
Phishing signatures creation HOWTO

Török Edwin

September 16, 2006

1 Database file format
The database file format is common for the whitelist (.wdb), and domainlist (.pdb), and
it consists of (multiple) lines of form:

Flags RealURL DisplayedURL

• Where FLAGS is:

– an (optional) character :

R regex, has to match entire url, see section
H has to match the host part of url only (a simple pattern, i.e. it is matched

literally)
no character matches the entire url, but as a simple pattern (non-regex)

– followed by an (optional) 3-digit hexadecimal number representing flags
that should be filtered.

∗ flag filtering only makes sense in .pdb files, (however clamav won’t
complain if you put flags in .wdb files, it just won’t use them)

∗ for details on how to construct a flag number see section Section 1.4

• REALURL is the URL the user is sent to

• DISPLAYEDURL is the URL description displayed to the user, that is where
it is claimed they are sent, the most obvious example is that of an html an-
chor (<a>tag): its href attribute is the REALURL, and its contents is the DIS-
PLAYEDURL

• see section 1.1.3 on the following page for more details on what REALURL/DISPLAYEDURL
is

Note: The spaces are mandatory, and empty lines are skipped.
If any of the lines of daily.wdb/daily.pdb don’t conform to the above file format,

the loading of the file shall fail, and whitelist/domainlist feature will be disabled. If the
loading of the whitelist fails, the phishing checks will be disabled entirely.

Therefore it is important to test the daily.wdb/daily.pdb before packing it into daily.cvd!

1

1.0.1 Example

The following line:
R http://www\.google\.(com|ro|it) www\.google\.com
Means: R - this is a regex.
Example of url pairs matching: http://www.google.com www.google.com, http://www.google.it

www.google.com.
Example of url pairs not matching: http://www.google.c0m www.google.com

1.1 How matching works
1.1.1 RealURL, displayedURL concatenation

The phishing detection module processes pairs of realURL/displayedURL, and the
matching against daily.wdb/daily.pdb is done as follows: the realURL is concatenated
with a space, and with the displayedURL, then that line is matched against the lines in
daily.wdb/daily.pdb

So if you have a line like
www.google.ro www.google.com
and a href like: www.google.com, then it

will match, but: www.google.com will not
match.

If you use the H flag, then the 2nd href will match too.

1.1.2 What happens when a match is found

In the case of the whitelist, a match means that the realURL/displayedURL combina-
tion is considered CLEAN, and no further checks are performed on it.

In the case of the domainlist, a match means that the realURL/displayedURL is
going to be checked for phishing attempts. This is only done if you don’t run clamav
with the alldomains option (since then all urls are checked). Furthermore you can
restrict what checks are to be performed by specifying the 3-digit hexnumber.

1.1.3 Extraction of REALURL, DISPLAYEDURL from HTML tags

The html parser extracts pairs of REALURL/DISPLAYEDURL based on the following
rules:

a (anchor) the href is the REALURL, its contents is the DISPLAYEDURL

contents is the tag-stripped contents of the <a> tags, so for example tags
are stripped (but not their contents)

nesting another <a> tag withing an <a> tag (besides being invalid html) is treated
as a <a..

form the action attribute is the REALURL, and a nested <a> tag is the DISPLAYEDURL

img/area if nested within an <a> tag, the REALURL is the href of the a tag, and the
src/dynsrc/area is the DISPLAYEDURL of the img

if nested withing a form tag, then the action attribute of the form tag is the RE-
ALURL

2

iframe if nested withing an <a> tag the src attribute is the displayedURL, and the href
of its parent a tag is the REALURL

if nested withing a form tag, then the action attribute of the form tag is the RE-
ALURL

1.1.4 Example

Consider this html file:

www.paypal.com

click here to sign in

<form action=”evilurl_form”>

Please sign in to Ebay using this form

<input type=’text’ name=’username’>Username</input>

....

