libavfilter/vf_fspp.c
bdc4db0e
 /*
  * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
  * Copyright (C) 2005 Nikolaj Poroshin <porosh3@psu.ru>
  * Copyright (c) 2014 Arwa Arif <arwaarif1994@gmail.com>
  *
  * This file is part of FFmpeg.
  *
  * FFmpeg is free software; you can redistribute it and/or modify
  * it under the terms of the GNU General Public License as published by
  * the Free Software Foundation; either version 2 of the License, or
  * (at your option) any later version.
  *
  * FFmpeg is distributed in the hope that it will be useful,
  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  * GNU General Public License for more details.
  *
  * You should have received a copy of the GNU General Public License along
  * with FFmpeg; if not, write to the Free Software Foundation, Inc.,
  * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
  */
 
 /**
  * @file
  * Fast Simple Post-processing filter
  * This implementation is based on an algorithm described in
  * "Aria Nosratinia Embedded Post-Processing for
  * Enhancement of Compressed Images (1999)"
  * (http://www.utdallas.edu/~aria/papers/vlsisp99.pdf)
  * Further, with splitting (I)DCT into horizontal/vertical passes, one of
  * them can be performed once per block, not per pixel. This allows for much
  * higher speed.
  *
  * Originally written by Michael Niedermayer and Nikolaj for the MPlayer
  * project, and ported by Arwa Arif for FFmpeg.
  */
 
 #include "libavutil/avassert.h"
 #include "libavutil/imgutils.h"
 #include "libavutil/opt.h"
 #include "libavutil/pixdesc.h"
 #include "internal.h"
 #include "vf_fspp.h"
 
 #define OFFSET(x) offsetof(FSPPContext, x)
 #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
 static const AVOption fspp_options[] = {
     { "quality",       "set quality",                          OFFSET(log2_count),    AV_OPT_TYPE_INT, {.i64 = 4},   4, MAX_LEVEL, FLAGS },
     { "qp",            "force a constant quantizer parameter", OFFSET(qp),            AV_OPT_TYPE_INT, {.i64 = 0},   0, 64,        FLAGS },
     { "strength",      "set filter strength",                  OFFSET(strength),      AV_OPT_TYPE_INT, {.i64 = 0}, -15, 32,        FLAGS },
f5436ebe
     { "use_bframe_qp", "use B-frames' QP",                     OFFSET(use_bframe_qp), AV_OPT_TYPE_BOOL,{.i64 = 0},   0, 1,         FLAGS },
bdc4db0e
     { NULL }
 };
 
 AVFILTER_DEFINE_CLASS(fspp);
 
 DECLARE_ALIGNED(32, static const uint8_t, dither)[8][8] = {
     {  0,  48,  12,  60,   3,  51,  15,  63, },
     { 32,  16,  44,  28,  35,  19,  47,  31, },
     {  8,  56,   4,  52,  11,  59,   7,  55, },
     { 40,  24,  36,  20,  43,  27,  39,  23, },
     {  2,  50,  14,  62,   1,  49,  13,  61, },
     { 34,  18,  46,  30,  33,  17,  45,  29, },
     { 10,  58,   6,  54,   9,  57,   5,  53, },
     { 42,  26,  38,  22,  41,  25,  37,  21, },
 };
 
 static const short custom_threshold[64] = {
 // values (296) can't be too high
 // -it causes too big quant dependence
 // or maybe overflow(check), which results in some flashing
      71, 296, 295, 237,  71,  40,  38,  19,
     245, 193, 185, 121, 102,  73,  53,  27,
     158, 129, 141, 107,  97,  73,  50,  26,
     102, 116, 109,  98,  82,  66,  45,  23,
      71,  94,  95,  81,  70,  56,  38,  20,
      56,  77,  74,  66,  56,  44,  30,  15,
      38,  53,  50,  45,  38,  30,  21,  11,
      20,  27,  26,  23,  20,  15,  11,   5
 };
 
