components noted in section /refsec:components.
See the next section on how to report a bug when a unit test fails.

==
1 of 8 tests failed
Please report to http://bugs.clamav.net/
==

If unit tests are disabled (and you didn’t use –enable-check), you will get this message:

*** Unit tests disabled in this build
*** Use ./configure --enable-check to enable them

SKIP: check_clamav
PASS: check_clamd.sh
PASS: check_freshclam.sh
PASS: check_sigtool.sh
PASS: check_clamscan.sh
======================
All 4 tests passed
(1 tests were not run)
======================

Running ./configure --enable-check should tell you why.

6The configure script in ClamAV automatically enables the unit tests, if it finds the check framework,
however it doesn’t consider it a fatal error if unit tests cannot be enabled.

3 Installation 12

3.8 Reporting a unit test failure bug
If make check says that some tests failed we encourage you to report a bug on our
bugzilla: http://bugs.clamav.net. The information we need is (see also http:
//www.clamav.net/documentation.html#ins-bugs):

• The exact output from make check

• Output of uname -mrsp

• your config.log

• The following files from the unit_tests/ directory:

– test.log

– clamscan.log

– clamdscan.log

• /tmp/clamd-test.log if it exists

• where and how you installed the check package

• Output of pkg-config check --cflags --libs

• Optionally if valgrind is available on your platform, the output of the following:

$ make check
$ CK_FORK=no ./libtool --mode=execute valgrind unit_tests/check_clamav

3.9 Obtain Latest ClamAV anti-virus signature databases
Before you can run ClamAV in daemon mode (clamd), ’clamdscan’, or ’clamscan’
which is ClamAV’s command line virus scanner, you must have ClamAV Virus Database
(.cvd) file(s) installed in the appropriate location on your system. The default location
for these database files are /usr/local/share/clamav (in Linux/Unix).

Here is a listing of currently available ClamAV Virus Database Files:

• bytecode.cvd (signatures to detect bytecode in files)

• main.cvd (main ClamAV virus database file)

• daily.cvd (daily update file for ClamAV virus databases)

4 Configuration 13

• safebrowsing.cvd (virus signatures for safe browsing)

These files can be downloaded via HTTP from the main ClamAV website or via the
’freshclam’ utility on a periodic basis. Using ’freshclam’ is the preferred method of
keeping the ClamAV virus database files up to date without manual intervention (see
section 4.4 for information on how to configure ’freshclam’ for automatic updating and
section 5.7 for additional details on freshclam).

4 Configuration

Before proceeding with the steps below, you should run the ’clamconf’ command,
which gives important information about your ClamAV configuration. See section 5.8
for more details.

4.1 clamd
Before you start using the daemon you have to edit the configuration file (in other case
clamd won’t run):

$ clamd
ERROR: Please edit the example config file /etc/clamd.conf.

This shows the location of the default configuration file. The format and options of this
file are fully described in the clamd.conf(5) manual. The config file is well commented
and configuration should be straightforward.

4.1.1 On-access scanning

One of the interesting features of clamd is on-access scanning based on fanotify, in-
cluded in Linux since kernel 2.6.36. This is not required to run clamd. At the moment
the fanotify header is only available for Linux.

Configure on-access scanning in clamd.conf and read the 5.3 section for on-access
scanning usage.

4.2 clamav-milter
ClamAV ≥ 0.95 includes a new, redesigned clamav-milter. The most notable difference
is that the internal mode has been dropped and now a working clamd companion is

4 Configuration 14

required. The second important difference is that now the milter has got its own config-
uration and log files.

To compile ClamAV with the clamav-milter just run ./configure --enable-milter
and make as usual. In order to use the ’–enable-milter’ option with ’configure’, your
system MUST have the milter library installed. If you use the ’–enable-milter’ option
without the library being installed, you will most likely see output like this during ’con-
figure’:

checking for libiconv_open in -liconv... no
checking for iconv... yes
checking whether in_port_t is defined... yes
checking for in_addr_t definition... yes
checking for mi_stop in -lmilter... no
checking for library containing strlcpy... no
checking for mi_stop in -lmilter... no
configure: error: Cannot find libmilter

At which point the ’configure’ script will stop processing.

