libavfilter/vf_normalize.c
7d4fe0c5
 /*
  * Copyright (c) 2017 Richard Ling
  *
  * This file is part of FFmpeg.
  *
  * FFmpeg is free software; you can redistribute it and/or
  * modify it under the terms of the GNU Lesser General Public
  * License as published by the Free Software Foundation; either
  * version 2.1 of the License, or (at your option) any later version.
  *
  * FFmpeg is distributed in the hope that it will be useful,
  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  * Lesser General Public License for more details.
  *
  * You should have received a copy of the GNU Lesser General Public
  * License along with FFmpeg; if not, write to the Free Software
  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  */
 
 /*
  * Normalize RGB video (aka histogram stretching, contrast stretching).
  * See: https://en.wikipedia.org/wiki/Normalization_(image_processing)
  *
  * For each channel of each frame, the filter computes the input range and maps
  * it linearly to the user-specified output range. The output range defaults
  * to the full dynamic range from pure black to pure white.
  *
  * Naively maximising the dynamic range of each frame of video in isolation
  * may cause flickering (rapid changes in brightness of static objects in the
  * scene) when small dark or bright objects enter or leave the scene. This
  * filter can apply temporal smoothing to the input range to reduce flickering.
  * Temporal smoothing is similar to the auto-exposure (automatic gain control)
  * on a video camera, which performs the same function; and, like a video
  * camera, it may cause a period of over- or under-exposure of the video.
  *
  * The filter can normalize the R,G,B channels independently, which may cause
  * color shifting, or link them together as a single channel, which prevents
  * color shifting. More precisely, linked normalization preserves hue (as it's
  * defined in HSV/HSL color spaces) while independent normalization does not.
  * Independent normalization can be used to remove color casts, such as the
  * blue cast from underwater video, restoring more natural colors. The filter
  * can also combine independent and linked normalization in any ratio.
  *
  * Finally the overall strength of the filter can be adjusted, from no effect
  * to full normalization.
  *
  * The 5 AVOptions are:
  *   blackpt,   Colors which define the output range. The minimum input value
  *   whitept    is mapped to the blackpt. The maximum input value is mapped to
  *              the whitept. The defaults are black and white respectively.
  *              Specifying white for blackpt and black for whitept will give
  *              color-inverted, normalized video. Shades of grey can be used
  *              to reduce the dynamic range (contrast). Specifying saturated
  *              colors here can create some interesting effects.
  *
  *   smoothing  The amount of temporal smoothing, expressed in frames (>=0).
  *              the minimum and maximum input values of each channel are
  *              smoothed using a rolling average over the current frame and
  *              that many previous frames of video.  Defaults to 0 (no temporal
  *              smoothing).
  *
  *   independence
  *              Controls the ratio of independent (color shifting) channel
  *              normalization to linked (color preserving) normalization. 0.0
  *              is fully linked, 1.0 is fully independent. Defaults to fully
  *              independent.
  *
  *   strength   Overall strength of the filter. 1.0 is full strength. 0.0 is
  *              a rather expensive no-op. Values in between can give a gentle
  *              boost to low-contrast video without creating an artificial
  *              over-processed look. The default is full strength.
  */
 
 #include "libavutil/imgutils.h"
 #include "libavutil/opt.h"
 #include "libavutil/pixdesc.h"
 #include "avfilter.h"
 #include "formats.h"
 #include "internal.h"
 #include "video.h"
 
 typedef struct NormalizeContext {
     const AVClass *class;
 
     // Storage for the corresponding AVOptions
     uint8_t blackpt[4];
     uint8_t whitept[4];
     int smoothing;
     float independence;
     float strength;
 
     int co[4];          // Offsets to R,G,B,A bytes respectively in each pixel
     int num_components; // Number of components in the pixel format
     int history_len;    // Number of frames to average; based on smoothing factor
     int frame_num;      // Increments on each frame, starting from 0.
 
