Phishing signatures creation HOWTO

Torok Edwin

1 Database file format
1.1 PDB format

This file contains urls/hosts that are target of phishing attempts. It contains lines in the
following format:

R[Filter]:RealURL:DisplayedURL[:FuncLevelSpec]
H[Filter]:DisplayedHostname[:FuncLevelSpec]

R regular expression, for the concatenated URL

H matches the DisplayedHostname as a simple pattern (literally, no regular expres-
sion)
o the pattern can match either the full hostname
e or a subdomain of the specified hostname
e to avoid false matches in case of subdomain matches, the engine checks
that there is a dot(.) or a space() before the matched portion

Filter is ignored for R and H for compatibility reasons

REALURL is the URL the user is sent to, example: href attribute of an html anchor
(<a> tag)

DISPLAYEDURL is the URL description displayed to the user, where its claimed they
are sent, example: contents of an html anchor (<a> tag)

DisplayedHostname is the hostname portion of the DISPLAYEDURL
FuncLevelSpec an (optional) functionality level, 2 formats are possible:

e ninlevel all engines having functionality level >=minlevel will load this
line

e minlevel-maxlevel engines with functionality level >= minlevel, and
< maxlevel will load this line

1.2 GDB format
This file contains URL hashes in the following format:

S:P:HostPrefix[:FuncLevelSpec]
S:F:Sha256hash[:FuncLevelSpec]
S1:P:HostPrefix[:FuncLevelSpec]
S1:F:Sha256hash[:FuncLevelSpec]
S2:P:HostPrefix[:FuncLevelSpec]
S2:F:Shaz256hash[:FuncLevelSpec]
S:W:Sha256hash[:FuncLevelSpec]

S: These are hashes for Google Safe Browsing - malware sites, and should not be used
for other purposes.

S2: These are hashes for Google Safe Browsing - phishing sites, and should not be
used for other purposes.

S1: Hashes for blacklisting phishing sites. Virus name: Phishing. URL.Blacklisted
S:W Locally whitelisted hashes.

HostPrefix 4-byte prefix of the sha256 hash of the last 2 or 3 components of the host-
name. If prefix doesn’t match, no further lookups are performed.

Sha256hash sha256 hash of the canonicalized URL, or a sha256 hash of its pre-
fix/suffix according to the Google Safe Browsing “Performing Lookups™ rules.
There should be a corresponding :P:HostkeyPrefix entry for the hash to be
taken into consideration.

To see which hash/URL matched, look at the clamscan --debug output, and look
for the following strings: Looking up hash, prefix matched, and Hash matched.
Local whitelisting of .gdb entries can be done by creating a local.gdb file, and adding
aline S:W:<HASH>.

1.3 WDB format
This file contains whitelisted url pairs It contains lines in the following format:

X:RealURL:DisplayedURL[:FuncLevelSpec]
M:RealHostname:DisplayedHostname [:FuncLevelSpec]

X regular expression, for the entire URL, not just the hostname
e The regular expression is by default anchored to start-of-line and end-of-
line, as if you have used "RegularExpression$

e A trailing / is automatically added both to the regex, and the input string
to avoid false matches

e The regular expression matches the concatenation of the REALURL, a
colon(:), and the DISPLAYEDURL as a single string. It doesn’t separately
match REALURL and DISPLAYEDURL!

M matches hostname, or subdomain of it, see notes for H above

1.4 Hints
e empty lines are ignored
e the colons are mandatory
e Don’t leave extra spaces on the end of a line!

e if any of the lines don’t conform to this format, clamav will abort with a Mal-
formed Database Error

e see section 1.8.3 on page 6 for more details on REALURL/DISPLAYEDURL

1.5 Examples of PDB signatures
To check for phishing mails that target amazon.com, or subdomains of amazon.com:
H:amazon.com
To do the same, but for amazon.co.uk:
H:amazon.co.uk
To limit the signatures to certain engine versions:

H:amazon.co.uk:20-30
ramazon.co.uk:20-
H:amazon.co.uk:0-20

jas)

First line: engine versions 20, 21, ..., 29 can load it

Second line: engine versions >= 20 can load it

Third line: engine versions < 20 can load it

In a real situation, you’d probably use the second form. A situation like that would
be if you are using a feature of the signatures not available in earlier versions, or if ear-
lier versions have bugs with your signature. Its neither case here, the above examples
are for illustrative purposes only.

