/*
 *  A fast filter for static patterns.
 *
 *  Copyright (C) 2013-2019 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
 *  Copyright (C) 2008-2013 Sourcefire, Inc.
 *
 *  Authors: Török Edvin
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License version 2 as
 *  published by the Free Software Foundation.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
 *  MA 02110-1301, USA.
 */
#if HAVE_CONFIG_H
#include "clamav-config.h"
#endif

#include "clamav.h"
#include "filtering.h"
#include "matcher-ac.h"
#include <string.h>
#include <assert.h>
#include "perflogging.h"
/* ----- shift-or filtering -------------- */

/*
 * Description of algorithm:
 *
 * Multiple patterns are added to the filter.
 * The filter retains an approximation of these patterns, which can lead to
 * false positive matches, but not false negative matches.
 *
 * For each position in the filter we retain what qgrams can match at that
 * position, for example (if we'd use characters as qgrams):
 * pattern1: atu
 * pattern2: bzf
 * pattern3: xat
 * 
 * filter accepts:
 * [abx][tza][uft]
 *
 * But it also accepts (false positives):
 * azu, azf, azt, ...
 *
 * It doesn't however accept:
 * aaa, atz, ...
 *
 * This is implemented by having a bit-level state-machine with MAXSOPATLEN (=32) states, 
 * each active bit meaning that a state is active.
 * 
 * The states are activated sequentially, eachtransition decision is made 
 * considering if we can accept the character at position X. 
 * Since we can start a match at any position, position 0 is
 * reactivated each time.
 * When the last position is activated, the filter reports a match.
 * If we can't accept the character at position X, the state remains inactive,
 * and further states aren't activated (unless we activate this state in the
 * future).
 *
 * Essentially this is an automaton like this:
 *
 *  /\    (a|b|x)        (t|z|a)        (u|f|t)
 * [S1] ---------> [S2] -------> [S3] ---------> [S4] -> match
 *  \_______________/             |               
 *  \_____________________________/               
 *
 *
 * But we are tracking multiple active states at each time (or run N automatons
 * in parallel if you like, N = number of states).
 *
 * We can have S3 and S2 active, meaning that if the next character is
 * acceptable, it transitions to S1,S3 and S4 being active, otherwise it
 * transitions to S1 being active.
 *
 * Active states can either be represented as a binary 1 or 0, and using
 * bit-shifting and masking.
 * If we choose 1, we must use &, and after shifting always reactivate bit 0.
 * If we choose 0, we must use |, and after shifting we don't need to do
 * anything (since by shifting a 0 is implicitly introduced).
 *
 * This file implements the latter (shift-or) method.
 *
 * The discussion above considered pattern to be of same length (or truncated to
 * be so). In reality patterns are of variable length, and we often have short
 * pattern.
 *
 * Thus another bitmap was introduced, meaning that if (end[Q] == set), then
 * a pattern can end at this position.
 * Also we would fill the pattern's position filters quite quickly with only 256
 * choices for a position, so the algorithm uses overlapping qgrams of length 2:
 * 'abcd' is 3 qgrams: 'ab','bc','cd'
 *
 * The algorithm is very sensitive to the end[Q] filter, since it can have false
 * positives due to short patterns!
 * For optimal performance we need:
 *   - patterns as long as possible
 *   - probability for end[Q] to match low (avoid 0000, and other common case
 *   - choose the most "diverse" subset from a long pattern
 *
 * diverse = referring to what we are scanning, so that the filter rarely
 * matches, so this actually means that we *want* to avoid adding more
 * characters to the filter, if we have 2 patterns:
 * abxfg, and dalabxpo, it may be preferable to shift the 2nd one so that we
 * don't add new character at the beginning.
 *
 * With NDB signatures there are more challenges to overcome:
 *    e8??0000000aa
 *
 *    will make the filter accept:
 *    e8<all-256-values-here>, <all-256-values>00, ... 000000aa
 *
 *    We should delay the pattern end as long as possible, especially if it is  0000
 *    The problem is that now the filter accepts 0000 on position 3, regardless
 *    of what we have on position 1 (even if we have something else than e8), so
 *    we have to be very careful not to allow 0000 on first position too,
 *    otherwise the filter will happily accept 000000000000.
 *
 * To optimize cache usage there are 2 end filters, one character (fits L1), and one qgram
 * based (fits L2), both must match for the filter to consider it a match.   
 *
 *
 */

