/*************************************************************************** * This code is based on public domain Szymon Stefanek AES implementation: * * http://www.pragmaware.net/software/rijndael/index.php * * * * Dynamic tables generation is based on the Brian Gladman work: * * http://fp.gladman.plus.com/cryptography_technology/rijndael * ***************************************************************************/ #include "rar.hpp" #ifdef USE_SSE #include #endif static byte S[256],S5[256],rcon[30]; static byte T1[256][4],T2[256][4],T3[256][4],T4[256][4]; static byte T5[256][4],T6[256][4],T7[256][4],T8[256][4]; static byte U1[256][4],U2[256][4],U3[256][4],U4[256][4]; inline void Xor128(void *dest,const void *arg1,const void *arg2) { #ifdef ALLOW_MISALIGNED ((uint32*)dest)[0]=((uint32*)arg1)[0]^((uint32*)arg2)[0]; ((uint32*)dest)[1]=((uint32*)arg1)[1]^((uint32*)arg2)[1]; ((uint32*)dest)[2]=((uint32*)arg1)[2]^((uint32*)arg2)[2]; ((uint32*)dest)[3]=((uint32*)arg1)[3]^((uint32*)arg2)[3]; #else for (int I=0;I<16;I++) ((byte*)dest)[I]=((byte*)arg1)[I]^((byte*)arg2)[I]; #endif } inline void Xor128(byte *dest,const byte *arg1,const byte *arg2, const byte *arg3,const byte *arg4) { #ifdef ALLOW_MISALIGNED (*(uint32*)dest)=(*(uint32*)arg1)^(*(uint32*)arg2)^(*(uint32*)arg3)^(*(uint32*)arg4); #else for (int I=0;I<4;I++) dest[I]=arg1[I]^arg2[I]^arg3[I]^arg4[I]; #endif } inline void Copy128(byte *dest,const byte *src) { #ifdef ALLOW_MISALIGNED ((uint32*)dest)[0]=((uint32*)src)[0]; ((uint32*)dest)[1]=((uint32*)src)[1]; ((uint32*)dest)[2]=((uint32*)src)[2]; ((uint32*)dest)[3]=((uint32*)src)[3]; #else for (int I=0;I<16;I++) dest[I]=src[I]; #endif } ////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // API ////////////////////////////////////////////////////////////////////////////////////////////////////////////////// Rijndael::Rijndael() { if (S[0]==0) GenerateTables(); CBCMode = true; // Always true for RAR. } void Rijndael::Init(bool Encrypt,const byte *key,uint keyLen,const byte * initVector) { #ifdef USE_SSE // Check SSE here instead of constructor, so if object is a part of some // structure memset'ed before use, this variable is not lost. int CPUInfo[4]; __cpuid(CPUInfo, 1); AES_NI=(CPUInfo[2] & 0x2000000)!