Please consult your MTA’s manual on how to connect ClamAV with the milter.

4.3 Testing
Try to scan recursively the source directory:

$ clamscan -r -l scan.txt clamav-x.yz

It should find some test files in the clamav-x.yz/test directory. The scan result will be
saved in the scan.txt log file 7. To test clamd, start it and use clamdscan (or instead
connect directly to its socket and run the SCAN command):

$ clamdscan -l scan.txt clamav-x.yz

Please note that the scanned files must be accessible by the user running clamd or you
will get an error.

7To get more info on clamscan options run ’man clamscan’

4 Configuration 15

4.4 Setting up auto-updating
freshclam is the automatic database update tool for Clam AntiVirus. It can work in
two modes:

• interactive - on demand from command line

• daemon - silently in the background

freshclam is advanced tool: it supports scripted updates (instead of transferring the
whole CVD file at each update it only transfers the differences between the latest and
the current database via a special script), database version checks through DNS, proxy
servers (with authentication), digital signatures and various error scenarios. Quick test:
run freshclam (as superuser) with no parameters and check the output. If every-
thing is OK you may create the log file in /var/log (owned by clamav or another user
freshclam will be running as):

touch /var/log/freshclam.log
chmod 600 /var/log/freshclam.log
chown clamav /var/log/freshclam.log

Now you should edit the configuration file freshclam.conf and point the UpdateLog-
File directive to the log file. Finally, to run freshclam in the daemon mode, execute:

freshclam -d

The other way is to use the cron daemon. You have to add the following line to the
crontab of root or clamav user:

N * * * * /usr/local/bin/freshclam --quiet

to check for a new database every hour. N should be a number between 3 and 57
of your choice. Please don’t choose any multiple of 10, because there are already
too many clients using those time slots. Proxy settings are only configurable via the
configuration file and freshclam will require strict permission settings for the config
file when HTTPProxyPassword is turned on.

HTTPProxyServer myproxyserver.com
HTTPProxyPort 1234
HTTPProxyUsername myusername
HTTPProxyPassword mypass

5 Usage 16

4.4.1 Closest mirrors

The DatabaseMirror directive in the config file specifies the database server freshclam
will attempt (up to MaxAttempts times) to download the database from. The default
database mirror is database.clamav.net but multiple directives are allowed. In or-
der to download the database from the closest mirror you should configure freshclam
to use db.xx.clamav.net where xx represents your country code. For example, if
your server is in ”Ascension Island” you should have the following lines included in
freshclam.conf:

DNSDatabaseInfo current.cvd.clamav.net
DatabaseMirror db.ac.clamav.net
DatabaseMirror database.clamav.net

The second entry acts as a fallback in case the connection to the first mirror fails for
some reason. The full list of two-letters country codes is available at http://www.
iana.org/cctld/cctld-whois.htm

5 Usage

5.1 Clam daemon
clamd is a multi-threaded daemon that uses libclamav to scan files for viruses. It may
work in one or both modes listening on:

• Unix (local) socket

• TCP socket

The daemon is fully configurable via the clamd.conf file 8. clamd recognizes the
following commands:

• PING
Check the daemon’s state (should reply with ”PONG”).

• VERSION
Print program and database versions.

• RELOAD
Reload the databases.

8man 5 clamd.conf

5 Usage 17

• SHUTDOWN
Perform a clean exit.

• SCAN file/directory
Scan file or directory (recursively) with archive support enabled (a full path is
required).

• RAWSCAN file/directory
Scan file or directory (recursively) with archive and special file support disabled
(a full path is required).

• CONTSCAN file/directory
Scan file or directory (recursively) with archive support enabled and don’t stop
the scanning when a virus is found.

• MULTISCAN file/directory
Scan file in a standard way or scan directory (recursively) using multiple threads
(to make the scanning faster on SMP machines).

• ALLMATCHSCAN file/directory
ALLMATCHSCAN works just like SCAN except that it sets a mode where, after
finding a virus within a file, continues scanning for additional viruses.