 //This func reads from 1 slice, 1 and clears 0 & 1
 static void store_slice_c(uint8_t *dst, int16_t *src,
                           ptrdiff_t dst_stride, ptrdiff_t src_stride,
                           ptrdiff_t width, ptrdiff_t height, ptrdiff_t log2_scale)
 {
     int y, x;
 #define STORE(pos)                                                             \
     temp = (src[x + pos] + (d[pos] >> log2_scale)) >> (6 - log2_scale);        \
     src[x + pos] = src[x + pos - 8 * src_stride] = 0;                          \
     if (temp & 0x100) temp = ~(temp >> 31);                                    \
     dst[x + pos] = temp;
 
     for (y = 0; y < height; y++) {
         const uint8_t *d = dither[y];
         for (x = 0; x < width; x += 8) {
             int temp;
             STORE(0);
             STORE(1);
             STORE(2);
             STORE(3);
             STORE(4);
             STORE(5);
             STORE(6);
             STORE(7);
         }
         src += src_stride;
         dst += dst_stride;
     }
 }
 
 //This func reads from 2 slices, 0 & 2  and clears 2-nd
 static void store_slice2_c(uint8_t *dst, int16_t *src,
                            ptrdiff_t dst_stride, ptrdiff_t src_stride,
                            ptrdiff_t width, ptrdiff_t height, ptrdiff_t log2_scale)
 {
     int y, x;
 #define STORE2(pos)                                                                                       \
     temp = (src[x + pos] + src[x + pos + 16 * src_stride] + (d[pos] >> log2_scale)) >> (6 - log2_scale);  \
     src[x + pos + 16 * src_stride] = 0;                                                                   \
     if (temp & 0x100) temp = ~(temp >> 31);                                                               \
     dst[x + pos] = temp;
 
     for (y = 0; y < height; y++) {
         const uint8_t *d = dither[y];
         for (x = 0; x < width; x += 8) {
             int temp;
             STORE2(0);
             STORE2(1);
             STORE2(2);
             STORE2(3);
             STORE2(4);
             STORE2(5);
             STORE2(6);
             STORE2(7);
         }
         src += src_stride;
         dst += dst_stride;
     }
 }
 
466e32bf
 static void mul_thrmat_c(int16_t *thr_adr_noq, int16_t *thr_adr, int q)
bdc4db0e
 {
     int a;
     for (a = 0; a < 64; a++)
466e32bf
         thr_adr[a] = q * thr_adr_noq[a];
bdc4db0e
 }
 
 static void filter(FSPPContext *p, uint8_t *dst, uint8_t *src,
                    int dst_stride, int src_stride,
                    int width, int height,
                    uint8_t *qp_store, int qp_stride, int is_luma)
 {
     int x, x0, y, es, qy, t;
 
     const int stride = is_luma ? p->temp_stride : (width + 16);
     const int step = 6 - p->log2_count;
     const int qpsh = 4 - p->hsub * !is_luma;
     const int qpsv = 4 - p->vsub * !is_luma;
 
     DECLARE_ALIGNED(32, int32_t, block_align)[4 * 8 * BLOCKSZ + 4 * 8 * BLOCKSZ];
     int16_t *block  = (int16_t *)block_align;
     int16_t *block3 = (int16_t *)(block_align + 4 * 8 * BLOCKSZ);
 
     memset(block3, 0, 4 * 8 * BLOCKSZ);
 
     if (!src || !dst) return;
 
     for (y = 0; y < height; y++) {
         int index = 8 + 8 * stride + y * stride;
         memcpy(p->src + index, src + y * src_stride, width);
         for (x = 0; x < 8; x++) {
             p->src[index         - x - 1] = p->src[index +         x    ];
             p->src[index + width + x    ] = p->src[index + width - x - 1];
         }
     }
 
     for (y = 0; y < 8; y++) {
         memcpy(p->src + (     7 - y    ) * stride, p->src + (     y + 8    ) * stride, stride);
         memcpy(p->src + (height + 8 + y) * stride, p->src + (height - y + 7) * stride, stride);
     }
     //FIXME (try edge emu)
 
     for (y = 8; y < 24; y++)
         memset(p->temp + 8 + y * stride, 0, width * sizeof(int16_t));
 
     for (y = step; y < height + 8; y += step) {    //step= 1,2
         const int y1 = y - 8 + step;                 //l5-7  l4-6;
         qy = y - 4;
 
         if (qy > height - 1) qy = height - 1;
         if (qy < 0) qy = 0;
 
         qy = (qy >> qpsv) * qp_stride;
         p->row_fdct(block, p->src + y * stride + 2 - (y&1), stride, 2);
 