     // Per-extremum, per-channel history, for temporal smoothing.
     struct {
         uint8_t *history;       // History entries.
         uint32_t history_sum;   // Sum of history entries.
     } min[3], max[3];           // Min and max for each channel in {R,G,B}.
     uint8_t *history_mem;       // Single allocation for above history entries
 
 } NormalizeContext;
 
 #define OFFSET(x) offsetof(NormalizeContext, x)
 #define FLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
 
 static const AVOption normalize_options[] = {
     { "blackpt",  "output color to which darkest input color is mapped",  OFFSET(blackpt), AV_OPT_TYPE_COLOR, { .str = "black" }, CHAR_MIN, CHAR_MAX, FLAGS },
     { "whitept",  "output color to which brightest input color is mapped",  OFFSET(whitept), AV_OPT_TYPE_COLOR, { .str = "white" }, CHAR_MIN, CHAR_MAX, FLAGS },
     { "smoothing",  "amount of temporal smoothing of the input range, to reduce flicker", OFFSET(smoothing), AV_OPT_TYPE_INT, {.i64=0}, 0, INT_MAX/8, FLAGS },
     { "independence", "proportion of independent to linked channel normalization", OFFSET(independence), AV_OPT_TYPE_FLOAT, {.dbl=1.0}, 0.0, 1.0, FLAGS },
     { "strength", "strength of filter, from no effect to full normalization", OFFSET(strength), AV_OPT_TYPE_FLOAT, {.dbl=1.0}, 0.0, 1.0, FLAGS },
     { NULL }
 };
 
 AVFILTER_DEFINE_CLASS(normalize);
 
 // This function is the main guts of the filter. Normalizes the input frame
 // into the output frame. The frames are known to have the same dimensions
 // and pixel format.
 static void normalize(NormalizeContext *s, AVFrame *in, AVFrame *out)
 {
     // Per-extremum, per-channel local variables.
     struct {
         uint8_t in;     // Original input byte value for this frame.
         float smoothed; // Smoothed input value [0,255].
         float out;      // Output value [0,255].
     } min[3], max[3];   // Min and max for each channel in {R,G,B}.
 
     float rgb_min_smoothed; // Min input range for linked normalization
     float rgb_max_smoothed; // Max input range for linked normalization
     uint8_t lut[3][256];    // Lookup table
     int x, y, c;
 
     // First, scan the input frame to find, for each channel, the minimum
     // (min.in) and maximum (max.in) values present in the channel.
     for (c = 0; c < 3; c++)
         min[c].in = max[c].in = in->data[0][s->co[c]];
     for (y = 0; y < in->height; y++) {
         uint8_t *inp = in->data[0] + y * in->linesize[0];
         uint8_t *outp = out->data[0] + y * out->linesize[0];
         for (x = 0; x < in->width; x++) {
             for (c = 0; c < 3; c++) {
                 min[c].in = FFMIN(min[c].in, inp[s->co[c]]);
                 max[c].in = FFMAX(max[c].in, inp[s->co[c]]);
             }
             inp += s->num_components;
             outp += s->num_components;
         }
     }
 
     // Next, for each channel, push min.in and max.in into their respective
     // histories, to determine the min.smoothed and max.smoothed for this frame.
     {
         int history_idx = s->frame_num % s->history_len;
         // Assume the history is not yet full; num_history_vals is the number
         // of frames received so far including the current frame.
         int num_history_vals = s->frame_num + 1;
         if (s->frame_num >= s->history_len) {
             //The history is full; drop oldest value and cap num_history_vals.
             for (c = 0; c < 3; c++) {
                 s->min[c].history_sum -= s->min[c].history[history_idx];
                 s->max[c].history_sum -= s->max[c].history[history_idx];
             }
             num_history_vals = s->history_len;
         }
         // For each extremum, update history_sum and calculate smoothed value
         // as the rolling average of the history entries.
         for (c = 0; c < 3; c++) {
             s->min[c].history_sum += (s->min[c].history[history_idx] = min[c].in);
             min[c].smoothed = s->min[c].history_sum / (float)num_history_vals;
             s->max[c].history_sum += (s->max[c].history[history_idx] = max[c].in);
             max[c].smoothed = s->max[c].history_sum / (float)num_history_vals;
         }
     }
 