/*#define DETAILED_DEBUG*/
#ifdef DETAILED_DEBUG
#define detailed_dbg cli_dbgmsg
#else
#define detailed_dbg(...)
#endif

#define BITMAP_CONTAINS(bmap, val) ((bmap)[(val) >> 5] & (1 << ((val)&0x1f)))
#define BITMAP_INSERT(bmap, val) ((bmap)[(val) >> 5] |= (1 << ((val)&0x1f)))

void filter_init(struct filter *m)
{
    memset(m->B, ~0, sizeof(m->B));
    memset(m->end, ~0, sizeof(m->end));
}

/* because we use uint32_t */
#define MAXSOPATLEN 8

static inline int filter_isset(const struct filter *m, unsigned pos, uint16_t val)
{
    return !(m->B[val] & (1 << pos));
}

static inline void filter_set_atpos(struct filter *m, unsigned pos, uint16_t val)
{
    if (!filter_isset(m, pos, val)) {
        cli_perf_log_count(FILTER_LOAD, pos);
        m->B[val] &= ~(1 << pos);
    }
}

static inline int filter_end_isset(const struct filter *m, unsigned pos, uint16_t a)
{
    return !(m->end[a] & (1 << pos));
}

static inline void filter_set_end(struct filter *m, unsigned pos, uint16_t a)
{
    if (!filter_end_isset(m, pos, a)) {
        cli_perf_log_count(FILTER_END_LOAD, pos);
        m->end[a] &= ~(1 << pos);
    }
}
#define MAX_CHOICES 8
/* just an arbitrary limit, if patterns are longer, we cut
 * the filter can only use MAXSOPATLEN (32) characters,
 * this longer buffer is needed so that we can choose the "best" subpattern from
 * it */
#define MAXPATLEN 255

/* merge another pattern into the filter
 * add('abc'); add('bcd'); will match [ab][bc][cd] */
int filter_add_static(struct filter *m, const unsigned char *pattern, unsigned long len, const char *name)
{
    uint16_t q = 0;
    uint8_t j, maxlen;
    uint32_t best    = 0xffffffff;
    uint8_t best_pos = 0;

    UNUSEDPARAM(name);

    cli_perf_log_count(TRIE_ORIG_LEN, len > 8 ? 8 : len);
    /* TODO: choose best among MAXCHOICES */
    /* cut length */
    if (len > MAXPATLEN) {
        len = MAXPATLEN;
    }
    if (len < 2)
        return -1;

    /* we want subsigs to be as long as possible */
    if (len > 4) {
        maxlen = len - 4;
        if (maxlen == 1) maxlen = 2;
    } else
        maxlen = 2;
    for (j = 0; (best < 100 && j < MAX_CHOICES) || (j < maxlen); j++) {
        uint32_t num = MAXSOPATLEN;
        uint8_t k;
        if (j + 2 > len)
            break;
        for (k = j; k < len - 1 && (k - j < MAXSOPATLEN); k++) {
            q = cli_readint16(&pattern[k]);
            /* we want to favor subsigs that add as little as
			 * possible to the filter */
            num += filter_isset(m, k - j, q) ? 0 : MAXSOPATLEN - (k - j);
            if ((k == j || k == j + 1) && (q == 0x0000 || q == 0xffff))
                num += k == j ? 10000 : 1000; /* bad */
        }
        /* it is very important to keep the end set small */
        num += 10 * (filter_end_isset(m, k - j - 1, q) ? 0 : 1);
        /* it is very important to have signatures as long as possible
		 * */
        num += 5 * (MAXSOPATLEN - (k - j));
        /* if we are lower length than threshold penalize */
        if (k - j + 1 < 4)
            num += 200;
        /* favour longer patterns */
        num -= (2 * MAXSOPATLEN - (k + 1 + j)) * (k - j) / 2;

        if (num < best) {
            best     = num;
            best_pos = j;
        }
    }

    assert(best_pos < len - 1);
    if (pattern[best_pos] == 0 && pattern[best_pos + 1] == 0) {
        detailed_dbg("filter (warning): subsignature begins with zero (static): %s\n", name);
    }
    pattern += best_pos;
    len -= best_pos;
    /* cut length */
    if (len > MAXSOPATLEN) {
        len = MAXSOPATLEN;
    }
    /* Shift-Or like preprocessing */
    for (j = 0; j < len - 1; j++) {
        /* use overlapping little-endian 2-grams. We need them overlapping because matching can start at any position */
        q = cli_readint16(&pattern[j]);
        filter_set_atpos(m, j, q);
    }
    /* we use variable length patterns, use last character to mark pattern end,
	 * can lead to false positives.*/
    /* mark that at state j, the q-gram q can end the pattern */
    if (j) {
        j--;
        filter_set_end(m, j, q);
    }
    return j + 2;
}

