README.md
065eca9d
 Docker: the Linux container runtime
 ===================================
0db56e6c
 
8ff60dde
 Docker complements LXC with a high-level API which operates at the process level. It runs unix processes with strong guarantees of isolation and repeatability across servers.
63ce0810
 
8ff60dde
 Docker is a great building block for automating distributed systems: large-scale web deployments, database clusters, continuous deployment systems, private PaaS, service-oriented architectures, etc.
0db56e6c
 
d66de319
 ![Docker L](docs/sources/static_files/lego_docker.jpg "Docker")
0db56e6c
 
0ea4f3cc
 * *Heterogeneous payloads*: any combination of binaries, libraries, configuration files, scripts, virtualenvs, jars, gems, tarballs, you name it. No more juggling between domain-specific tools. Docker can deploy and run them all.
0db56e6c
 
0ea4f3cc
 * *Any server*: docker can run on any x64 machine with a modern linux kernel - whether it's a laptop, a bare metal server or a VM. This makes it perfect for multi-cloud deployments.
5e2cec7b
 
2048354c
 * *Isolation*: docker isolates processes from each other and from the underlying host, using lightweight containers.
5e2cec7b
 
0ea4f3cc
 * *Repeatability*: because containers are isolated in their own filesystem, they behave the same regardless of where, when, and alongside what they run.
5e2cec7b
 
 
 Notable features
 -----------------
 
 * Filesystem isolation: each process container runs in a completely separate root filesystem.
 
 * Resource isolation: system resources like cpu and memory can be allocated differently to each process container, using cgroups.
 
9f3b1a8e
 * Network isolation: each process container runs in its own network namespace, with a virtual interface and IP address of its own.
5e2cec7b
 
b3cbe87b
 * Copy-on-write: root filesystems are created using copy-on-write, which makes deployment extremely fast, memory-cheap and disk-cheap.
5e2cec7b
 
8ff60dde
 * Logging: the standard streams (stdout/stderr/stdin) of each process container are collected and logged for real-time or batch retrieval.
5e2cec7b
 
 * Change management: changes to a container's filesystem can be committed into a new image and re-used to create more containers. No templating or manual configuration required.
 
e614690f
 * Interactive shell: docker can allocate a pseudo-tty and attach to the standard input of any container, for example to run a throwaway interactive shell.
5e2cec7b
 
baf6988d
 Install instructions
cc3fece3
 ==================
 
c40f0131
 Quick install on Ubuntu 12.04 and 12.10
 ---------------------------------------
7009d6c6
 
c40f0131
 ```bash
 curl get.docker.io | sh -x
 ```
7009d6c6
 
c40f0131
 Binary installs
 ----------------
7009d6c6
 
c40f0131
 Docker supports the following binary installation methods.
 Note that some methods are community contributions and not yet officially supported.
7009d6c6
 
c40f0131
 * [Ubuntu 12.04 and 12.10 (officially supported)](http://docs.docker.io/en/latest/installation/ubuntulinux/)
 * [Arch Linux](http://docs.docker.io/en/latest/installation/archlinux/)
 * [MacOS X (with Vagrant)](http://docs.docker.io/en/latest/installation/macos/)
 * [Windows (with Vagrant)](http://docs.docker.io/en/latest/installation/windows/)
 * [Amazon EC2 (with Vagrant)](http://docs.docker.io/en/latest/installation/amazon/)
7009d6c6
 
c40f0131
 Installing from source
 ----------------------
7009d6c6
 
c40f0131
 1. Make sure you have a [Go language](http://golang.org/doc/install) compiler and [git](http://git-scm.com) installed.
7009d6c6
 
c40f0131
 2. Checkout the source code
21f55419
 
c40f0131
    ```bash
    git clone http://github.com/dotcloud/docker
    ```
21f55419
 
c40f0131
 3. Build the docker binary
 
    ```bash
    cd docker
    make VERBOSE=1
70cf467f
    sudo cp ./bin/docker /usr/local/bin/docker
c40f0131
    ```
 
d614e91b
 Usage examples
 ==============
 
3ae5c45d
 First run the docker daemon
 ---------------------------
 
 All the examples assume your machine is running the docker daemon. To run the docker daemon in the background, simply type:
 
e8a67f63
 ```bash
 # On a production system you want this running in an init script
 sudo docker -d &
 ```
3ae5c45d
 
e8a67f63
 Now you can run docker in client mode: all commands will be forwarded to the docker daemon, so the client can run from any account.
3ae5c45d
 
e8a67f63
 ```bash
 # Now you can run docker commands from any account.
 docker help
 ```
3ae5c45d
 
