/* * This file is a part of the zlib compression module for NSIS. * * Copyright and license information can be found below. * Modifications Copyright (C) 1999-2007 Nullsoft and Contributors * * The original zlib source code is available at * http://www.zlib.net/ * * This software is provided 'as-is', without any express or implied * warranty. */ /* * Copyright (C) 1995-1998 Jean-loup Gailly. * For conditions of distribution and use, see copyright notice in COPYING.nsis */ #include "nsis_zutil.h" #include #ifndef min # define min(x,y) ((xbitb=b;s->bitk=k;} #define UPDIN {z->avail_in=n;z->next_in=p;} #define UPDOUT {s->write=q;} #define UPDATE {UPDBITS UPDIN UPDOUT} #define LEAVE(r) {UPDATE inflate_flush(z); return r;} /* get bytes and bits */ #define LOADIN {p=z->next_in;n=z->avail_in;b=s->bitb;k=s->bitk;} #define NEEDBYTE {if(!n)LEAVE(Z_OK)} #define NEXTBYTE (n--,*p++) #define NEEDBITS(j) {while(k<(j)){NEEDBYTE;b|=((uLong)NEXTBYTE)<>=(j);k-=(j);} /* output bytes */ #define WAVAIL (uInt)(qread?s->read-q-1:s->end-q) #define LOADOUT {q=s->write;m=(uInt)WAVAIL;} #define WRAP {if(q==s->end&&s->read!=s->window){q=s->window;m=(uInt)WAVAIL;}} #define FLUSH {UPDOUT inflate_flush(z); LOADOUT} #define NEEDOUT {if(m==0){WRAP if(m==0){FLUSH WRAP if(m==0) LEAVE(Z_OK)}}} #define OUTBYTE(a) {*q++=(Byte)(a);m--;} /* load local pointers */ #define LOAD {LOADIN LOADOUT} #define LAST (s->last == DRY) typedef struct inflate_blocks_state FAR inflate_blocks_statef; #define exop word.what.Exop #define bits word.what.Bits /* And'ing with mask[n] masks the lower n bits */ local const unsigned short inflate_mask[17] = { 0x0000, 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff, 0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff }; /* use to reduce .data #define INFLATE_MASK(x, n) (x & (~((unsigned short) 0xFFFF << n))) */ local const char border[] = { /* Order of the bit length code lengths */ 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}; /* Tables for deflate from PKZIP's appnote.txt. */ local const unsigned short cplens[31] = { /* Copy lengths for literal codes 257..285 */ 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0}; /* see note #13 above about 258 */ local const unsigned short cplext[31] = { /* Extra bits for literal codes 257..285 */ 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 112, 112}; /* 112==invalid */ local const unsigned short cpdist[30] = { /* Copy offsets for distance codes 0..29 */ 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577}; local const unsigned short cpdext[30] = { /* Extra bits for distance codes */ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13}; /* build fixed tables only once--keep them here */ /* local char fixed_built = 0; */ /* local inflate_huft fixed_mem[FIXEDH]; */ /* local uInt fixed_bl=9; */ /* local uInt fixed_bd=5; */ /* local inflate_huft *fixed_tl; */ /* local inflate_huft *fixed_td; */ /* copy as much as possible from the sliding window to the output area */ local void ZEXPORT inflate_flush(nsis_z_streamp z) { inflate_blocks_statef *s = &z->blocks; uInt n; Bytef *q; /* local copies of source and destination pointers */ q = s->read; again: /* compute number of bytes to copy as far as end of window */ n = (uInt)((q <= s->write ? s->write : s->end) - q); n = min(n, z->avail_out); /* update counters */ z->avail_out -= n; /* z->total_out += n; */ /* copy as far as end of window */ zmemcpy(z->next_out, q, n); z->next_out += n; q += n; /* see if more to copy at beginning of window */ if (q == s->end) { /* wrap pointers */ q = s->window; if (s->write == s->end) s->write = s->window; /* do the same for the beginning of the window */ goto again; } /* update pointers */ s->read = q; } #define BMAX 15 /* maximum bit length of any code */ local int ZEXPORT huft_build( uIntf *b, /* code lengths in bits (all assumed <= BMAX) */ uInt n, /* number of codes (assumed <= 288) */ uInt s, /* number of simple-valued codes (0..s-1) */ const unsigned short *d, /* list of base values for non-simple codes */ const unsigned short *e, /* list of extra bits for non-simple codes */ inflate_huft * FAR *t, /* result: starting table */ uIntf *m, /* maximum lookup bits, returns actual */ inflate_huft *hp, /* space for trees */ uInt *hn, /* working area: values in order of bit length */ uIntf *v) /* work area for huft_build */ { uInt a; /* counter for codes of length k */ uInt c[BMAX+1]; /* bit length count table */ uInt f; /* i repeats in table every f entries */ int g; /* maximum code length */ int h; /* table level */ uInt i; /* counter, current code */ uInt j; /* counter */ int k; /* number of bits in current code */ int l; /* bits per table (returned in m) */ uIntf *p; /* pointer into c[], b[], or v[] */ inflate_huft *q; /* points to current table */ struct inflate_huft_s r; /* table entry for structure assignment */ inflate_huft *u[BMAX]; /* table stack */ int w; /* bits before this table == (l * h) */ uInt x[BMAX+1]; /* bit offsets, then code stack */ uIntf *xp; /* pointer into x */ int y; /* number of dummy codes added */ uInt z; /* number of entries in current table */ /* Generate counts for each bit length */ p=c; y=16; while (y--) *p++ = 0; p = b; i = n; do { c[*p++]++; /* assume all entries <= BMAX */ } while (--i); if (c[0] == n) /* null input--all zero length codes */ { *t = (inflate_huft *)Z_NULL; *m = 0; return Z_OK; } /* Find minimum and maximum length, bound *m by those */ l = *m; for (j = 1; j <= BMAX; j++) if (c[j]) break; k = j; /* minimum code length */ if ((uInt)l < j) l = j; for (i = BMAX; i; i--) if (c[i]) break; g = i; /* maximum code length */ if ((uInt)l > i) l = i; *m = l; /* Adjust last length count to fill out codes, if needed */ for (y = 1 << j; j < i; j++, y <<= 1) if ((y -= c[j]) < 0) return Z_DATA_ERROR; if ((y -= c[i]) < 0) return Z_DATA_ERROR; c[i] += y; /* Generate starting offsets into the value table for each length */ x[1] = j = 0; p = c + 1; xp = x + 2; while (--i) { /* note that i == g from above */ *xp++ = (j += *p++); } /* Make a table of values in order of bit lengths */ p = b; i = 0; do { if ((j = *p++) != 0) v[x[j]++] = i; } while (++i < n); n = x[g]; /* set n to length of v */ /* Generate the Huffman codes and for each, make the table entries */ x[0] = i = 0; /* first Huffman code is zero */ p = v; /* grab values in bit order */ h = -1; /* no tables yet--level -1 */ w = -l; /* bits decoded == (l * h) */ u[0] = (inflate_huft *)Z_NULL; /* just to keep compilers happy */ q = (inflate_huft *)Z_NULL; /* ditto */ z = 0; /* ditto */ r.base = 0; /* go through the bit lengths (k already is bits in shortest code) */ for (; k <= g; k++) { a = c[k]; while (a--) { int nextw=w; /* here i is the Huffman code of length k bits