         for (x0 = 0; x0 < width + 8 - 8 * (BLOCKSZ - 1); x0 += 8 * (BLOCKSZ - 1)) {
             p->row_fdct(block + 8 * 8, p->src + y * stride + 8 + x0 + 2 - (y&1), stride, 2 * (BLOCKSZ - 1));
 
             if (p->qp)
                 p->column_fidct((int16_t *)(&p->threshold_mtx[0]), block + 0 * 8, block3 + 0 * 8, 8 * (BLOCKSZ - 1)); //yes, this is a HOTSPOT
             else
                 for (x = 0; x < 8 * (BLOCKSZ - 1); x += 8) {
                     t = x + x0 - 2;                    //correct t=x+x0-2-(y&1), but its the same
 
                     if (t < 0) t = 0;                   //t always < width-2
 
                     t = qp_store[qy + (t >> qpsh)];
57ede2a5
                     t = ff_norm_qscale(t, p->qscale_type);
bdc4db0e
 
466e32bf
                     if (t != p->prev_q) p->prev_q = t, p->mul_thrmat((int16_t *)(&p->threshold_mtx_noq[0]), (int16_t *)(&p->threshold_mtx[0]), t);
bdc4db0e
                     p->column_fidct((int16_t *)(&p->threshold_mtx[0]), block + x * 8, block3 + x * 8, 8); //yes, this is a HOTSPOT
                 }
             p->row_idct(block3 + 0 * 8, p->temp + (y & 15) * stride + x0 + 2 - (y & 1), stride, 2 * (BLOCKSZ - 1));
             memmove(block,  block  + (BLOCKSZ - 1) * 64, 8 * 8 * sizeof(int16_t)); //cycling
             memmove(block3, block3 + (BLOCKSZ - 1) * 64, 6 * 8 * sizeof(int16_t));
         }
 
         es = width + 8 - x0; //  8, ...
         if (es > 8)
             p->row_fdct(block + 8 * 8, p->src + y * stride + 8 + x0 + 2 - (y & 1), stride, (es - 4) >> 2);
 
         p->column_fidct((int16_t *)(&p->threshold_mtx[0]), block, block3, es&(~1));
375a0273
         if (es > 3)
             p->row_idct(block3 + 0 * 8, p->temp + (y & 15) * stride + x0 + 2 - (y & 1), stride, es >> 2);
bdc4db0e
 
         if (!(y1 & 7) && y1) {
             if (y1 & 8)
                 p->store_slice(dst + (y1 - 8) * dst_stride, p->temp + 8 + 8 * stride,
                                dst_stride, stride, width, 8, 5 - p->log2_count);
             else
                 p->store_slice2(dst + (y1 - 8) * dst_stride, p->temp + 8 + 0 * stride,
                                 dst_stride, stride, width, 8, 5 - p->log2_count);
         }
     }
 
9224c7f0
     if (y & 7) {  // height % 8 != 0
bdc4db0e
         if (y & 8)
             p->store_slice(dst + ((y - 8) & ~7) * dst_stride, p->temp + 8 + 8 * stride,
                            dst_stride, stride, width, y&7, 5 - p->log2_count);
         else
             p->store_slice2(dst + ((y - 8) & ~7) * dst_stride, p->temp + 8 + 0 * stride,
                             dst_stride, stride, width, y&7, 5 - p->log2_count);
     }
 }
 
 static void column_fidct_c(int16_t *thr_adr, int16_t *data, int16_t *output, int cnt)
 {
     int_simd16_t tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
     int_simd16_t tmp10, tmp11, tmp12, tmp13;
     int_simd16_t z1,z2,z3,z4,z5, z10, z11, z12, z13;
     int_simd16_t d0, d1, d2, d3, d4, d5, d6, d7;
 
     int16_t *dataptr;
     int16_t *wsptr;
     int16_t *threshold;
     int ctr;
 
     dataptr = data;
     wsptr = output;
 
     for (; cnt > 0; cnt -= 2) { //start positions
         threshold = (int16_t *)thr_adr;//threshold_mtx
         for (ctr = DCTSIZE; ctr > 0; ctr--) {
             // Process columns from input, add to output.
             tmp0 = dataptr[DCTSIZE * 0] + dataptr[DCTSIZE * 7];
             tmp7 = dataptr[DCTSIZE * 0] - dataptr[DCTSIZE * 7];
 