     // Determine the input range for linked normalization. This is simply the
     // minimum of the per-channel minimums, and the maximum of the per-channel
     // maximums.
     rgb_min_smoothed = FFMIN3(min[0].smoothed, min[1].smoothed, min[2].smoothed);
     rgb_max_smoothed = FFMAX3(max[0].smoothed, max[1].smoothed, max[2].smoothed);
 
     // Now, process each channel to determine the input and output range and
     // build the lookup tables.
     for (c = 0; c < 3; c++) {
         int in_val;
         // Adjust the input range for this channel [min.smoothed,max.smoothed]
         // by mixing in the correct proportion of the linked normalization
         // input range [rgb_min_smoothed,rgb_max_smoothed].
         min[c].smoothed = (min[c].smoothed  *         s->independence)
                         + (rgb_min_smoothed * (1.0f - s->independence));
         max[c].smoothed = (max[c].smoothed  *         s->independence)
                         + (rgb_max_smoothed * (1.0f - s->independence));
 
         // Calculate the output range [min.out,max.out] as a ratio of the full-
         // strength output range [blackpt,whitept] and the original input range
         // [min.in,max.in], based on the user-specified filter strength.
         min[c].out = (s->blackpt[c] *         s->strength)
                    + (min[c].in     * (1.0f - s->strength));
         max[c].out = (s->whitept[c] *         s->strength)
                    + (max[c].in     * (1.0f - s->strength));
 
         // Now, build a lookup table which linearly maps the adjusted input range
         // [min.smoothed,max.smoothed] to the output range [min.out,max.out].
         // Perform the linear interpolation for each x:
         //     lut[x] = (int)(float(x - min.smoothed) * scale + max.out + 0.5)
         // where scale = (max.out - min.out) / (max.smoothed - min.smoothed)
         if (min[c].smoothed == max[c].smoothed) {
             // There is no dynamic range to expand. No mapping for this channel.
             for (in_val = min[c].in; in_val <= max[c].in; in_val++)
                 lut[c][in_val] = min[c].out;
         } else {
             // We must set lookup values for all values in the original input
             // range [min.in,max.in]. Since the original input range may be
             // larger than [min.smoothed,max.smoothed], some output values may
             // fall outside the [0,255] dynamic range. We need to clamp them.
             float scale = (max[c].out - min[c].out) / (max[c].smoothed - min[c].smoothed);
             for (in_val = min[c].in; in_val <= max[c].in; in_val++) {
                 int out_val = (in_val - min[c].smoothed) * scale + min[c].out + 0.5f;
                 out_val = FFMAX(out_val, 0);
                 out_val = FFMIN(out_val, 255);
                 lut[c][in_val] = out_val;
             }
         }
     }
 
     // Finally, process the pixels of the input frame using the lookup tables.
     for (y = 0; y < in->height; y++) {
         uint8_t *inp = in->data[0] + y * in->linesize[0];
         uint8_t *outp = out->data[0] + y * out->linesize[0];
         for (x = 0; x < in->width; x++) {
             for (c = 0; c < 3; c++)
                 outp[s->co[c]] = lut[c][inp[s->co[c]]];
             if (s->num_components == 4)
                 // Copy alpha as-is.
                 outp[s->co[3]] = inp[s->co[3]];
             inp += s->num_components;
             outp += s->num_components;
         }
     }
 
     s->frame_num++;
 }
 
 // Now we define all the functions accessible from the ff_vf_normalize class,
 // which is ffmpeg's interface to our filter.  See doc/filter_design.txt and
 // doc/writing_filters.txt for descriptions of what these interface functions
 // are expected to do.
 