for value *p */ /* make tables up to required level */ while (k > (nextw=w + l)) { h++; /* compute minimum size table less than or equal to l bits */ z = g - nextw; z = z > (uInt)l ? (uInt)l : z; /* table size upper limit */ if ((f = 1 << (j = k - nextw)) > a + 1) /* try a k-w bit table */ { /* too few codes for k-w bit table */ f -= a + 1; /* deduct codes from patterns left */ xp = c + k; if (j < z) while (++j < z && (f <<= 1) > *++xp) /* try smaller tables up to z bits */ { f -= *xp; /* else deduct codes from patterns */ } } z = 1 << j; /* table entries for j-bit table */ /* allocate new table */ if (*hn + z > MANY) /* (note: doesn't matter for fixed) */ return Z_MEM_ERROR; /* not enough memory */ u[h] = q = hp + *hn; *hn += z; /* connect to last table, if there is one */ if (h) { x[h] = i; /* save pattern for backing up */ r.bits = (Byte)l; /* bits to dump before this table */ r.exop = (Byte)j; /* bits in this table */ j = i >> w; r.base = (uInt)(q - u[h-1] - j); /* offset to this table */ u[h-1][j] = r; /* connect to last table */ } else *t = q; /* first table is returned result */ w=nextw; /* previous table always l bits */ } /* set up table entry in r */ r.bits = (Byte)(k - w); if (p >= v + n) r.exop = 128 + 64; /* out of values--invalid code */ else if (*p < s) { r.exop = (Byte)(*p < 256 ? 0 : 32 + 64); /* 256 is end-of-block */ r.base = *p++; /* simple code is just the value */ } else { r.exop = (Byte)(e[*p - s] + 16 + 64);/* non-simple--look up in lists */ r.base = d[*p++ - s]; } /* fill code-like entries with r */ f = 1 << (k - w); for (j = i >> w; j < z; j += f) q[j] = r; /* backwards increment the k-bit code i */ for (j = 1 << (k - 1); i & j; j >>= 1) i ^= j; i ^= j; /* backup over finished tables */ while ((i & ((1 << w) - 1)) != x[h]) { h--; /* don't need to update q */ w -= l; } } } /* Return Z_BUF_ERROR if we were given an incomplete table */ return (y != 0 && g != 1) ? Z_BUF_ERROR : Z_OK; } int ZEXPORT nsis_inflate(nsis_z_streamp z) { inflate_blocks_statef *s = &z->blocks; inflate_codes_statef *c = &s->sub.decode.t_codes; /* codes state */ /* lousy two bytes saved by doing this */ struct { uInt t; /* temporary storage */ uLong b; /* bit buffer */ uInt k; /* bits in bit buffer */ Bytef *p; /* input data pointer */ uInt n; /* bytes available there */ Bytef *q; /* output window write pointer */ uInt m; /* bytes to end of window or read pointer */ /* CODES variables */ inflate_huft *j; /* temporary pointer */ uInt e; /* extra bits or operation */ Bytef *f; /* pointer to copy strings from */ } _state; #define t _state.t #define b _state.b #define k _state.k #define p _state.p #define n _state.n #define q _state.q #define m _state.m /* copy input/output information to locals (UPDATE macro restores) */ LOAD /* process input based on current state */ for (;;) switch (s->mode) { case TYPE: NEEDBITS(3) t = (uInt)b & 7; DUMPBITS(3) s->last = (t & 1) ? DRY : TYPE; switch (t >> 1) { case 0: /* stored */ Tracev((stderr, "inflate: stored block%s\n", LAST ? " (last)" : "")); DUMPBITS(k&7) s->mode = LENS; /* get length of stored block */ break; case 1: /* fixed */ Tracev((stderr, "inflate: fixed codes block%s\n", LAST ? " (last)" : "")); { if (!s->zs.fixed_built) { int _k; /* temporary variable */ uInt f = 0; /* number of hufts used in fixed_mem */ /* literal table */ for (_k = 0; _k < 288; _k++) { char