 
 Throwaway shell in a base ubuntu image
 --------------------------------------
d614e91b
 
 ```bash
79a78d37
 docker pull ubuntu:12.10
d614e91b
 
e8a67f63
 # Run an interactive shell, allocate a tty, attach stdin and stdout
 # To detach the tty without exiting the shell, use the escape sequence Ctrl-p + Ctrl-q
79a78d37
 docker run -i -t ubuntu:12.10 /bin/bash
d614e91b
 ```
 
 Starting a long-running worker process
 --------------------------------------
 
 ```bash
7566006d
 # Start a very useful long-running process
79a78d37
 JOB=$(docker run -d ubuntu /bin/sh -c "while true; do echo Hello world; sleep 1; done")
d614e91b
 
7566006d
 # Collect the output of the job so far
 docker logs $JOB
d614e91b
 
7566006d
 # Kill the job
 docker kill $JOB
d614e91b
 ```
 
e8a67f63
 Running an irc bouncer
 ----------------------
d614e91b
 
 ```bash
79a78d37
 BOUNCER_ID=$(docker run -d -p 6667 -u irc shykes/znc $USER $PASSWORD)
038e1d17
 echo "Configure your irc client to connect to port $(docker port $BOUNCER_ID 6667) of this machine"
d614e91b
 ```
 
e8a67f63
 Running Redis
 -------------
79a78d37
 
 ```bash
 REDIS_ID=$(docker run -d -p 6379 shykes/redis redis-server)
038e1d17
 echo "Configure your redis client to connect to port $(docker port $REDIS_ID 6379) of this machine"
79a78d37
 ```
d614e91b
 
2664139d
 Share your own image!
 ---------------------
 
 ```bash
79a78d37
 CONTAINER=$(docker run -d ubuntu:12.10 apt-get install -y curl)
2664139d
 docker commit -m "Installed curl" $CONTAINER $USER/betterbase
 docker push $USER/betterbase
 ```
 
28831a41
 A list of publicly available images is [available here](https://github.com/dotcloud/docker/wiki/Public-docker-images).
2664139d
 
d614e91b
 Expose a service on a TCP port
 ------------------------------
 
 ```bash
7566006d
 # Expose port 4444 of this container, and tell netcat to listen on it
841c7ac0
 JOB=$(docker run -d -p 4444 base /bin/nc -l -p 4444)
d614e91b
 
7566006d
 # Which public port is NATed to my container?
 PORT=$(docker port $JOB 4444)
d614e91b
 
7566006d
 # Connect to the public port via the host's public address
27feba45
 # Please note that because of how routing works connecting to localhost or 127.0.0.1 $PORT will not work.
 IP=$(ifconfig eth0 | perl -n -e 'if (m/inet addr:([\d\.]+)/g) { print $1 }')
 echo hello world | nc $IP $PORT
d614e91b
 
7566006d
 # Verify that the network connection worked
 echo "Daemon received: $(docker logs $JOB)"
d614e91b
 ```
 
d49a2730
 Under the hood
 --------------
 
 Under the hood, Docker is built on the following components:
 
 
 * The [cgroup](http://blog.dotcloud.com/kernel-secrets-from-the-paas-garage-part-24-c) and [namespacing](http://blog.dotcloud.com/under-the-hood-linux-kernels-on-dotcloud-part) capabilities of the Linux kernel;
 
 * [AUFS](http://aufs.sourceforge.net/aufs.html), a powerful union filesystem with copy-on-write capabilities;
 
 * The [Go](http://golang.org) programming language;
 
 * [lxc](http://lxc.sourceforge.net/), a set of convenience scripts to simplify the creation of linux containers.
 
 
 
1480bff3
 Contributing to Docker
 ======================
 
bd3c6793
 Want to hack on Docker? Awesome! There are instructions to get you started on the website: http://docs.docker.io/en/latest/contributing/contributing/
1480bff3
 
022a1f99
 They are probably not perfect, please let us know if anything feels wrong or incomplete.
1480bff3
 
 
022a1f99
 Note
 ----
1480bff3
 
022a1f99
 We also keep the documentation in this repository. The website documentation is generated using sphinx using these sources.
 Please find it under docs/sources/ and read more about it https://github.com/dotcloud/docker/master/docs/README.md
1480bff3
 
022a1f99
 Please feel free to fix / update the documentation and send us pull requests. More tutorials are also welcome.
1480bff3
 
 
 Setting up a dev environment
 ----------------------------
 
8ff60dde
 Instructions that have been verified to work on Ubuntu 12.10,
1480bff3
 
7566006d
 ```bash
f43fbda2
 sudo apt-get -y install lxc wget bsdtar curl golang git
4389574a
 
 export GOPATH=~/go/
 export PATH=$GOPATH/bin:$PATH
 
 mkdir -p $GOPATH/src/github.com/dotcloud
 cd $GOPATH/src/github.com/dotcloud
 git clone git@github.com:dotcloud/docker.git
 cd docker
 
 go get -v github.com/dotcloud/docker/...
 go install -v github.com/dotcloud/docker/...
 ```
 