=0; #endif uint uKeyLenInBytes; switch(keyLen) { case 128: uKeyLenInBytes = 16; m_uRounds = 10; break; case 192: uKeyLenInBytes = 24; m_uRounds = 12; break; case 256: uKeyLenInBytes = 32; m_uRounds = 14; break; } byte keyMatrix[_MAX_KEY_COLUMNS][4]; for(uint i = 0; i < uKeyLenInBytes; i++) keyMatrix[i >> 2][i & 3] = key[i]; if (initVector==NULL) memset(m_initVector, 0, sizeof(m_initVector)); else for(int i = 0; i < MAX_IV_SIZE; i++) m_initVector[i] = initVector[i]; keySched(keyMatrix); if(!Encrypt) keyEncToDec(); } void Rijndael::blockEncrypt(const byte *input,size_t inputLen,byte *outBuffer) { if (inputLen <= 0) return; size_t numBlocks = inputLen/16; #ifdef USE_SSE if (AES_NI) { blockEncryptSSE(input,numBlocks,outBuffer); return; } #endif byte *prevBlock = m_initVector; for(size_t i = numBlocks;i > 0;i--) { byte block[16]; if (CBCMode) Xor128(block,prevBlock,input); else Copy128(block,input); byte temp[4][4]; Xor128(temp,block,m_expandedKey[0]); Xor128(outBuffer, T1[temp[0][0]],T2[temp[1][1]],T3[temp[2][2]],T4[temp[3][3]]); Xor128(outBuffer+4, T1[temp[1][0]],T2[temp[2][1]],T3[temp[3][2]],T4[temp[0][3]]); Xor128(outBuffer+8, T1[temp[2][0]],T2[temp[3][1]],T3[temp[0][2]],T4[temp[1][3]]); Xor128(outBuffer+12,T1[temp[3][0]],T2[temp[0][1]],T3[temp[1][2]],T4[temp[2][3]]); for(int r = 1; r < m_uRounds-1; r++) { Xor128(temp,outBuffer,m_expandedKey[r]); Xor128(outBuffer, T1[temp[0][0]],T2[temp[1][1]],T3[temp[2][2]],T4[temp[3][3]]); Xor128(outBuffer+4, T1[temp[1][0]],T2[temp[2][1]],T3[temp[3][2]],T4[temp[0][3]]); Xor128(outBuffer+8, T1[temp[2][0]],T2[temp[3][1]],T3[temp[0][2]],T4[temp[1][3]]); Xor128(outBuffer+12,T1[temp[3][0]],T2[temp[0][1]],T3[temp[1][2]],T4[temp[2][3]]); } Xor128(temp,outBuffer,m_expandedKey[m_uRounds-1]); outBuffer[ 0] = T1[temp[0][0]][1]; outBuffer[ 1] = T1[temp[1][1]][1]; outBuffer[ 2] = T1[temp[2][2]][1]; outBuffer[ 3] = T1[temp[3][3]][1]; outBuffer[ 4] = T1[temp[1][0]][1]; outBuffer[ 5] = T1[temp[2][1]][1]; outBuffer[ 6] = T1[temp[3][2]][1]; outBuffer[ 7] = T1[temp[0][3]][1]; outBuffer[ 8] = T1[temp[2][0]][1]; outBuffer[ 9] = T1[temp[3][1]][1]; outBuffer[10] = T1[temp[0][2]][1]; outBuffer[11] = T1[temp[1][3]][1]; outBuffer[12] = T1[temp[3][0]][1]; outBuffer[13] = T1[temp[0][1]][1]; outBuffer[14] = T1[temp[1][2]][1]; outBuffer[15] = T1[temp[2][3]][1]; Xor128(outBuffer,outBuffer,m_expandedKey[m_uRounds]); prevBlock=outBuffer; outBuffer += 16; input += 16; } Copy128(m_initVector,prevBlock); } #ifdef USE_SSE void Rijndael::blockEncryptSSE(const byte *input,size_t numBlocks,byte *outBuffer) { __m128i v = _mm_loadu_si128((__m128i*)m_initVector); __m128i *src=(__m128i*)input; __m128i *dest=(__m128i*)outBuffer; __m128i *rkey=(__m128i*)m_expandedKey; while (numBlocks > 0) { __m128i d = _mm_loadu_si128(src++); if (CBCMode) v = _mm_xor_si128(v, d); else v = d; __m128i r0 = _mm_loadu_si128(rkey); v = _mm_xor_si128(v, r0); for (int i=1; i 0; i--) { byte temp[4][4]; Xor128(temp,input,m_expandedKey[m_uRounds]); Xor128(block, T5[temp[0][0]],T6[temp[3][1]],T7[temp[2][2]],T8[temp[1][3]]); Xor128(block+4, T5[temp[1][0]],T6[temp[0][1]],T7[temp[3][2]],T8[temp[2][3]]); Xor128(block+8, T5[temp[2][0]],T6[temp[1][1]],T7[temp[0][2]],T8[temp[3][3]]); Xor128(block+12,T5[temp[3][0]],T6[temp[2][1]],T7[temp[1][2]],T8[temp[0][3]]); for(int r = m_uRounds-1; r > 1; r--) { Xor128(temp,block,m_expandedKey[r]); Xor128(block, T5[temp[0][0]],T6[temp[3][1]],T7[temp[2][2]],T8[temp[1][3]]); Xor128(block+4, T5[temp[1][0]],T6[temp[0][1]],T7[temp[3][2]],T8[temp[2][3]]); Xor128(block+8, T5[temp[2][0]],T6[temp[1][1]],T7[temp[0][2]],T8[temp[3][3]]); Xor128(block+12,T5[temp[3][0]],T6[temp[2][1]],T7[temp[1][2]],T8[temp[0][3]]); } Xor128(temp,block,m_expandedKey[1]); block[ 0] = S5[temp[0][0]]; block[ 1] = S5[temp[3][1]]; block[ 2] = S5[temp[2][2]]; block[ 3] = S5[temp[1][3]]; block[ 4] = S5[temp[1][0]]; block[ 5] = S5[temp[0][1]]; block[ 6] = S5[temp[3][2]]; block[ 7] = S5[temp[2][3]]; block[ 8] = S5[temp[2][0]]; block[ 9] = S5[temp[1][1]]; block[10] = S5[temp[0][2]]; block[11] = S5[temp[3][3]]; block[12] = S5[temp[3][0]]; block[13] = S5[temp[2][1]]; block[14] = S5[temp[1][2]]; block[15] = S5[temp[0][3]]; Xor128(block,block,m_expandedKey[0]); if (CBCMode) Xor128(block,block,iv); Copy128((byte*)iv,input); Copy128(outBuffer,block); input += 16; outBuffer += 16; } memcpy(m_initVector,iv,16); } #ifdef USE_SSE void Rijndael::blockDecryptSSE(const byte *input, size_t numBlocks, byte *outBuffer) { __m128i initVector = _mm_loadu_si128((__m128i*)m_initVector); __m128i *src=(__m128i*)input; __m128i *dest=(__m128i*)outBuffer; __m128i *rkey=(__m128i*)m_expandedKey; while (numBlocks > 0) { __m128i rl = _mm_loadu_si128(rkey + m_uRounds); __m128i d = _mm_loadu_si128(src++); __m128i v = _mm_xor_si128(rl, d); for (int i=m_uRounds-1; i>0; i--) { __m128i ri = _mm_loadu_si128(rkey + i); v = _mm_aesdec_si128(v, ri); } __m128i r0 = _mm_loadu_si128(rkey); v = _mm_aesdeclast_si128(v, r0); if (CBCMode) v = _mm_xor_si128(v, initVector); initVector = d; _mm_storeu_si128(dest++,v); numBlocks--; } _mm_storeu_si128((__m128i*)m_initVector,initVector); } #endif ////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // ALGORITHM ////////////////////////////////////////////////////////////////////////////////////////////////////////////////// void Rijndael::keySched(byte