1.6 Examples of WDB signatures

To allow amazon’s country specific domains and amazon.com, to mix domain names
in DISPLAYEDURL, and REALURL.:

X:.+\.amazon\. (at|calco\.uk|co\.jpldelfr) ([/?].*)?:.+\.amazon\.com([/?].*%)?:17~
Explanation of this signature:
X: this is a regular expression

:17- load signature only for engines with functionality level >= 17 (recommended for
type X)

The regular expression is the following (X:, :17- stripped, and a / appended)
.+\.amazon\. (at|calco\.uk|co\.jplde|fr) ([/2].*)?:.+\.amazon\.com([/2].*)?/

Explanation of this regular expression (note that it is a single regular expression,
and not 2 regular expressions splitted at the :).

.+ any subdomain of

\.amazon\. domain we are whitelisting (REALURL part)

(at|calco\.uk|co\.jplde|fr) country-domains: at, ca, co.uk, co.jp, de, fr

([/?].*)? recomended way to end real url part of whitelist, this protects against
embedded URLSs (evilurl.example.com/amazon.co.uk/)

: REALURL and DISPLAYEDURL are concatenated via a :, so match a literal :
here

.+ any subdomain of

\.amazon\.com whitelisted DisplayedURL

([/?].*)? recommended way to end displayed url part, to protect against em-
bedded URLs

e / automatically added to further protect against embedded URLs

When you whitelist an entry make sure you check that both domains are owned
by the same entity. What this whitelist entry allows is: Links claiming to point to
amazon.com (DISPLAYEDURL), but really go to country-specific domain of amazon
(REALURL).

1.7 Example for how the URL extractor works
Consider the following HTML file:

<html>

1.displayedurl.example.com

2 di<p>splayedurl.exa<i>mple.com

3.nested.example.com

4.displayedurl.example.com

<form action="http://5.realurl.example.com">
sometext

5.form.nested.link-displayedurl.example.com

</form>

6.displ

ayedurl.example.com

<iframe src="http://7.displayedurl.example.com">

The phishing engine extract the following REALURL/DISPLAYEDURL pairs from
it:
http://1.realurl.example.com/

1l.displayedurl.example.com

http://2.realurl.example.com
2displayedurl.example.com

http://3.realurl.example.com
3.nested.example.com

http://4.realurl.example.com
4.displayedurl.example.com

http://5.realurl.example.com
http://5.displayedurl.example.com/img0.gif

http://5.realurl.example.com
http://5.form.nested.displayedurl.example.com

http://5.form.nested.displayedurl.example.com
5.form.nested.link-displayedurl.example.com

http://6.realurl.example.com
6.displayedurl.example.com

http://6.realurl.example.com
6.displayedurl.example.com/imgl.gif

1.8 How matching works
1.8.1 RealURL, displayedURL concatenation

The phishing detection module processes pairs of REALURL/DISPLAYEDURL. Match-

ing against daily.wdb is done as follows: the REALURL is concatenated with a :, and

with the DISPLAYEDURL, then that /ine is matched against the lines in daily.wdb/daily.pdb
So if you have this line in daily.wdb:

M:www.google.ro:www.google.com

and this href: www.google.com then
it will be whitelisted, but: www.google.com
will not.

1.8.2 What happens when a match is found

In the case of the whitelist, a match means that the REALURL/DISPLAYEDURL com-
bination is considered CLEAN, and no further checks are performed on it.

In the case of the domainlist, a match means that the REALURL/DISPLAYEDURL
is going to be checked for phishing attempts.

Furthermore you can restrict what checks are to be performed by specifying the
3-digit hexnumber.

1.8.3 Extraction of REALURL, DISPLAYEDURL from HTML tags

The html parser extracts pairs of REALURL/DISPLAYEDURL based on the following
rules.