 Then run the docker daemon,
 
7566006d
 ```bash
4389574a
 sudo $GOPATH/bin/docker -d
 ```
1480bff3
 
4389574a
 Run the `go install` command (above) to recompile docker.
1480bff3
 
d614e91b
 
711e29fb
 What is a Standard Container?
d614e91b
 =============================
711e29fb
 
 Docker defines a unit of software delivery called a Standard Container. The goal of a Standard Container is to encapsulate a software component and all its dependencies in
8ff60dde
 a format that is self-describing and portable, so that any compliant runtime can run it without extra dependencies, regardless of the underlying machine and the contents of the container.
711e29fb
 
8ff60dde
 The spec for Standard Containers is currently a work in progress, but it is very straightforward. It mostly defines 1) an image format, 2) a set of standard operations, and 3) an execution environment.
711e29fb
 
 A great analogy for this is the shipping container. Just like Standard Containers are a fundamental unit of software delivery, shipping containers (http://bricks.argz.com/ins/7823-1/12) are a fundamental unit of physical delivery.
 
 ### 1. STANDARD OPERATIONS
 
 Just like shipping containers, Standard Containers define a set of STANDARD OPERATIONS. Shipping containers can be lifted, stacked, locked, loaded, unloaded and labelled. Similarly, standard containers can be started, stopped, copied, snapshotted, downloaded, uploaded and tagged.
 
 
 ### 2. CONTENT-AGNOSTIC
 
e190c27d
 Just like shipping containers, Standard Containers are CONTENT-AGNOSTIC: all standard operations have the same effect regardless of the contents. A shipping container will be stacked in exactly the same way whether it contains Vietnamese powder coffee or spare Maserati parts. Similarly, Standard Containers are started or uploaded in the same way whether they contain a postgres database, a php application with its dependencies and application server, or Java build artifacts.
711e29fb
 
 
 ### 3. INFRASTRUCTURE-AGNOSTIC
 
 Both types of containers are INFRASTRUCTURE-AGNOSTIC: they can be transported to thousands of facilities around the world, and manipulated by a wide variety of equipment. A shipping container can be packed in a factory in Ukraine, transported by truck to the nearest routing center, stacked onto a train, loaded into a German boat by an Australian-built crane, stored in a warehouse at a US facility, etc. Similarly, a standard container can be bundled on my laptop, uploaded to S3, downloaded, run and snapshotted by a build server at Equinix in Virginia, uploaded to 10 staging servers in a home-made Openstack cluster, then sent to 30 production instances across 3 EC2 regions.
 
 
 ### 4. DESIGNED FOR AUTOMATION
 
 Because they offer the same standard operations regardless of content and infrastructure, Standard Containers, just like their physical counterpart, are extremely well-suited for automation. In fact, you could say automation is their secret weapon.
 
 Many things that once required time-consuming and error-prone human effort can now be programmed. Before shipping containers, a bag of powder coffee was hauled, dragged, dropped, rolled and stacked by 10 different people in 10 different locations by the time it reached its destination. 1 out of 50 disappeared. 1 out of 20 was damaged. The process was slow, inefficient and cost a fortune - and was entirely different depending on the facility and the type of goods.
 
 Similarly, before Standard Containers, by the time a software component ran in production, it had been individually built, configured, bundled, documented, patched, vendored, templated, tweaked and instrumented by 10 different people on 10 different computers. Builds failed, libraries conflicted, mirrors crashed, post-it notes were lost, logs were misplaced, cluster updates were half-broken. The process was slow, inefficient and cost a fortune - and was entirely different depending on the language and infrastructure provider.
 
 
 ### 5. INDUSTRIAL-GRADE DELIVERY
 
 There are 17 million shipping containers in existence, packed with every physical good imaginable. Every single one of them can be loaded on the same boats, by the same cranes, in the same facilities, and sent anywhere in the World with incredible efficiency. It is embarrassing to think that a 30 ton shipment of coffee can safely travel half-way across the World in *less time* than it takes a software team to deliver its code from one datacenter to another sitting 10 miles away.
 
 With Standard Containers we can put an end to that embarrassment, by making INDUSTRIAL-GRADE DELIVERY of software a reality.
 
 
 
 
 Standard Container Specification
 --------------------------------
 
 (TODO)
 
 ### Image format
 
 
 ### Standard operations
 
 * Copy
 * Run
 * Stop
 * Wait
 * Commit
 * Attach standard streams
 * List filesystem changes
 * ...
 
 ### Execution environment
 
 #### Root filesystem
 
 #### Environment variables
 
 #### Process arguments
 
 #### Networking
 
 #### Process namespacing
 
 #### Resource limits
 
 #### Process monitoring
 
 #### Logging
 
 #### Signals
 
 #### Pseudo-terminal allocation
 
 #### Security