</form>

The resulting REALURL/DISPLAYEDURL pairs will be (note that one tag can generate
multiple pairs):

• evilurl / www.paypal.com

• evilurl2 / click here to sign in

• evilurl2 / www.ebay.com

• evilurl_form / cgi.ebay.com

• cgi.ebay.com / Ebay

• evilurl / image.paypal.com/secure.jpg

1.2 Simple patterns
Simple patterns are matched literally, i.e. if you say:

www.google.com

it is going to match www.google.com, and only that. The . (dot) character has no special
meaning (see the section on regexes 1.3 on the next page for how the .(dot) character
behaves there)

3

1.3 Regular expressions
POSIX regular expressions are supported, and you can consider that internally it is
wrapped by ^, and $. In other words, this means that the regular expression has to
match the entire concatenated (see section 1.1.1 on page 2 for details on concatenation)
url.

It is recomended that you read section 2 on the next page to learn how to write
regular expressions, and then come back and read this for hints.

Be advised that clamav contains an internal, very basic regex matcher to reduce the
load on the regex matching core. Thus it is recomended that you avoid using regex
syntax not supported by it at the very beginning of regexes (at least the first few char-
acters).

Currently the clamav regex matcher supports:

• . (dot) character

• \ (escaping special characters)

• | (pipe) alternatives

• [] (character classes)

• () (paranthesis for grouping, but no group extraction is performed)

• other non-special characters

Thus the following are not supported:

• + repetition

• * repetition

• {} repetition

• backreferences

• lookaround

• other “advanced” features not listed in the supported list ;)

This however shouldn’t discourage you from using the “not directly supported features
“, because if the internal engine encounters unsupported syntax, it passes it on to the
POSIX regex core (beginning from the first unsupported token, everything before that
is still processed by the internal matcher). An example might make this more clear:

www\.google\.(com|ro|it) ([a-zA-Z])+\.google\.(com|ro|it)
Everything till ([a-zA-Z])+ is processed internally, that paranthesis (and everything

beyond) is processed by the posix core.
Examples of url pairs that match:

• www.google.ro images.google.ro

• www.google.com images.google.ro

Example of url pairs that don’t match:

• www.google.ro images1.google.ro

• images.google.com image.google.com

4

1.4 Flags
Flags are a binary OR of the following numbers:

HOST_SUFFICIENT 1

DOMAIN_SUFFICIENT 2

DO_REVERSE_LOOKUP 4

CHECK_REDIR 8

CHECK_SSL 16

CHECK_CLOAKING 32

CLEANUP_URL 64

CHECK_DOMAIN_REVERSE 128

CHECK_IMG_URL 256

DOMAINLIST_REQUIRED 512

The names of the constants are self-explanatory.
These constants are defined in libclamav/phishcheck.h, you can check there for the

latest flags.
There is a default set of flags that are enabled, these are currently: (CLEANUP_URL|DOMAIN_SUFFICIENT|CHECK_SSL|CHECK_CLOAKING|DOMAINLIST_REQUIRED|CHECK_IMG_URL),

ssl checking is performed only for a tags currently.
You must decide for each line in the domainlist if you want to filter any flags (that

is you don’t want certain checks to be done), and then calculate the binary OR of
those constants, and then convert it into a 3-digit hexnumber. For example you de-
vide that domain_sufficient shouldn’t be used for ebay.com, and you don’t want to
check images either, so you come up with this flag number: 2|256 ⇒258(decimal) ⇒
102(hexadecimal)

So you add this line to daily.wdb:

• R102 www.ebay.com .+

2 Introduction to regular expressions
Recomended reading:

• http://www.regular-expressions.info/quickstart.html

• http://www.regular-expressions.info/tutorial.html

• regex(7) man-page: http://www.tin.org/bin/man.cgi?section=7&topic=regex

5

2.1 Special characters
[the opening square bracket - it marks the beginning of a character class, see sec-

tion 2.2

\ the backslash - escapes special characters, see section 2.3

ˆ the caret - matches the beginning of a line (not needed in clamav regexes, this is
implied)