• INSTREAM
It is mandatory to prefix this command with n or z.
Scan a stream of data. The stream is sent to clamd in chunks, after INSTREAM,
on the same socket on which the command was sent. This avoids the overhead
of establishing new TCP connections and problems with NAT. The format of the
chunk is: <length><data> where <length> is the size of the following data in
bytes expressed as a 4 byte unsigned integer in network byte order and <data> is
the actual chunk. Streaming is terminated by sending a zero-length chunk. Note:
do not exceed StreamMaxLength as defined in clamd.conf, otherwise clamd will
reply with INSTREAM size limit exceeded and close the connection.

• FILDES
It is mandatory to newline terminate this command, or prefix with n or z. This
command only works on UNIX domain sockets.
Scan a file descriptor. After issuing a FILDES command a subsequent rfc2292/bsd4.4
style packet (with at least one dummy character) is sent to clamd carrying the file
descriptor to be scanned inside the ancillary data. Alternatively the file descriptor
may be sent in the same packet, including the extra character.

• STATS
It is mandatory to newline terminate this command, or prefix with n or z, it is

5 Usage 18

recommended to only use the z prefix.
On this command clamd provides statistics about the scan queue, contents of scan
queue, and memory usage. The exact reply format is subject to changes in future
releases.

• IDSESSION, END
It is mandatory to prefix this command with n or z, also all commands inside ID-
SESSION must be prefixed.
Start/end a clamd session. Within a session multiple SCAN, INSTREAM, FILDES,
VERSION, STATS commands can be sent on the same socket without opening
new connections. Replies from clamd will be in the form <id>: <response>
where <id> is the request number (in ASCII, starting from 1) and <response>
is the usual clamd reply. The reply lines have the same delimiter as the corre-
sponding command had. Clamd will process the commands asynchronously, and
reply as soon as it has finished processing. Clamd requires clients to read all
the replies it sent, before sending more commands to prevent send() deadlocks.
The recommended way to implement a client that uses IDSESSION is with non-
blocking sockets, and a select()/poll() loop: whenever send would block, sleep in
select/poll until either you can write more data, or read more replies. Note that us-
ing non-blocking sockets without the select/poll loop and alternating recv()/send()
doesn’t comply with clamd’s requirements. If clamd detects that a client has dead-
locked, it will close the connection. Note that clamd may close an IDSESSION
connection too if the client doesn’t follow the protocol’s requirements.

• STREAM (deprecated, use INSTREAM instead)
Scan stream: clamd will return a new port number you should connect to and send
data to scan.

It’s recommended to prefix clamd commands with the letter z (eg. zSCAN) to indi-
cate that the command will be delimited by a NULL character and that clamd should
continue reading command data until a NULL character is read. The null delimiter as-
sures that the complete command and its entire argument will be processed as a single
command. Alternatively commands may be prefixed with the letter n (e.g. nSCAN)
to use a newline character as the delimiter. Clamd replies will honour the requested
terminator in turn. If clamd doesn’t recognize the command, or the command doesn’t
follow the requirements specified below, it will reply with an error message, and close
the connection. Clamd can handle the following signals:

• SIGTERM - perform a clean exit

• SIGHUP - reopen the log file

• SIGUSR2 - reload the database

5 Usage 19

Clamd should not be started in the background using the shell operator & or external
tools. Instead, you should run and wait for clamd to load the database and daemonize
itself. After that, clamd is instantly ready to accept connections and perform file scan-
ning.

5.2 Clamdscan
clamdscan is a simple clamd client. In many cases you can use it as a clamscan
replacement however you must remember that:

• it only depends on clamd

• although it accepts the same command line options as clamscan most of them are
ignored because they must be enabled directly in clamd, i.e. clamd.conf

• in TCP mode scanned files must be accessible for clamd, if you enabled Local-
Socket in clamd.conf then clamdscan will try to workaround this limitation by
using FILDES

5.3 On-access Scanning
There is a special thread in clamd that performs on-access scanning under Linux and
shares internal virus database with the daemon. By default, this thread will only notify
you when potential threats are discovered. If you turn on prevention via clamd.conf
then you must follow some important rules when using it:

• Always stop the daemon cleanly - using the SHUTDOWN command or the
SIGTERM signal. In other case you can lose access to protected files until the
system is restarted.

