static void hmac_sha256(const byte *Key,size_t KeyLength,const byte *Data, size_t DataLength,byte *ResDigest, sha256_context *ICtxOpt,bool *SetIOpt, sha256_context *RCtxOpt,bool *SetROpt) { const size_t Sha256BlockSize=64; // As defined in RFC 4868. byte KeyHash[SHA256_DIGEST_SIZE]; if (KeyLength > Sha256BlockSize) // Convert longer keys to key hash. { sha256_context KCtx; sha256_init(&KCtx); sha256_process(&KCtx, Key, KeyLength); sha256_done(&KCtx, KeyHash); Key = KeyHash; KeyLength = SHA256_DIGEST_SIZE; } byte KeyBuf[Sha256BlockSize]; // Store the padded key here. sha256_context ICtx; if (ICtxOpt!=NULL && *SetIOpt) ICtx=*ICtxOpt; // Use already calculated first block context. else { // This calculation is the same for all iterations with same password. // So for PBKDF2 we can calculate it only for first block and then reuse // to improve performance. for (size_t I = 0; I < KeyLength; I++) // Use 0x36 padding for inner digest. KeyBuf[I] = Key[I] ^ 0x36; for (size_t I = KeyLength; I < Sha256BlockSize; I++) KeyBuf[I] = 0x36; sha256_init(&ICtx); sha256_process(&ICtx, KeyBuf, Sha256BlockSize); // Hash padded key. } if (ICtxOpt!=NULL && !*SetIOpt) // Store constant context for further reuse. { *ICtxOpt=ICtx; *SetIOpt=true; } sha256_process(&ICtx, Data, DataLength); // Hash data. byte IDig[SHA256_DIGEST_SIZE]; // Internal digest for padded key and data. sha256_done(&ICtx, IDig); sha256_context RCtx; if (RCtxOpt!=NULL && *SetROpt) RCtx=*RCtxOpt; // Use already calculated first block context. else { // This calculation is the same for all iterations with same password. // So for PBKDF2 we can calculate it only for first block and then reuse // to improve performance. for (size_t I = 0; I < KeyLength; I++) // Use 0x5c for outer key padding. KeyBuf[I] = Key[I] ^ 0x5c; for (size_t I = KeyLength; I < Sha256BlockSize; I++) KeyBuf[I] = 0x5c; sha256_init(&RCtx); sha256_process(&RCtx, KeyBuf, Sha256BlockSize); // Hash padded key. } if (RCtxOpt!=NULL && !*SetROpt) // Store constant context for further reuse. { *RCtxOpt=RCtx; *SetROpt=true; } sha256_process(&RCtx, IDig, SHA256_DIGEST_SIZE); // Hash internal digest. sha256_done(&RCtx, ResDigest); } // PBKDF2 for 32 byte key length. We generate the key for specified number // of iteration count also as two supplementary values (key for checksums // and password verification) for iterations+16 and iterations+32. void pbkdf2(const byte *Pwd, size_t PwdLength, const byte *Salt, size_t SaltLength, byte *Key, byte *V1, byte *V2, uint Count) { const size_t MaxSalt=64; byte SaltData[MaxSalt+4]; memcpy(SaltData, Salt, Min(SaltLength,MaxSalt)); SaltData[SaltLength + 0] = 0; // Salt concatenated to 1. SaltData[SaltLength + 1] = 0; SaltData[SaltLength + 2] = 0; SaltData[SaltLength + 3] = 1; // First iteration: HMAC of password, salt and block index (1). byte U1[SHA256_DIGEST_SIZE]; hmac_sha256(Pwd, PwdLength, SaltData, SaltLength + 4, U1, NULL, NULL, NULL, NULL); byte Fn[SHA256_DIGEST_SIZE]; // Current function value. memcpy(Fn, U1, sizeof(Fn)); // Function at first iteration. uint CurCount[] = { Count-1, 16, 16 }; byte *CurValue[] = { Key , V1, V2 }; sha256_context ICtxOpt,RCtxOpt; bool SetIOpt=false,SetROpt=false; byte U2[SHA256_DIGEST_SIZE]; for (uint I = 0; I < 3; I++) // For output key and 2 supplementary values. { for (uint J = 0; J < CurCount[I]; J++) { // U2 = PRF (P, U1). hmac_sha256(Pwd, PwdLength, U1, sizeof(U1), U2, &ICtxOpt, &SetIOpt, &RCtxOpt, &SetROpt); memcpy(U1, U2, sizeof(U1)); for (uint K = 0; K < sizeof(Fn); K++) // Function ^= U. Fn[K] ^= U1[K]; } memcpy(CurValue[I], Fn, SHA256_DIGEST_SIZE); } cleandata(SaltData, sizeof(SaltData)); cleandata(Fn, sizeof(Fn)); cleandata(U1, sizeof(U1)); cleandata(U2, sizeof(U2)); } void CryptData::SetKey50(bool Encrypt,SecPassword *Password,const wchar *PwdW, const byte *Salt,const byte *InitV,uint Lg2Cnt,byte *HashKey, byte *PswCheck) { if (Lg2Cnt>CRYPT5_KDF_LG2_COUNT_MAX) return; byte Key[32],PswCheckValue[SHA256_DIGEST_SIZE],HashKeyValue[SHA256_DIGEST_SIZE]; bool Found=false; for (uint I=0;ILg2Count==Lg2Cnt && Item->Pwd==*Password && memcmp(Item->Salt,Salt,SIZE_SALT50)==0) { memcpy(Key,Item->Key,sizeof(Key)); SecHideData(Key,sizeof(Key),false,false); memcpy(PswCheckValue,Item->PswCheckValue,sizeof(PswCheckValue)); memcpy(HashKeyValue,Item->HashKeyValue,sizeof(HashKeyValue)); Found=true; break; } } if (!Found) { char PwdUtf[MAXPASSWORD*4]; WideToUtf(PwdW,PwdUtf,ASIZE(PwdUtf)); pbkdf2((byte *)PwdUtf,strlen(PwdUtf),Salt,SIZE_SALT50,Key,HashKeyValue,PswCheckValue,(1<Lg2Count=Lg2Cnt; Item->Pwd=*Password; memcpy(Item->Salt,Salt,SIZE_SALT50); memcpy(Item->Key,Key,sizeof(Item->Key)); memcpy(Item->PswCheckValue,PswCheckValue,sizeof(PswCheckValue)); memcpy(Item->HashKeyValue,HashKeyValue,sizeof(HashKeyValue)); SecHideData(Item->Key,sizeof(Item->Key),true,false); } if (HashKey!=NULL) memcpy(HashKey,HashKeyValue,SHA256_DIGEST_SIZE); if (PswCheck!=NULL) { memset(PswCheck,0,SIZE_PSWCHECK); for (uint I=0;IType==HASH_CRC32) { byte RawCRC[4]; RawPut4(Value->CRC32,RawCRC); byte Digest[SHA256_DIGEST_SIZE]; hmac_sha256(Key,SHA256_DIGEST_SIZE,RawCRC,sizeof(RawCRC),Digest,NULL,NULL,NULL,NULL); Value->CRC32=0; for (uint I=0;ICRC32^=Digest[I] << ((I & 3) * 8); } if (Value->Type==HASH_BLAKE2) { byte Digest[BLAKE2_DIGEST_SIZE]; hmac_sha256(Key,BLAKE2_DIGEST_SIZE,Value->Digest,sizeof(Value->Digest),Digest,NULL,NULL,NULL,NULL); memcpy(Value->Digest,Digest,sizeof(Value->Digest)); } } #if 0 static void TestPBKDF2(); struct TestKDF {TestKDF() {TestPBKDF2();exit(0);}} GlobalTestKDF; void TestPBKDF2() // Test PBKDF2 HMAC-SHA256 { byte Key[32],V1[32],V2[32]; pbkdf2((byte *)"password", 8, (byte *)"salt", 4, Key, V1, V2, 1); byte Res1[32]={0x12, 0x0f, 0xb6, 0xcf, 0xfc, 0xf8, 0xb3, 0x2c, 0x43, 0xe7, 0x22, 0x52, 0x56, 0xc4, 0xf8, 0x37, 0xa8, 0x65, 0x48, 0xc9, 0x2c, 0xcc, 0x35, 0x48, 0x08, 0x05, 0x98, 0x7c, 0xb7, 0x0b, 0xe1, 0x7b }; mprintf(L"\nPBKDF2 test1: %s", memcmp(Key,Res1,32)==0 ? L"OK":L"Failed"); pbkdf2((byte *)"password", 8, (byte *)"salt", 4, Key, V1, V2, 4096); byte Res2[32]={0xc5, 0xe4, 0x78, 0xd5, 0x92, 0x88, 0xc8, 0x41, 0xaa, 0x53, 0x0d, 0xb6, 0x84, 0x5c, 0x4c, 0x8d, 0x96, 0x28, 0x93, 0xa0, 0x01, 0xce, 0x4e, 0x11, 0xa4, 0x96, 0x38, 0x73, 0xaa, 0x98, 0x13, 0x4a }; mprintf(L"\nPBKDF2 test2: %s", memcmp(Key,Res2,32)==0 ? L"OK":L"Failed"); pbkdf2((byte *)"just some long string pretending to be a password", 49, (byte *)"salt, salt, salt, a lot of salt", 31, Key, V1, V2, 65536); byte Res3[32]={0x08, 0x0f, 0xa3, 0x1d, 0x42, 0x2d, 0xb0, 0x47, 0x83, 0x9b, 0xce, 0x3a, 0x3b, 0xce, 0x49, 0x51, 0xe2, 0x62, 0xb9, 0xff, 0x76, 0x2f, 0x57, 0xe9, 0xc4, 0x71, 0x96, 0xce, 0x4b, 0x6b, 0x6e, 0xbf}; mprintf(L"\nPBKDF2 test3: %s", memcmp(Key,Res3,32)==0 ? L"OK":L"Failed"); } #endif