$ the dollar sign - matches the end of a line (not needed in clamav regexes, this is
implied)

˙ the period or dot - matches any character

| the vertical bar or pipe symbol - matches either of the token on its left and right side,
see section 2.4

? the question mark - matches optionally the left-side token, see section 2.5

* the asterisk or star - matches 0 or more occurences of the left-side token, see sec-
tion 2.5

+ the plus sign - matches 1 or more occurences of the left-side token, see section 2.5

(the opening round bracket - m̧arks beginning of a group, see section 2.6

) the closing round bracket - marks end of a group, see section 2.6

2.2 Character classes

2.3 Escaping
Escaping has two purposes:

• it allows you to actually match the special characters themselves, for example to
match the literal +, you would write \+

• it also allows you to match non-printable characters, such as the tab (\t), newline
(\n), ..

However since non-printable characters are not valid inside an url, you won’t have a
reason to use them.

2.4 Alternation

2.5 Optional matching, and repetition

2.6 Groups
Groups are usually used together with repetition, or alternation. For example: (com|it)+
means: match 1 or more repetitions of com or it, that is it matches: com, it, comcom,
comcomcom, comit, itit, ititcom,... you get the idea.

Groups can also be used to extract substring, but this is not supported by the clam
engine, and not needed either in this case.

6

3 How to create database files

3.1 How to create and maintain the whitelist (daily.wdb)
If the phishing code claims that a certain mail is phishing, but its not, you have 2
choices:

• examine your rules daily.pdb, and fix them if necessary (see: section 3.2)

• add it to the whitelist (discussed here)

Lets assume you are having problems because of links like this in a mail:

http://www.bcentral.it/

After investigating those sites further, you decide they are no threat, and create a line
like this in daily.wdb:

R http://www\.bcentral\.it/.+ http://69\.0\.241\.57/bCentral/L\.asp?L=.+

Note: urls like the above can be used to track unique mail recipients, and thus know if
somebody actually reads mails (so they can send more spam). However since this site
required no authentication information, it is safe from a phishing point of view.

3.2 How to create and maintain the domainlist (daily.pdb)
When not using –phish-scan-alldomains (production environments for example), you
need to decide which urls you are going to check.

Although at a first glance it might seem a good idea to check everything, it would
produce false positives. Particularly newsletters, ads, etc. are likely to use URLs that
look like phishing attempts.

Lets assume that you’ve recently seen many phishing attempts claiming they come
from Paypal. Thus you need to add paypal to daily.pdb:

R .+ .+\.paypal\.com

The above line will block (detect as phishing) mails that contain urls that claim to lead
to paypal, but they don’t in fact.

Be carefull not to create regexes that match a too broad range of urls though.

3.3 Dealing with false positives, and undetected phishing mails
3.3.1 False positives

Whenever you see a false positive (mail that is detected as phishing, but its not),
you need to examine why clamav decided that its phishing. You can do this easily
by building clamav with debugging (./configure –enable-experimental –enable-debug),
and then running a tool:

$contrib/phishing/why.py phishing.eml

This will show the url that triggers the phish verdict, and a reason why that url is
considered phishing attempt.

Once you know the reason, you might need to modify daily.pdb (if one of yours
rules inthere are too broad), or you need to add the url to daily.wdb. If you think
the algorithm is incorrect, please file a bugreport on bugzilla.clamav.net, including the
output of why.py.

7

3.3.2 Undetected phish mails

Using why.py doesn’t help here unfortunately (it will say: clean), so all you can do is:

$clamscan/clamscan –phish-scan-alldomains undetected.eml

And see if the mail is detected, if yes, then you need to add an appropiate line to
daily.pdb (see section 3.2 on the previous page).

If the mail is not detected, then try using:

$clamscan/clamscan –debug undetected.eml|less

Then see what urls are being checked, see if any of them is in a whitelist, see if all urls
are detected, etc.

4 Hints and recomandations

5 Examples

8