struct char_spec {
    /* if non-null i-th character = alt[start + step*i]; start+step*i < end;
	 */
    struct cli_ac_special *alt;
    uint8_t start;
    uint8_t end;
    uint8_t step;
    uint8_t negative;
};

static inline unsigned char spec_ith_char(const struct char_spec *spec, unsigned i)
{
    const struct cli_ac_special *alt = spec->alt;
    if (alt) {
        assert(alt->type == 1);
        assert(i < alt->num);
        return (alt->alt).byte[i];
    }
    return i;
}

#ifndef MIN
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#endif

#define SPEC_FOREACH(spec0, k0, spec1, k1)           \
    do {                                             \
        unsigned char c0 = spec_ith_char(spec0, k0); \
        unsigned char c1 = spec_ith_char(spec1, k1); \
        unsigned c0end, c1end, cc0, cc1;             \
        c0end = spec0->negative ? 255 : c0;          \
        c1end = spec1->negative ? 255 : c1;          \
        cc0   = spec0->negative ? 0 : c0;            \
        cc1   = spec1->negative ? 0 : c1;            \
        for (; cc0 <= c0end; cc0++) {                \
            for (; cc1 <= c1end; cc1++) {            \
                uint16_t a = cc0 | (cc1 << 8);       \
                if (spec0->negative && cc0 == c0)    \
                    continue;                        \
                if (spec1->negative && cc1 == c1)    \
                    continue;

#define SPEC_END_FOR \
    }                \
    }                \
    }                \
    while (0)

enum badness {
    reject,
    /* try to avoid if possible */
    avoid_first,
    avoid_anywhere, /* includes avoid_first! */
    /* not that bad, but still not best */
    dontlike,
    acceptable,
    like
};
static inline void get_score(enum badness badness, unsigned i, const struct filter *m, const struct char_spec *spec0, const struct char_spec *spec1, int32_t *score, int32_t *score_end)
{
    int32_t base;
    unsigned k0, k1, num_introduced = 0, num_end_introduced = 0;
    switch (badness) {
        case reject:
            /* not reached */
            assert(0);
            base = -0x7fffff;
            break;
        case avoid_first:
            if (!i)
                base = -0x700000;
            else
                base = 0;
            break;
        case avoid_anywhere:
            if (!i)
                base = -0x720000;
            else
                base = -0x1000;
            break;
        case dontlike:
            base = 0;
            break;
        case acceptable:
            base = 0x200;
            break;
        case like:
            /* a bit better only */
            base = 0x201;
            break;
    }
    if (base < 0) {
        *score     = base;
        *score_end = base;
        return;
    }
    /* at most 256 iterations here, otherwise base would be negative */
    for (k0 = spec0->start; k0 <= spec0->end; k0 += spec0->step) {
        for (k1 = spec1->start; k1 <= spec1->end; k1 += spec1->step) {
            SPEC_FOREACH(spec0, k0, spec1, k1)
            {
                num_introduced += filter_isset(m, i, a);
                num_end_introduced += filter_end_isset(m, i, a);
            }
            SPEC_END_FOR;
        }
    }
    *score     = base - num_introduced;
    *score_end = base - num_end_introduced;
    if (badness == avoid_first && i) {
        /* what is bad to begin with, is bad at end too */
        *score_end -= 0x1000;
    }
}

struct choice {
    enum badness base;
    unsigned begin;
    unsigned len;
};

static inline void add_choice(struct choice *choices, unsigned *cnt, unsigned i, unsigned ie, enum badness badness)
{
    struct choice *choice;
    int i_neg = -1;
    assert(ie < MAXPATLEN);
    if (ie < i + 1)
        return;
    if (*cnt >= MAX_CHOICES)
        return;
    if (badness > avoid_first && *cnt >= (MAX_CHOICES >> 1)) {
        unsigned j;
        /* replace very bad picks if we're full */
        for (j = 0; j < *cnt; j++) {
            if (choices[j].base < badness) {
                if (i_neg == -1 || choices[j].base < choices[i_neg].base) {
                    i_neg = j;
                }
            }
        }
    }
    if (i_neg != -1) {
        choice = &choices[i_neg];
    } else {
        choice = &choices[(*cnt)++];
    }
    choice->begin = i;
    choice->len   = ie - i + 1;
    choice->base  = badness;
}