v=8; if (_k > 143) { if (_k < 256) v++; else if (_k < 280) v--; } s->zs.lc[_k] = v; } huft_build(s->zs.lc, 288, 257, cplens, cplext, &s->zs.fixed_tl, &s->zs.fixed_bl, s->zs.fixed_mem, &f, s->zs.v); /* distance table */ for (_k = 0; _k < 30; _k++) s->zs.lc[_k] = 5; huft_build(s->zs.lc, 30, 0, cpdist, cpdext, &s->zs.fixed_td, &s->zs.fixed_bd, s->zs.fixed_mem, &f, s->zs.v); /* done */ s->zs.fixed_built++; } /* s->sub.decode.t_codes.mode = CODES_START; */ s->sub.decode.t_codes.lbits = (Byte)s->zs.fixed_bl; s->sub.decode.t_codes.dbits = (Byte)s->zs.fixed_bd; s->sub.decode.t_codes.ltree = s->zs.fixed_tl; s->sub.decode.t_codes.dtree = s->zs.fixed_td; } s->mode = CODES_START; break; case 2: /* dynamic */ Tracev((stderr, "inflate: dynamic codes block%s\n", LAST ? " (last)" : "")); s->mode = TABLE; break; case 3: /* illegal */ /* the only illegal value possible is 3 because we check only 2 bits */ goto bad; } break; case LENS: NEEDBITS(16) s->sub.left = (uInt)b & 0xffff; b = k = 0; /* dump bits */ Tracev((stderr, "inflate: stored length %u\n", s->sub.left)); s->mode = s->sub.left ? STORED : (inflate_mode)s->last; break; case STORED: { uInt mn; if (n == 0) LEAVE(Z_OK) NEEDOUT mn = min(m, n); t = min(s->sub.left, mn); zmemcpy(q, p, t); p += t; n -= t; q += t; m -= t; if (!(s->sub.left -= t)) s->mode = (inflate_mode)s->last; break; } case TABLE: NEEDBITS(14) s->sub.trees.table = t = (uInt)b & 0x3fff; if ((t & 0x1f) > 29 || ((t >> 5) & 0x1f) > 29) { s->mode = NZ_BAD; LEAVE(Z_DATA_ERROR); } /* t = 258 + (t & 0x1f) + ((t >> 5) & 0x1f); */ DUMPBITS(14) s->sub.trees.index = 0; Tracev((stderr, "inflate: table sizes ok\n")); s->mode = BTREE; case BTREE: while (s->sub.trees.index < 4 + (s->sub.trees.table >> 10)) { NEEDBITS(3) s->sub.trees.t_blens[(int)border[s->sub.trees.index++]] = (uInt)b & 7; DUMPBITS(3) } while (s->sub.trees.index < 19) s->sub.trees.t_blens[(int)border[s->sub.trees.index++]] = 0; s->sub.trees.bb = 7; { uInt hn = 0; /* hufts used in space */ t = huft_build(s->sub.trees.t_blens, 19, 19, Z_NULL, Z_NULL, &s->sub.trees.tb, &s->sub.trees.bb, s->hufts, &hn, s->zs.v); if (t != Z_OK || !s->sub.trees.bb) { s->mode = NZ_BAD; break; } } s->sub.trees.index = 0; Tracev((stderr, "inflate: bits tree ok\n")); s->mode = DTREE; case DTREE: while (t = s->sub.trees.table, s->sub.trees.index < 258 + (t & 0x1f) + ((t >> 5) & 0x1f)) { inflate_huft *h; uInt i, j, d; t = s->sub.trees.bb; NEEDBITS(t) h = s->sub.trees.tb + ((uInt)b & (uInt)inflate_mask[t]); t = h->bits; d = h->base; if (d < 16) { DUMPBITS(t) s->sub.trees.t_blens[s->sub.trees.index++] = d; } else /* d == 16..18 */ { if (d == 18) { i=7; j=11; } else { i=d-14; j=3; } NEEDBITS(t+i) DUMPBITS(t) j += (uInt)b & (uInt)inflate_mask[i]; DUMPBITS(i) i = s->sub.trees.index; t = s->sub.trees.table; if (i + j > 258 + (t & 0x1f) + ((t >> 5) & 0x1f) || (d == 16 && i < 1)) { s->mode = NZ_BAD; LEAVE(Z_DATA_ERROR); } d = d == 16 ? s->sub.trees.t_blens[i - 1] : 0; do { s->sub.trees.t_blens[i++] = d; } while (--j); s->sub.trees.index = i; } } s->sub.trees.tb = Z_NULL; { uInt hn = 0; /* hufts used in space */ uInt bl, bd; inflate_huft *tl, *td; int nl,nd; t = s->sub.trees.table; nl = 257 + (t & 0x1f); nd = 1 + ((t >> 5) & 0x1f); bl = 9; /* must be <= 9 for lookahead assumptions */ bd = 6; /* must be <= 9 for lookahead assumptions */ t = huft_build(s->sub.trees.t_blens, nl, 