 // Set the pixel formats that our filter supports. We should be able to process
 // any 8-bit RGB formats. 16-bit support might be useful one day.
 static int query_formats(AVFilterContext *ctx)
 {
     static const enum AVPixelFormat pixel_fmts[] = {
         AV_PIX_FMT_RGB24,
         AV_PIX_FMT_BGR24,
         AV_PIX_FMT_ARGB,
         AV_PIX_FMT_RGBA,
         AV_PIX_FMT_ABGR,
         AV_PIX_FMT_BGRA,
         AV_PIX_FMT_0RGB,
         AV_PIX_FMT_RGB0,
         AV_PIX_FMT_0BGR,
         AV_PIX_FMT_BGR0,
         AV_PIX_FMT_NONE
     };
     // According to filter_design.txt, using ff_set_common_formats() this way
     // ensures the pixel formats of the input and output will be the same. That
     // saves a bit of effort possibly needing to handle format conversions.
     AVFilterFormats *formats = ff_make_format_list(pixel_fmts);
     if (!formats)
         return AVERROR(ENOMEM);
     return ff_set_common_formats(ctx, formats);
 }
 
 // At this point we know the pixel format used for both input and output.  We
 // can also access the frame rate of the input video and allocate some memory
 // appropriately
 static int config_input(AVFilterLink *inlink)
 {
     NormalizeContext *s = inlink->dst->priv;
     // Store offsets to R,G,B,A bytes respectively in each pixel
     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
     int c;
 
     for (c = 0; c < 4; ++c)
         s->co[c] = desc->comp[c].offset;
     s->num_components = desc->nb_components;
     // Convert smoothing value to history_len (a count of frames to average,
     // must be at least 1).  Currently this is a direct assignment, but the
     // smoothing value was originally envisaged as a number of seconds.  In
     // future it would be nice to set history_len using a number of seconds,
     // but VFR video is currently an obstacle to doing so.
     s->history_len = s->smoothing + 1;
     // Allocate the history buffers -- there are 6 -- one for each extrema.
     // s->smoothing is limited to INT_MAX/8, so that (s->history_len * 6)
     // can't overflow on 32bit causing a too-small allocation.
     s->history_mem = av_malloc(s->history_len * 6);
     if (s->history_mem == NULL)
         return AVERROR(ENOMEM);
 
     for (c = 0; c < 3; c++) {
         s->min[c].history = s->history_mem + (c*2)   * s->history_len;
         s->max[c].history = s->history_mem + (c*2+1) * s->history_len;
     }
     return 0;
 }
 
 // Free any memory allocations here
 static av_cold void uninit(AVFilterContext *ctx)
 {
     NormalizeContext *s = ctx->priv;
 
     av_freep(&s->history_mem);
 }
 
 // This function is pretty much standard from doc/writing_filters.txt.  It
 // tries to do in-place filtering where possible, only allocating a new output
 // frame when absolutely necessary.
 static int filter_frame(AVFilterLink *inlink, AVFrame *in)
 {
     AVFilterContext *ctx = inlink->dst;
     AVFilterLink *outlink = ctx->outputs[0];
     NormalizeContext *s = ctx->priv;
     AVFrame *out;
     // Set 'direct' if we can modify the input frame in-place.  Otherwise we
     // need to retrieve a new frame from the output link.
     int direct = av_frame_is_writable(in) && !ctx->is_disabled;
 
     if (direct) {
         out = in;
     } else {
         out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
         if (!out) {
             av_frame_free(&in);
             return AVERROR(ENOMEM);
         }
         av_frame_copy_props(out, in);
     }
 
     // Now we've got the input and output frames (which may be the same frame)
     // perform the filtering with our custom function.
     normalize(s, in, out);
 
     if (ctx->is_disabled) {
         av_frame_free(&out);
         return ff_filter_frame(outlink, in);
     }
 
     if (!direct)
         av_frame_free(&in);
 
     return ff_filter_frame(outlink, out);
 }
 
 static const AVFilterPad inputs[] = {
     {
         .name         = "default",
         .type         = AVMEDIA_TYPE_VIDEO,
         .filter_frame = filter_frame,
         .config_props = config_input,
     },
     { NULL }
 };
 
 static const AVFilterPad outputs[] = {
     {
         .name = "default",
         .type = AVMEDIA_TYPE_VIDEO,
     },
     { NULL }
 };
 
 AVFilter ff_vf_normalize = {
     .name          = "normalize",
     .description   = NULL_IF_CONFIG_SMALL("Normalize RGB video."),
     .priv_size     = sizeof(NormalizeContext),
     .priv_class    = &normalize_class,
     .uninit        = uninit,
     .query_formats = query_formats,
     .inputs        = inputs,
     .outputs       = outputs,
 };