static inline int32_t spec_iter(const struct char_spec *spec)
{
    unsigned count;
    assert(spec->step);
    count = (spec->step + spec->end - spec->start) / spec->step;
    if (spec->negative) /* all chars except itself are added */
        count *= 254;
    return count;
}

int filter_add_acpatt(struct filter *m, const struct cli_ac_patt *pat)
{
    unsigned i, j = 0, stop = 0, l = 0;
    uint16_t k0, k1;

    struct char_spec chars[MAXPATLEN];
    enum badness char_badness[MAXPATLEN];
    unsigned char patc[MAXPATLEN];
    unsigned altcnt         = 0;
    int32_t best_score      = -0x7fffffff;
    unsigned best_score_i   = 0;
    unsigned best_score_len = 0;
    struct char_spec *spec0 = NULL, *spec1 = NULL;

    struct choice choices[MAX_CHOICES];
    unsigned choices_cnt = 0;
    unsigned prefix_len  = pat->prefix_length[0];
    unsigned speci;

    j = MIN(prefix_len + pat->length[0], MAXPATLEN);
    for (i = 0; i < j; i++) {
        const uint16_t p = i < prefix_len ? pat->prefix[i] : pat->pattern[i - prefix_len];
        if ((p & CLI_MATCH_METADATA) != CLI_MATCH_CHAR)
            break;
        patc[i] = (uint8_t)p;
    }
    if (i == j) {
        /* all static, use add_static it has better heuristics for this
		 * case */
        return filter_add_static(m, patc, j, pat->virname);
    }
    cli_perf_log_count(TRIE_ORIG_LEN, j > 8 ? 8 : j);
    i = 0;
    if (!prefix_len) {
        while ((pat->pattern[i] & CLI_MATCH_METADATA) == CLI_MATCH_SPECIAL) {
            /* we support only ALT_CHAR, skip the rest */
            if (pat->special_table[altcnt]->type == 1)
                break;
            altcnt++;
            i++;
        }
    }
    /* transform AC characters into our representation */
    for (speci = 0; i < j && !stop; speci++, i++) {
        struct char_spec *spec = &chars[speci];
        const uint16_t p       = i < prefix_len ? pat->prefix[i] : pat->pattern[i - prefix_len];
        spec->alt              = NULL;
        spec->negative         = 0;
        switch (p & CLI_MATCH_METADATA) {
            case CLI_MATCH_CHAR:
                spec->start = spec->end = (uint8_t)p;
                spec->step              = 1;
                break;
            case CLI_MATCH_NOCASE:
                if ((uint8_t)p >= 'a' && (uint8_t)p <= 'z') {
                    spec->start = (uint8_t)p - ('a' - 'A');
                    spec->end   = (uint8_t)p;
                    spec->step  = ('a' - 'A');
                } else if ((uint8_t)p >= 'A' && (uint8_t)p <= 'Z') {
                    spec->start = (uint8_t)p;
                    spec->end   = (uint8_t)p + ('a' - 'A');
                    spec->step  = ('a' - 'A');
                } else {
                    spec->start = spec->end = (uint8_t)p;
                    spec->step              = 1;
                }
                break;
            case CLI_MATCH_IGNORE:
                spec->start = 0x00;
                spec->end   = 0xff;
                spec->step  = 1;
                break;
            case CLI_MATCH_SPECIAL:
                assert(pat->special_table);
                /* assert(altcnt < pat->alt); */
                assert(pat->special_table[altcnt]);
                spec->negative = pat->special_table[altcnt]->negative;
                switch (pat->special_table[altcnt++]->type) {
                    case 1: /* ALT_CHAR */
                        spec->start = 0;
                        spec->end   = pat->special_table[altcnt - 1]->num - 1;
                        spec->step  = 1;
                        spec->alt   = pat->special_table[altcnt - 1];
                        break;
                    default:
                        stop = 1;
                        break; /* TODO: should something be done here?
					 * */
                }
                break;
            case CLI_MATCH_NIBBLE_HIGH:
                spec->start = (p & 0xf0);
                spec->end   = spec->start | 0x0f;
                spec->step  = 1;
                break;
            case CLI_MATCH_NIBBLE_LOW:
                spec->start = (p & 0xf);
                spec->end   = 0xf0 | spec->start;
                spec->step  = 0x10;
                break;
            default:
                cli_errmsg("filtering: unknown wildcard character: %d\n", p);
                return -1;
        }
    }
    if (stop) --speci;
    j = speci;
    if (j < 2) {
        if (stop)
            cli_warnmsg("Don't know how to create filter for: %s\n", pat->virname);
        else
            cli_warnmsg("Subpattern too short: %s\n", pat->virname);
        return -1;
    }