• Never protect the directory your mail-scanner software uses for attachment un-
packing. Access to all infected files will be automatically blocked and the scanner
(including clamd!) will not be able to detect any viruses. In the result all infected
mails may be delivered.

• Watch your entire filesystem only using the clamd.conf OnAccessMountPath
option. While this will disable on-access prevention, it will avoid potential system
lockups caused by fanotify’s blocking functionality.

• Using the On-Access Scanner to watch a virtual filesystem will result in undefined
behaviour.

5 Usage 20

The default configuration utilizes inotify to recursively keep track of directories. If
you need to protect more than 8192 directories it will be necessary to change inotify’s
max_user_watches value.

This can be done temporarily with:

$ sysctl fs.inotify.max_user_watches=<n>

Where <n> is the new maximum desired.

To watch your entire filesystem add the following lines to clamd.conf:

ScanOnAccess yes
OnAccessMountPath /

Similarly, to protect your home directory add the following lines to clamd.conf:

ScanOnAccess yes
OnAccessIncludePath /home
OnAccessExcludePath /home/user/temp/dir/of/your/mail/scanning/software
OnAccessPrevention yes

For more configuration options, type ’man clamd.conf’ or reference the example clamd.conf.

5.4 Clamdtop
clamdtop is a tool to monitor one or multiple instances of clamd. It has a (color) ncurses
interface, that shows the jobs in clamd’s queue, memory usage, and information about
the loaded signature database. You can specify on the command-line to which clamd(s)
it should connect to. By default it will attempt to connect to the local clamd as defined
in clamd.conf.

For more detailed help, type ’man clamdtop’ or ’clamdtop –help’.

5.5 Clamscan
clamscan is ClamAV’s command line virus scanner. It can be used to scan files and/or
directories for viruses. In order for clamscan to work proper, the ClamAV virus database
files must be installed on the system you are using clamscan on.

5 Usage 21

The general usage of clamscan is: clamscan [options] [file/directory/-]

For more detailed help, type ’man clamscan’ or ’clamscan –help’.

5.6 ClamBC
clambc is Clam Anti-Virus’ bytecode testing tool. It can be used to test files which
contain bytecode. For more detailed help, type ’man clambc’ or ’clambc –help’.

5.7 Freshclam
freshclam is ClamAV’s virus database update tool and reads it’s configuration from the
file ’freshclam.conf’ (this may be overridden by command line options). Freshclam’s
default behavior is to attempt to update databases that are paired with downloaded cd-
iffs. Potentially corrupted databases are not updated and are automatically fully replaced
after several failed attempts unless otherwise specified.

Here is a sample usage including cdiffs:

$ freshclam

ClamAV update process started at Mon Oct 7 08:15:10 2013
main.cld is up to date (version: 55, sigs: 2424225, f-level: 60, builder: neo)
Downloading daily-17945.cdiff [100%]
Downloading daily-17946.cdiff [100%]
Downloading daily-17947.cdiff [100%]
daily.cld updated (version: 17947, sigs: 406951, f-level: 63, builder: neo)
Downloading bytecode-227.cdiff [100%]
Downloading bytecode-228.cdiff [100%]
bytecode.cld updated (version: 228, sigs: 43, f-level: 63, builder: neo)
Database updated (2831219 signatures) from database.clamav.net (IP: 64.6.100.177)

For more detailed help, type ’man clamscan’ or ’clamscan –help’.

5.8 Clamconf
clamconf is the Clam Anti-Virus configuration utility. It is used for displaying values
of configurations options in ClamAV, which will show the contents of clamd.conf (or
tell you if it is not properly configured), the contents of freshclam.conf, and display
information about software settings, database, platform, and build information. Here is
a sample clamconf output:

$ clamconf

Checking configuration files in /etc/clamav

5 Usage 22

Config file: clamd.conf

ERROR: Please edit the example config file /etc/clamav/clamd.conf

Config file: freshclam.conf

ERROR: Please edit the example config file /etc/clamav/freshclam.conf

clamav-milter.conf not found

Software settings

Version: 0.98.2
Optional features supported: MEMPOOL IPv6 AUTOIT_EA06 BZIP2 RAR JIT

Database information

Database directory: /xclam/gcc/release/share/clamav
WARNING: freshclam.conf and clamd.conf point to different database directories
print_dbs: Can’t open directory /xclam/gcc/release/share/clamav