In version 0.93: After URLs have been extracted, they are normalized, and cut
after the hostname. http://test.example.com/path/somecgi?queryparameters
becomes http://test.example.com/

a (anchor) the href is the REALURL, its contents is the DISPLAYEDURL

contents is the tag-stripped contents of the <a> tags, so for example tags
are stripped (but not their contents)

nesting another <a> tag withing an <a> tag (besides being invalid html) is treated
as a <a..

form the action attribute is the REALURL, and a nested <a> tag is the DISPLAYEDURL

img/area if nested within an <a> tag, the REALURL is the Aref of the a tag, and the
src/dynsrc/area is the DISPLAYEDURL of the img
if nested withing a form tag, then the action attribute of the form tag is the RE-
ALURL

iframe if nested withing an <a> tag the src attribute is the DISPLAYEDURL, and the
href of its parent a tag is the REALURL

if nested withing a form tag, then the action attribute of the form tag is the RE-
ALURL

1.8.4 Example

Consider this html file:

www.paypal.com

click here to sign in
<form action="evilurl_form” >

Please sign in to Ebay using this form

<input type="text’ name="username’>Username</input>

</form>

The resulting REALURL/DISPLAYEDURL pairs will be (note that one tag can generate
multiple pairs):

e cvilurl / www.paypal.com

e evilurl2 / click here to sign in
o evilurl2 / www.ebay.com

e evilurl_form / cgi.ebay.com
e cgi.ebay.com / Ebay

e cvilurl / image.paypal.com/secure.jpg

1.9 Simple patterns

Simple patterns are matched literally, i.e. if you say:
www.google.com

it is going to match www.google.com, and only that. The . (dot) character has no special
meaning (see the section on regexes 1.10 for how the .(dot) character behaves there)

1.10 Regular expressions

POSIX regular expressions are supported, and you can consider that internally it is
wrapped by #, and $. In other words, this means that the regular expression has to
match the entire concatenated (see section 1.8.1 on page 5 for details on concatenation)
url.

It is recomended that you read section 2 on page 9 to learn how to write regular
expressions, and then come back and read this for hints.

Be advised that clamav contains an internal, very basic regex matcher to reduce the
load on the regex matching core. Thus it is recomended that you avoid using regex
syntax not supported by it at the very beginning of regexes (at least the first few char-
acters).

Currently the clamav regex matcher supports:

. (dot) character

\ (escaping special characters)

| (pipe) alternatives

[] (character classes)

() (paranthesis for grouping, but no group extraction is performed)

e other non-special characters
Thus the following are not supported:
e -+ repetition

e * repetition

{} repetition

backreferences

e Jookaround

e other “advanced” features not listed in the supported list ;)

This however shouldn’t discourage you from using the “not directly supported features
“, because if the internal engine encounters unsupported syntax, it passes it on to the
POSIX regex core (beginning from the first unsupported token, everything before that
is still processed by the internal matcher). An example might make this more clear:

www\.google\.(comlrolit) ([a-zA-Z])+\.google\.(comlrolit)

Everything till (fa-zA-Z])+ is processed internally, that paranthesis (and everything
beyond) is processed by the posix core.

Examples of url pairs that match:

e www.google.ro images.google.ro

e www.google.com images.google.ro
Example of url pairs that don’t match:

e www.google.ro imagesl.google.ro

e images.google.com image.google.com

1.11 Flags

Flags are a binary OR of the following numbers:
HOST_SUFFICIENT 1
DOMAIN_SUFFICIENT 2
DO_REVERSE_LOOKUP 4
CHECK_REDIR 8

CHECK _SSL 16
CHECK_CLOAKING 32
CLEANUP_URL 64
CHECK_DOMAIN_REVERSE 128
CHECK_IMG_URL 256
DOMAINLIST_REQUIRED 512

The names of the constants are self-explanatory.

These constants are defined in libclamav/phishcheck.h, you can check there for the
latest flags.

There is a default set of flags that are enabled, these are currently:

(CLEANUP_URL | CHECK_SSL | CHECK_CLOAKING | CHECK_IMG_URL)

ssl checking is performed only for a tags currently.