    for (i = 0; i < j - 1; i++) {
        int32_t num_iter;
        /* new qgrams added to the filter */
        spec0    = &chars[i];
        spec1    = &chars[i + 1];
        num_iter = spec_iter(spec0) * spec_iter(spec1);

        if (num_iter >= 0x100) {
            if (num_iter == 0x10000)
                char_badness[i] = reject;
            else
                char_badness[i] = avoid_anywhere;
        } else {
            int8_t binary     = 0;
            enum badness scor = acceptable;
            for (k0 = spec0->start; k0 <= spec0->end; k0 += spec0->step) {
                for (k1 = spec1->start; k1 <= spec1->end; k1 += spec1->step) {
                    unsigned char c0 = spec_ith_char(spec0, k0);
                    unsigned char c1 = spec_ith_char(spec1, k1);
                    if (spec0->negative || spec1->negative) {
                        scor = avoid_anywhere;
                        break;
                    }
                    if ((!c0 && !c1) || (c0 == 0xff && c1 == 0xff)) {
                        scor = avoid_first;
                        break;
                    }
                    if (c0 == c1) {
                        scor = dontlike;
                        break;
                    }
                    if ((c0 < 32 || c0 > 127) && (c1 < 32 || c1 > 127))
                        binary = 1;
                }
            }
            if (scor == acceptable && binary) {
                /* slightly favor binary */
                scor = like;
            }
            char_badness[i] = scor;
        }
    }

    /* try to choose best subpattern */

    /* calculating the score for all possible i start pos
	 * and all possible length is too slow, so choose best among N choices
	 * only */
    for (i = 0; i < j - 1 && choices_cnt < MAX_CHOICES; i++) {
        enum badness base0 = like, base1 = like;
        unsigned kend = MIN(j - 1, (i + MAXSOPATLEN) & ~1), k;
        int ki        = -0xff;
        /* add 2 scores: pattern with max length, one where we stop at
		 * first negative, and one we stop at last positive, but never
		 * include reject */
        assert(kend - 1 < j - 1);
        if (char_badness[i] == reject)
            continue;
        if ((char_badness[i] == avoid_anywhere || char_badness[i] == avoid_first) && choices_cnt > 0)
            /* if we have another choice don't choose this */
            continue;
        while ((kend > i + 3) && char_badness[kend - 1] == reject) kend--;
        for (k = i; k < kend; k++) {
            enum badness badness = char_badness[k];
            if (badness < acceptable) {
                if (badness == reject) {
                    /* this is a never pick */
                    kend = k;
                    break;
                }
                if (badness == avoid_first && k != i)
                    badness = dontlike;
                if (k == i && badness == avoid_anywhere)
                    badness = avoid_first;
                if (ki == -0xff)
                    ki = k;
            }
            base0 = MIN(base0, badness);
            if (ki == -0xff)
                base1 = MIN(base1, badness);
        }
        add_choice(choices, &choices_cnt, i, kend, base0);
        if (ki > (int)i) {
            /* ki|ki+1|??| */
            /* try subpattern from after the wildcard */
            i = ki;
        }
        /* if score is positive, it replaces a negative choice */
    }
    for (l = 0; l < choices_cnt; l++) {
        int32_t score;
        unsigned kend;
        unsigned k;

        i     = choices[l].begin;
        kend  = i + choices[l].len;
        score = 0;

        for (k = i; k < kend - 1; k++) {
            unsigned p = k - i;
            int32_t iscore, score_end;
            assert(k < j);
            get_score(char_badness[k], p, m, &chars[k], &chars[k + 1],
                      &iscore, &score_end);
            /* give more importance to the score of the characters
			 * at the beginning */
            /* TODO: tune magic number here */
            if (p < 6) {
                iscore *= (6 - p);
                score_end *= (6 - p);
            }
            score += iscore;
            if (score + score_end > best_score) {
                /* we may have negative scores, so truncating
				 * the pattern could actually get us a higher
				 * score */
                best_score     = score + score_end;
                best_score_len = p + 2;
                best_score_i   = i;
                assert(i + best_score_len <= j);
            }
        }
    }