Platform information

uname: Linux 3.5.0-44-generic #67˜precise1-Ubuntu SMP Wed Nov 13 16:20:03 UTC 2013 i686
OS: linux-gnu, ARCH: i386, CPU: i686
Full OS version: Ubuntu 12.04.3 LTS
zlib version: 1.2.3.4 (1.2.3.4), compile flags: 55
Triple: i386-pc-linux-gnu
CPU: i686, Little-endian
platform id: 0x0a114d4d0404060401040604

Build information

GNU C: 4.6.4 (4.6.4)
GNU C++: 4.6.4 (4.6.4)
CPPFLAGS:
CFLAGS: -g -O0 -D_LARGEFILE_SOURCE -D_LARGEFILE64_SOURCE
CXXFLAGS:
LDFLAGS:
Configure: ’--prefix=/xclam/gcc/release/’ ’--disable-clamav’ ’--enable-debug’ ’CFLAGS=-g -O0’
sizeof(void*) = 4
Engine flevel: 77, dconf: 77

For more detailed help, type ’man clamconf’ or ’clamconf –help’.

5 Usage 23

5.9 Output format

5.9.1 clamscan

clamscan writes all regular program messages to stdout and errors/warnings to stderr.
You can use the option --stdout to redirect all program messages to stdout. Warnings
and error messages from libclamav are always printed to stderr. A typical output from
clamscan looks like this:

/tmp/test/removal-tool.exe: Worm.Sober FOUND
/tmp/test/md5.o: OK
/tmp/test/blob.c: OK
/tmp/test/message.c: OK
/tmp/test/error.hta: VBS.Inor.D FOUND

When a virus is found its name is printed between the filename: and FOUND strings. In
case of archives the scanner depends on libclamav and only prints the first virus found
within an archive:

$ clamscan malware.zip
malware.zip: Worm.Mydoom.U FOUND

When using the –allmatch(-z) flag, clamscan may print multiple virus FOUND lines for
archives and files.

5.9.2 clamd

The output format of clamd is very similar to clamscan.

$ telnet localhost 3310
Trying 127.0.0.1...
Connected to localhost.
Escape character is ’ˆ]’.
SCAN /home/zolw/test
/home/zolw/test/clam.exe: ClamAV-Test-File FOUND
Connection closed by foreign host.

In the SCAN mode it closes the connection when the first virus is found.

SCAN /home/zolw/test/clam.zip
/home/zolw/test/clam.zip: ClamAV-Test-File FOUND

6 LibClamAV 24

CONTSCAN and MULTISCAN don’t stop scanning in case a virus is found.
Error messages are printed in the following format:

SCAN /no/such/file
/no/such/file: Can’t stat() the file. ERROR

6 LibClamAV

Libclamav provides an easy and effective way to add a virus protection into your soft-
ware. The library is thread-safe and transparently recognizes and scans within archives,
mail files, MS Office document files, executables and other special formats.

6.1 License
Libclamav is licensed under the GNU GPL v2 license. This means you are not allowed
to link commercial, closed-source software against it. All software using libclamav
must be GPL compliant.

6.2 Supported formats and features

6.2.1 Executables

The library has a built-in support for 32- and 64-bit Portable Executable, ELF and Mach-
O files. Additionally, it can handle PE files compressed or obfuscated with the following
tools:

• Aspack (2.12)

• UPX (all versions)

• FSG (1.3, 1.31, 1.33, 2.0)

• Petite (2.x)

• PeSpin (1.1)

• NsPack

• wwpack32 (1.20)

• MEW

• Upack

• Y0da Cryptor (1.3)

6 LibClamAV 25

6.2.2 Mail files

Libclamav can handle almost every mail file format including TNEF (winmail.dat) at-
tachments.