key[_MAX_KEY_COLUMNS][4]) { int j,rconpointer = 0; // Calculate the necessary round keys // The number of calculations depends on keyBits and blockBits int uKeyColumns = m_uRounds - 6; byte tempKey[_MAX_KEY_COLUMNS][4]; // Copy the input key to the temporary key matrix memcpy(tempKey,key,sizeof(tempKey)); int r = 0; int t = 0; // copy values into round key array for(j = 0;(j < uKeyColumns) && (r <= m_uRounds); ) { for(;(j < uKeyColumns) && (t < 4); j++, t++) for (int k=0;k<4;k++) m_expandedKey[r][t][k]=tempKey[j][k]; if(t == 4) { r++; t = 0; } } while(r <= m_uRounds) { tempKey[0][0] ^= S[tempKey[uKeyColumns-1][1]]; tempKey[0][1] ^= S[tempKey[uKeyColumns-1][2]]; tempKey[0][2] ^= S[tempKey[uKeyColumns-1][3]]; tempKey[0][3] ^= S[tempKey[uKeyColumns-1][0]]; tempKey[0][0] ^= rcon[rconpointer++]; if (uKeyColumns != 8) for(j = 1; j < uKeyColumns; j++) for (int k=0;k<4;k++) tempKey[j][k] ^= tempKey[j-1][k]; else { for(j = 1; j < uKeyColumns/2; j++) for (int k=0;k<4;k++) tempKey[j][k] ^= tempKey[j-1][k]; tempKey[uKeyColumns/2][0] ^= S[tempKey[uKeyColumns/2 - 1][0]]; tempKey[uKeyColumns/2][1] ^= S[tempKey[uKeyColumns/2 - 1][1]]; tempKey[uKeyColumns/2][2] ^= S[tempKey[uKeyColumns/2 - 1][2]]; tempKey[uKeyColumns/2][3] ^= S[tempKey[uKeyColumns/2 - 1][3]]; for(j = uKeyColumns/2 + 1; j < uKeyColumns; j++) for (int k=0;k<4;k++) tempKey[j][k] ^= tempKey[j-1][k]; } for(j = 0; (j < uKeyColumns) && (r <= m_uRounds); ) { for(; (j < uKeyColumns) && (t < 4); j++, t++) for (int k=0;k<4;k++) m_expandedKey[r][t][k] = tempKey[j][k]; if(t == 4) { r++; t = 0; } } } } void Rijndael::keyEncToDec() { for(int r = 1; r < m_uRounds; r++) { byte n_expandedKey[4][4]; for (int i = 0; i < 4; i++) for (int j = 0; j < 4; j++) { byte *w=m_expandedKey[r][j]; n_expandedKey[j][i]=U1[w[0]][i]^U2[w[1]][i]^U3[w[2]][i]^U4[w[3]][i]; } memcpy(m_expandedKey[r],n_expandedKey,sizeof(m_expandedKey[0])); } } #define ff_poly 0x011b #define ff_hi 0x80 #define FFinv(x) ((x) ? pow[255 - log[x]]: 0) #define FFmul02(x) (x ? pow[log[x] + 0x19] : 0) #define FFmul03(x) (x ? pow[log[x] + 0x01] : 0) #define FFmul09(x) (x ? pow[log[x] + 0xc7] : 0) #define FFmul0b(x) (x ? pow[log[x] + 0x68] : 0) #define FFmul0d(x) (x ? pow[log[x] + 0xee] : 0) #define FFmul0e(x) (x ? pow[log[x] + 0xdf] : 0) #define fwd_affine(x) \ (w = (uint)x, w ^= (w<<1)^(w<<2)^(w<<3)^(w<<4), (byte)(0x63^(w^(w>>8)))) #define inv_affine(x) \ (w = (uint)x, w = (w<<1)^(w<<3)^(w<<6), (byte)(0x05^(w^(w>>8)))) void Rijndael::GenerateTables() { unsigned char pow[512],log[256]; int