    if (best_score <= -0x7fffffff) {
        cli_warnmsg("filter rejecting %s due to very bad score: %ld\n", pat->virname, (long)best_score);
        return -1;
    }
    if (choices_cnt == 0) {
        cli_warnmsg("filter rejecting %s because there are no viable choices", pat->virname);
        return -1;
    }
    assert(best_score_len >= 2);
    detailed_dbg("filter %s score: %ld, %u (+ %u)\n", pat->virname, (long)best_score, best_score_i, best_score_len);
    /* Shift-Or like preprocessing */
    assert(1 < best_score_len);
    for (i = 0; i < best_score_len - 1; i++) {
        spec0 = &chars[best_score_i + i];
        spec1 = &chars[best_score_i + i + 1];
        /* use overlapping little-endian 2-grams, overlapping because match can start
		 * at any position (including odd) */

        for (k0 = spec0->start; k0 <= spec0->end; k0 += spec0->step) {
            for (k1 = spec1->start; k1 <= spec1->end; k1 += spec1->step) {
                SPEC_FOREACH(spec0, k0, spec1, k1)
                {
                    if (!cc0 && !cc1 && !i) {
                        detailed_dbg("filter (warning): subsignature begins with zero: %s\n", pat->virname);
                    }
                    filter_set_atpos(m, i, a);
                }
                SPEC_END_FOR;
            }
        }
    }

    j = best_score_len - 2;
    if (spec0 && spec1) {
        for (k0 = spec0->start; k0 <= spec0->end; k0 += spec0->step) {
            for (k1 = spec1->start; k1 <= spec1->end; k1 += spec1->step) {
                SPEC_FOREACH(spec0, k0, spec1, k1)
                {
                    if (!cc0 && !cc1) {
                        detailed_dbg("filter (warning): subsignature ends with zero: %s\n", pat->virname);
                    }
                    filter_set_end(m, j, a);
                }
                SPEC_END_FOR;
            }
        }
    }
    return j + 2;
}

/* state 11110011 means that we may have a match of length min 4, max 5 */

__hot__ int filter_search_ext(const struct filter *m, const unsigned char *data, unsigned long len, struct filter_match_info *inf)
{
    size_t j;
    uint8_t state      = ~0;
    const uint8_t *B   = m->B;
    const uint8_t *End = m->end;

    if (len < 2) return -1;
    /* look for first match */
    for (j = 0; j < len - 1; j++) {
        uint8_t match_state_end;
        const uint16_t q0 = cli_readint16(&data[j]);

        state           = (state << 1) | B[q0];
        match_state_end = state | End[q0];
        if (match_state_end != 0xff) {
            inf->first_match = j;
            return 0;
        }
    }
    /* no match, inf is invalid */
    return -1;
}

/* this is like a FSM, with multiple active states at the same time.
 * each bit in "state" means an active state, when a char is encountered
 * we determine what states can remain active.
 * The FSM transition rules are expressed as bit-masks */
long filter_search(const struct filter *m, const unsigned char *data, unsigned long len)
{
    size_t j;
    uint8_t state      = ~0;
    const uint8_t *B   = m->B;
    const uint8_t *End = m->end;

    /* we use 2-grams, must be higher than 1 */
    if (len < 2) return -1;
    /* Shift-Or like search algorithm */
    for (j = 0; j < len - 1; j++) {
        const uint16_t q0 = cli_readint16(&data[j]);
        uint8_t match_end;
        state = (state << 1) | B[q0];
        /* state marks with a 0 bit all active states
		 * End[q0] marks with a 0 bit all states where the q-gram 'q' can end a pattern
		 * if we got two 0's at matching positions, it means we encountered a pattern's end */
        match_end = state | End[q0];
        if (match_end != 0xff) {

            /* if state is reachable, and this character can finish a pattern, assume match */
            /* to reduce false positives check if qgram can finish the pattern */
            /* return position of probable match */
            /* find first 0 starting from MSB, the position of that bit as counted from LSB, is the length of the
			 * longest pattern that could match */
            return j >= MAXSOPATLEN ? j - MAXSOPATLEN : 0;
        }
    }
    /* no match */
    return -1;
}