6.2.3 Archives and compressed files

The following archive and compression formats are supported by internal handlers:

• Zip (+ SFX)

• RAR (+ SFX)

• 7Zip

• Tar

• CPIO

• Gzip

• Bzip2

• DMG

• IMG

• ISO 9660

• PKG

• HFS+ partition

• HFSX partition

• APM disk image

• GPT disk image

• MBR disk image

• XAR

• XZ

• MS OLE2

• MS Cabinet Files (+ SFX)

6 LibClamAV 26

• MS CHM (Compiled HTML)

• MS SZDD compression format

• BinHex

• SIS (SymbianOS packages)

• AutoIt

• NSIS

• InstallShield

6.2.4 Documents

The most popular file formats are supported:

• MS Office and MacOffice files

• RTF

• PDF

• HTML

In the case of Office, RTF and PDF files, libclamav will only extract the embedded
objects and will not decode the text data itself. The text decoding and normalization is
only performed for HTML files.

6.2.5 Data Loss Prevention

Libclamav includes a DLP module which can detect the following credit card issuers:
AMEX, VISA, MasterCard, Discover, Diner’s Club, and JCB and U.S. social security
numbers inside text files.

Future versions of Libclamav may include additional features to detect other credit cards
and other forms of PII (Personally Identifiable Information) which may be transmitted
without the benefit of being encrypted.

6 LibClamAV 27

6.2.6 Others

Libclamav can handle various obfuscators, encoders, files vulnerable to security risks
such as:

• JPEG (exploit detection)

• RIFF (exploit detection)

• uuencode

• ScrEnc obfuscation

• CryptFF

6.3 API

6.3.1 Header file

Every program using libclamav must include the header file clamav.h:

#include <clamav.h>

6.3.2 Initialization

Before using libclamav, you should call cl_init() to initialize it. CL_INIT_DEFAULT is
a macro that can be passed to cl_init() representing the default initialization settings.
When it’s done, you’re ready to create a new scan engine by calling cl_engine_new().
To free resources allocated by the engine use cl_engine_free(). Function prototypes:

int cl_init(unsigned int options);
struct cl_engine *cl_engine_new(void);
int cl_engine_free(struct cl_engine *engine);

cl_init() and cl_engine_free() return CL_SUCCESS on success or another code on
error. cl_engine_new() return a pointer or NULL if there’s not enough memory to
allocate a new engine structure.

6 LibClamAV 28

6.3.3 Database loading

The following set of functions provides an interface for loading the virus database:

const char *cl_retdbdir(void);

int cl_load(const char *path, struct cl_engine *engine,
unsigned int *signo, unsigned int options);

cl_retdbdir() returns the default (hardcoded) path to the directory with ClamAV
databases. cl_load() loads a single database file or all databases from a given di-
rectory (when path points to a directory). The second argument is used for passing in
the pointer to the engine that should be previously allocated with cl_engine_new(). A
number of loaded signatures will be added to signo 9. The last argument can pass the
following flags:

• CL DB STDOPT
This is an alias for a recommended set of scan options.

• CL DB PHISHING
Load phishing signatures.

• CL DB PHISHING URLS
Initialize the phishing detection module and load .wdb and .pdb files.

• CL DB PUA
Load signatures for Potentially Unwanted Applications.

• CL DB OFFICIAL ONLY
Only load official signatures from digitally signed databases.

• CL DB BYTECODE
Load bytecode.

cl_load() returns CL_SUCCESS on success and another code on failure.

...
struct cl_engine *engine;
unsigned int sigs = 0;
int ret;

if((ret = cl_init(CL_INIT_DEFAULT)) != CL_SUCCESS) {

9Remember to initialize the virus counter variable with 0.

6 LibClamAV 29

printf("cl_init() error: %s\n", cl_strerror(ret));
return 1;

}

if(!(engine = cl_engine_new())) {
printf("Can’t create new engine\n");
return 1;

}

ret = cl_load(cl_retdbdir(), engine, &sigs, CL_DB_STDOPT);

6.3.4 Error handling

Use cl_strerror() to convert error codes into human readable messages. The func-
tion returns a statically allocated string:

if(ret != CL_SUCCESS) {
printf("cl_load() error: %s\n", cl_strerror(ret));
cl_engine_free(engine);
return 1;

}

6.3.5 Engine structure

When all required databases are loaded you should prepare the detection engine by
calling cl_engine_compile(). In case of failure you should still free the memory
allocated to the engine with cl_engine_free():

int cl_engine_compile(struct cl_engine *engine);