i = 0, w = 1; do { pow[i] = (byte)w; pow[i + 255] = (byte)w; log[w] = (byte)i++; w ^= (w << 1) ^ (w & ff_hi ? ff_poly : 0); } while (w != 1); for (int i = 0,w = 1; i < sizeof(rcon)/sizeof(rcon[0]); i++) { rcon[i] = w; w = (w << 1) ^ (w & ff_hi ? ff_poly : 0); } for(int i = 0; i < 256; ++i) { unsigned char b=S[i]=fwd_affine(FFinv((byte)i)); T1[i][1]=T1[i][2]=T2[i][2]=T2[i][3]=T3[i][0]=T3[i][3]=T4[i][0]=T4[i][1]=b; T1[i][0]=T2[i][1]=T3[i][2]=T4[i][3]=FFmul02(b); T1[i][3]=T2[i][0]=T3[i][1]=T4[i][2]=FFmul03(b); S5[i] = b = FFinv(inv_affine((byte)i)); U1[b][3]=U2[b][0]=U3[b][1]=U4[b][2]=T5[i][3]=T6[i][0]=T7[i][1]=T8[i][2]=FFmul0b(b); U1[b][1]=U2[b][2]=U3[b][3]=U4[b][0]=T5[i][1]=T6[i][2]=T7[i][3]=T8[i][0]=FFmul09(b); U1[b][2]=U2[b][3]=U3[b][0]=U4[b][1]=T5[i][2]=T6[i][3]=T7[i][0]=T8[i][1]=FFmul0d(b); U1[b][0]=U2[b][1]=U3[b][2]=U4[b][3]=T5[i][0]=T6[i][1]=T7[i][2]=T8[i][3]=FFmul0e(b); } } #if 0 static void TestRijndael(); struct TestRij {TestRij() {TestRijndael();exit(0);}} GlobalTestRij; // Test CBC encryption according to NIST 800-38A. void TestRijndael() { byte IV[16]={0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0a,0x0b,0x0c,0x0d,0x0e,0x0f}; byte PT[64]={ 0x6b,0xc1,0xbe,0xe2,0x2e,0x40,0x9f,0x96,0xe9,0x3d,0x7e,0x11,0x73,0x93,0x17,0x2a, 0xae,0x2d,0x8a,0x57,0x1e,0x03,0xac,0x9c,0x9e,0xb7,0x6f,0xac,0x45,0xaf,0x8e,0x51, 0x30,0xc8,0x1c,0x46,0xa3,0x5c,0xe4,0x11,0xe5,0xfb,0xc1,0x19,0x1a,0x0a,0x52,0xef, 0xf6,0x9f,0x24,0x45,0xdf,0x4f,0x9b,0x17,0xad,0x2b,0x41,0x7b,0xe6,0x6c,0x37,0x10, }; byte Key128[16]={0x2b,0x7e,0x15,0x16,0x28,0xae,0xd2,0xa6,0xab,0xf7,0x15,0x88,0x09,0xcf,0x4f,0x3c}; byte Chk128[16]={0x3f,0xf1,0xca,0xa1,0x68,0x1f,0xac,0x09,0x12,0x0e,0xca,0x30,0x75,0x86,0xe1,0xa7}; byte Key192[24]={0x8e,0x73,0xb0,0xf7,0xda,0x0e,0x64,0x52,0xc8,0x10,0xf3,0x2b,0x80,0x90,0x79,0xe5,0x62,0xf8,0xea,0xd2,0x52,0x2c,0x6b,0x7b}; byte Chk192[16]={0x08,0xb0,0xe2,0x79,0x88,0x59,0x88,0x81,0xd9,0x20,0xa9,0xe6,0x4f,0x56,0x15,0xcd}; byte Key256[32]={0x60,0x3d,0xeb,0x10,0x15,0xca,0x71,0xbe,0x2b,0x73,0xae,0xf0,0x85,0x7d,0x77,0x81,0x1f,0x35,0x2c,0x07,0x3b,0x61,0x08,0xd7,0x2d,0x98,0x10,0xa3,0x09,0x14,0xdf,0xf4}; byte Chk256[16]={0xb2,0xeb,0x05,0xe2,0xc3,0x9b,0xe9,0xfc,0xda,0x6c,0x19,0x07,0x8c,0x6a,0x9d,0x1b}; byte *Key[3]={Key128,Key192,Key256}; byte *Chk[3]={Chk128,Chk192,Chk256}; Rijndael rij; // Declare outside of loop to test re-initialization. for (uint L=0;L<3;L++) { byte Out[16]; wchar Str[sizeof(Out)*2+1]; uint KeyLength=128+L*64; rij.Init(true,Key[L],KeyLength,IV); for (uint I=0;I