You must decide for each line in the domainlist if you want to filter any flags (that
is you don’t want certain checks to be done), and then calculate the binary OR of
those constants, and then convert it into a 3-digit hexnumber. For example you de-
vide that domain_sufficient shouldn’t be used for ebay.com, and you don’t want to
check images either, so you come up with this flag number: 2|256 =258(decimal) =
102(hexadecimal)

So you add this line to daily.wdb:

e R102 www.ebay.com .+

2 Introduction to regular expressions
Recomended reading:

e http://www.regular-expressions.info/quickstart.html
o http://www.regular-expressions.info/tutorial.html

e regex(7) man-page: http://www.tin.org/bin/man.cgi?section=7&topic=regex

2.1 Special characters

[the opening square bracket - it marks the beginning of a character class, see sec-
tion 2.2 on the following page

\ the backslash - escapes special characters, see section 2.3 on the next page

"~ the caret - matches the beginning of a line (not needed in clamav regexes, this is
implied)

$ the dollar sign - matches the end of a line (not needed in clamav regexes, this is
implied)

" the period or dot - matches any character

| the vertical bar or pipe symbol - matches either of the token on its left and right side,
see section 2.4 on the following page

? the question mark - matches optionally the left-side token, see section 2.5 on the
next page

* the asterisk or star - matches 0 or more occurences of the left-side token, see sec-
tion 2.5 on the following page

+ the plus sign - matches 1 or more occurences of the left-side token, see section 2.5
on the next page

(the opening round bracket - marks beginning of a group, see section 2.6 on the fol-
lowing page

) the closing round bracket - marks end of a group, see section 2.6 on the next page

2.2 Character classes
2.3 Escaping

Escaping has two purposes:

e it allows you to actually match the special characters themselves, for example to
match the literal +, you would write \ +

e it also allows you to match non-printable characters, such as the tab (\f), newline

(\n), ..
However since non-printable characters are not valid inside an url, you won’t have a
reason to use them.
2.4 Alternation
2.5 Optional matching, and repetition

2.6 Groups

Groups are usually used together with repetition, or alternation. For example: (comlit)+
means: match 1 or more repetitions of com or it, that is it matches: com, it, comcom,
comcomcom, comit, itit, ititcom,... you get the idea.

Groups can also be used to extract substring, but this is not supported by the clam
engine, and not needed either in this case.

3 How to create database files

3.1 How to create and maintain the whitelist (daily.wdb)

If the phishing code claims that a certain mail is phishing, but its not, you have 2
choices:

e examine your rules daily.pdb, and fix them if necessary (see: section 3.2 on the
following page)

e add it to the whitelist (discussed here)
Lets assume you are having problems because of links like this in a mail:

http://www.bcentral.it/

After investigating those sites further, you decide they are no threat, and create a line
like this in daily.wdb:

R http://www\ .bcentral\ .it/.+ http://69\.0\.241\.57/bCentral/L\ .asp?L=.+

Note: urls like the above can be used to track unique mail recipients, and thus know if
somebody actually reads mails (so they can send more spam). However since this site
required no authentication information, it is safe from a phishing point of view.

10

3.2 How to create and maintain the domainlist (daily.pdb)

When not using —phish-scan-alldomains (production environments for example), you
need to decide which urls you are going to check.

Although at a first glance it might seem a good idea to check everything, it would
produce false positives. Particularly newsletters, ads, etc. are likely to use URLs that
look like phishing attempts.

Lets assume that you’ve recently seen many phishing attempts claiming they come
from Paypal. Thus you need to add paypal to daily.pdb:

R .+ .+\.paypal\.com

The above line will block (detect as phishing) mails that contain urls that claim to lead
to paypal, but they don’t in fact.
Be carefull not to create regexes that match a too broad range of urls though.

3.3 Dealing with false positives, and undetected phishing mails
3.3.1 False positives

Whenever you see a false positive (mail that is detected as phishing, but its not),
you need to examine why clamav decided that its phishing. You can do this easily
by building clamav with debugging (./configure —enable-experimental —enable-debug),
and then running a tool:

$contrib/phishing/why.py phishing.eml

This will show the url that triggers the phish verdict, and a reason why that url is
considered phishing attempt.

Once you know the reason, you might need to modify daily.pdb (if one of yours
rules inthere are too broad), or you need to add the url to daily.wdb. If you think
the algorithm is incorrect, please file a bugreport on bugzilla.clamav.net, including the
output of why.py.

3.3.2 Undetected phish mails
Using why.py doesn’t help here unfortunately (it will say: clean), so all you can do is:
$clamscan/clamscan —phish-scan-alldomains undetected.eml

And see if the mail is detected, if yes, then you need to add an appropiate line to
daily.pdb (see section 3.2).
If the mail is not detected, then try using:

$clamscan/clamscan —debug undetected.emllless

Then see what urls are being checked, see if any of them is in a whitelist, see if all
urls are detected, etc.

11