In our example:

if((ret = cl_engine_compile(engine)) != CL_SUCCESS) {
printf("cl_engine_compile() error: %s\n", cl_strerror(ret));
cl_engine_free(engine);
return 1;

}

6 LibClamAV 30

6.3.6 Limits

When you create a new engine with cl_engine_new(), it will have all internal settings
set to default values as recommended by the ClamAV authors. It’s possible to check and
modify the values (numerical and strings) using the following set of functions:

int cl_engine_set_num(struct cl_engine *engine,
enum cl_engine_field field, long long num);

long long cl_engine_get_num(const struct cl_engine *engine,
enum cl_engine_field field, int *err);

int cl_engine_set_str(struct cl_engine *engine,
enum cl_engine_field field, const char *str);

const char *cl_engine_get_str(const struct cl_engine *engine,
enum cl_engine_field field, int *err);

Please don’t modify the default values unless you know what you’re doing. Refer to the
ClamAV sources (clamscan, clamd) for examples.

6.3.7 Database checks

It’s very important to keep the internal instance of the database up to date. You can
watch database changes with the cl_stat..() family of functions.

int cl_statinidir(const char *dirname, struct cl_stat *dbstat);
int cl_statchkdir(const struct cl_stat *dbstat);
int cl_statfree(struct cl_stat *dbstat);

Initialization:

...
struct cl_stat dbstat;

memset(&dbstat, 0, sizeof(struct cl_stat));
cl_statinidir(dbdir, &dbstat);

To check for a change you just need to call cl_statchkdir and check its return value
(0 - no change, 1 - some change occurred). Remember to reset the cl_stat structure
after reloading the database.

6 LibClamAV 31

if(cl_statchkdir(&dbstat) == 1) {
reload_database...;
cl_statfree(&dbstat);
cl_statinidir(cl_retdbdir(), &dbstat);

}

Libclamav ≥ 0.96 includes and additional call to check the number of signatures that
can be loaded from a given directory:

int cl_countsigs(const char *path, unsigned int countoptions,
unsigned int *sigs);

The first argument points to the database directory, the second one specifies what signa-
tures should be counted: CL_COUNTSIGS_OFFICIAL (official signatures),
CL_COUNTSIGS_UNOFFICIAL (third party signatures), CL_COUNTSIGS_ALL (all signa-
tures). The last argument points to the counter to which the number of detected signa-
tures will be added (therefore the counter should be initially set to 0). The call returns
CL_SUCCESS or an error code.

6.3.8 Data scan functions

It’s possible to scan a file or descriptor using:

int cl_scanfile(const char *filename, const char **virname,
unsigned long int *scanned, const struct cl_engine *engine,
unsigned int options);

int cl_scandesc(int desc, const char **virname, unsigned
long int *scanned, const struct cl_engine *engine,
unsigned int options);

Both functions will store a virus name under the pointer virname, the virus name is
part of the engine structure and must not be released directly. If the third argument
(scanned) is not NULL, the functions will increase its value with the size of scanned
data (in CL_COUNT_PRECISION units). The last argument (options) specified the scan
options and supports the following flags (which can be combined using bit operators):

• CL SCAN STDOPT
This is an alias for a recommended set of scan options. You should use it to make
your software ready for new features in the future versions of libclamav.

6 LibClamAV 32

• CL SCAN RAW
Use it alone if you want to disable support for special files.

• CL SCAN ARCHIVE
This flag enables transparent scanning of various archive formats.

• CL SCAN BLOCKENCRYPTED
With this flag the library will mark encrypted archives as viruses (Encrypted.Zip,
Encrypted.RAR).

• CL SCAN MAIL
Enable support for mail files.

• CL SCAN OLE2
Enables support for OLE2 containers (used by MS Office and .msi files).

• CL SCAN PDF
Enables scanning within PDF files.

• CL SCAN SWF
Enables scanning within SWF files, notably compressed SWF.

• CL SCAN PE
This flag enables deep scanning of Portable Executable files and allows libclamav
to unpack executables compressed with run-time unpackers.

• CL SCAN ELF
Enable support for ELF files.

• CL SCAN BLOCKBROKEN
libclamav will try to detect broken executables and mark them as Broken.Executable.