257, cplens, cplext, &tl, &bl, s->hufts, &hn, s->zs.v); if (bl == 0) t = Z_DATA_ERROR; if (t == Z_OK) { /* build distance tree */ t = huft_build(s->sub.trees.t_blens + nl, nd, 0, cpdist, cpdext, &td, &bd, s->hufts, &hn, s->zs.v); } if (t != Z_OK || (bd == 0 && nl > 257)) { s->mode = NZ_BAD; LEAVE(Z_DATA_ERROR); } Tracev((stderr, "inflate: trees ok\n")); /* s->sub.decode.t_codes.mode = CODES_START; */ s->sub.decode.t_codes.lbits = (Byte)bl; s->sub.decode.t_codes.dbits = (Byte)bd; s->sub.decode.t_codes.ltree = tl; s->sub.decode.t_codes.dtree = td; } s->mode = CODES_START; #define j (_state.j) #define e (_state.e) #define f (_state.f) /* waiting for "i:"=input, "o:"=output, "x:"=nothing */ case CODES_START: /* x: set up for LEN */ c->sub.code.need = c->lbits; c->sub.code.tree = c->ltree; s->mode = CODES_LEN; case CODES_LEN: /* i: get length/literal/eob next */ t = c->sub.code.need; NEEDBITS(t) j = c->sub.code.tree + ((uInt)b & (uInt)inflate_mask[t]); DUMPBITS(j->bits) e = (uInt)(j->exop); if (e == 0) /* literal */ { c->sub.lit = j->base; s->mode = CODES_LIT; break; } if (e & 16) /* length */ { c->sub.copy.get = e & 15; c->len = j->base; s->mode = CODES_LENEXT; break; } if ((e & 64) == 0) /* next table */ { c->sub.code.need = e; c->sub.code.tree = j + j->base; break; } if (e & 32) /* end of block */ { s->mode = CODES_WASH; break; } goto bad; case CODES_LENEXT: /* i: getting length extra (have base) */ t = c->sub.copy.get; NEEDBITS(t) c->len += (uInt)b & (uInt)inflate_mask[t]; DUMPBITS(t) c->sub.code.need = c->dbits; c->sub.code.tree = c->dtree; s->mode = CODES_DIST; case CODES_DIST: /* i: get distance next */ t = c->sub.code.need; NEEDBITS(t) j = c->sub.code.tree + ((uInt)b & (uInt)inflate_mask[t]); DUMPBITS(j->bits) e = (uInt)(j->exop); if (e & 16) /* distance */ { c->sub.copy.get = e & 15; c->sub.copy.dist = j->base; s->mode = CODES_DISTEXT; break; } if ((e & 64) == 0) /* next table */ { c->sub.code.need = e; c->sub.code.tree = j + j->base; break; } goto bad; /* invalid code */ case CODES_DISTEXT: /* i: getting distance extra */ t = c->sub.copy.get; NEEDBITS(t) c->sub.copy.dist += (uInt)b & (uInt)inflate_mask[t]; DUMPBITS(t) s->mode = CODES_COPY; case CODES_COPY: /* o: copying bytes in window, waiting for space */ f = (uInt)(q - s->window) < c->sub.copy.dist ? s->end - (c->sub.copy.dist - (q - s->window)) : q - c->sub.copy.dist; while (c->len) { NEEDOUT OUTBYTE(*f++) if (f == s->end) f = s->window; c->len--; } s->mode = CODES_START; break; case CODES_LIT: /* o: got literal, waiting for output space */ NEEDOUT OUTBYTE(c->sub.lit) s->mode = CODES_START; break; case CODES_WASH: /* o: got eob, possibly more output */ if (k > 7) /* return unused byte, if any */ { k -= 8; n++; p--; /* can always return one */ } /* flushing will be done in DRY */ #undef j #undef e #undef f case DRY: FLUSH if (s->write != s->read) LEAVE(Z_OK) if (s->mode == CODES_WASH) { Tracev((stderr, "inflate: codes end, %lu total out\n", z->total_out + (q >= s->read ? q - s->read : (s->end - s->read) + (q - s->window)))); } /* DRY if last, TYPE if not */ s->mode = (inflate_mode)s->last; if (s->mode == TYPE) break; LEAVE(Z_STREAM_END) /*case BAD: r = Z_DATA_ERROR; LEAVE */ default: /* we'll call Z_STREAM_ERROR if BAD anyway */ bad: s->mode = NZ_BAD; LEAVE(Z_STREAM_ERROR) } } #undef t #undef b #undef k #undef p #undef n #undef q #undef m