• CL SCAN HTML
This flag enables HTML normalisation (including ScrEnc decryption).

• CL SCAN ALGORITHMIC
Enable algorithmic detection of viruses.

• CL SCAN PHISHING BLOCKSSL
Phishing module: always block SSL mismatches in URLs.

• CL SCAN PHISHING BLOCKCLOAK
Phishing module: always block cloaked URLs.

• CL SCAN STRUCTURED
Enable the DLP module which scans for credit card and SSN numbers.

6 LibClamAV 33

• CL SCAN STRUCTURED SSN NORMAL
Search for SSNs formatted as xx-yy-zzzz.

• CL SCAN STRUCTURED SSN STRIPPED
Search for SSNs formatted as xxyyzzzz.

• CL SCAN PARTIAL MESSAGE
Scan RFC1341 messages split over many emails. You will need to periodically
clean up $TemporaryDirectory/clamav-partial directory.

• CL SCAN HEURISTIC PRECEDENCE
Allow heuristic match to take precedence. When enabled, if a heuristic scan (such
as phishingScan) detects a possible virus/phish it will stop scan immediately. Rec-
ommended, saves CPU scan-time. When disabled, virus/phish detected by heuris-
tic scans will be reported only at the end of a scan. If an archive contains both a
heuristically detected virus/phishing, and a real malware, the real malware will be
reported.

• CL SCAN BLOCKMACROS
OLE2 containers, which contain VBA macros will be marked infected (Heuris-
tics.OLE2.ContainsMacros).

All functions return CL_CLEAN when the file seems clean, CL_VIRUS when a virus is
detected and another value on failure.

...
const char *virname;

if((ret = cl_scanfile("/tmp/test.exe", &virname, NULL, engine,
CL_SCAN_STDOPT)) == CL_VIRUS) {

printf("Virus detected: %s\n", virname);
} else {

printf("No virus detected.\n");
if(ret != CL_CLEAN)

printf("Error: %s\n", cl_strerror(ret));
}

6.3.9 Memory

Because the engine structure occupies a few megabytes of system memory, you should
release it with cl_engine_free() if you no longer need to scan files.

6 LibClamAV 34

6.3.10 Forking daemons

If you’re using libclamav with a forking daemon you should call srand() inside a
forked child before making any calls to the libclamav functions. This will avoid possi-
ble collisions with temporary filenames created by other processes of the daemon. This
procedure is not required for multi-threaded daemons.

6.3.11 clamav-config

Use clamav-config to check compilation information for libclamav.

$ clamav-config --libs
-L/usr/local/lib -lz -lbz2 -lgmp -lpthread
$ clamav-config --cflags
-I/usr/local/include -g -O2

6.3.12 Example

You will find an example scanner application in the clamav source package (/example).
Provided you have ClamAV already installed, execute the following to compile it:

gcc -Wall ex1.c -o ex1 -lclamav

6.4 CVD format
CVD (ClamAV Virus Database) is a digitally signed tarball containing one or more
databases. The header is a 512-bytes long string with colon separated fields:

ClamAV-VDB:build time:version:number of signatures:functionality
level required:MD5 checksum:digital signature:builder name:build time (sec)

sigtool --info displays detailed information on CVD files:

$ sigtool -i daily.cvd
File: daily.cvd
Build time: 10 Mar 2008 10:45 +0000
Version: 6191
Signatures: 59084
Functionality level: 26
Builder: ccordes

6 LibClamAV 35

MD5: 6e6e29dae36b4b7315932c921e568330
Digital signature: zz9irc9irupR3z7yX6J+OR6XdFPUat4HIM9ERn3kAcOWpcMFxq
Fs4toG5WJsHda0Jj92IUusZ7wAgYjpai1Nr+jFfXHsJxv0dBkS5/XWMntj0T1ctNgqmiF
+RLU6V0VeTl4Oej3Aya0cVpd9K4XXevEO2eTTvzWNCAq0ZzWNdjc
Verification OK.

6.5 Graphics
The current ClamAV logo was created by Alicia Willet, Talos.

6.6 OpenAntiVirus
Our database includes the virus database (about 7000 signatures) from OpenAntiVirus
(http://OpenAntiVirus.org).