             tmp1 = dataptr[DCTSIZE * 1] + dataptr[DCTSIZE * 6];
             tmp6 = dataptr[DCTSIZE * 1] - dataptr[DCTSIZE * 6];
 
             tmp2 = dataptr[DCTSIZE * 2] + dataptr[DCTSIZE * 5];
             tmp5 = dataptr[DCTSIZE * 2] - dataptr[DCTSIZE * 5];
 
             tmp3 = dataptr[DCTSIZE * 3] + dataptr[DCTSIZE * 4];
             tmp4 = dataptr[DCTSIZE * 3] - dataptr[DCTSIZE * 4];
 
             // Even part of FDCT
 
             tmp10 = tmp0 + tmp3;
             tmp13 = tmp0 - tmp3;
             tmp11 = tmp1 + tmp2;
             tmp12 = tmp1 - tmp2;
 
             d0 = tmp10 + tmp11;
             d4 = tmp10 - tmp11;
 
             z1 = MULTIPLY16H((tmp12 + tmp13) << 2, FIX_0_707106781);
             d2 = tmp13 + z1;
             d6 = tmp13 - z1;
 
             // Even part of IDCT
 
             THRESHOLD(tmp0, d0, threshold[0 * 8]);
             THRESHOLD(tmp1, d2, threshold[2 * 8]);
             THRESHOLD(tmp2, d4, threshold[4 * 8]);
             THRESHOLD(tmp3, d6, threshold[6 * 8]);
             tmp0 += 2;
             tmp10 = (tmp0 + tmp2) >> 2;
             tmp11 = (tmp0 - tmp2) >> 2;
 
             tmp13 = (tmp1 + tmp3) >>2; //+2 !  (psnr decides)
             tmp12 = MULTIPLY16H((tmp1 - tmp3), FIX_1_414213562_A) - tmp13; //<<2
 
             tmp0 = tmp10 + tmp13; //->temps
             tmp3 = tmp10 - tmp13; //->temps
             tmp1 = tmp11 + tmp12; //->temps
             tmp2 = tmp11 - tmp12; //->temps
 
             // Odd part of FDCT
 
             tmp10 = tmp4 + tmp5;
             tmp11 = tmp5 + tmp6;
             tmp12 = tmp6 + tmp7;
 
             z5 = MULTIPLY16H((tmp10 - tmp12) << 2, FIX_0_382683433);
             z2 = MULTIPLY16H(tmp10 << 2, FIX_0_541196100) + z5;
             z4 = MULTIPLY16H(tmp12 << 2, FIX_1_306562965) + z5;
             z3 = MULTIPLY16H(tmp11 << 2, FIX_0_707106781);
 
             z11 = tmp7 + z3;
             z13 = tmp7 - z3;
 
             d5 = z13 + z2;
             d3 = z13 - z2;
             d1 = z11 + z4;
             d7 = z11 - z4;
 
             // Odd part of IDCT
 
             THRESHOLD(tmp4, d1, threshold[1 * 8]);
             THRESHOLD(tmp5, d3, threshold[3 * 8]);
             THRESHOLD(tmp6, d5, threshold[5 * 8]);
             THRESHOLD(tmp7, d7, threshold[7 * 8]);
 
             //Simd version uses here a shortcut for the tmp5,tmp6,tmp7 == 0
             z13 = tmp6 + tmp5;
             z10 = (tmp6 - tmp5) << 1;
             z11 = tmp4 + tmp7;
             z12 = (tmp4 - tmp7) << 1;
 
             tmp7  = (z11 + z13) >> 2; //+2 !
             tmp11 = MULTIPLY16H((z11 - z13) << 1, FIX_1_414213562);
             z5    = MULTIPLY16H(z10 + z12,        FIX_1_847759065);
             tmp10 = MULTIPLY16H(z12,              FIX_1_082392200) - z5;
             tmp12 = MULTIPLY16H(z10,              FIX_2_613125930) + z5; // - !!
 
             tmp6 = tmp12 - tmp7;
             tmp5 = tmp11 - tmp6;
             tmp4 = tmp10 + tmp5;
 
             wsptr[DCTSIZE * 0] +=  (tmp0 + tmp7);
             wsptr[DCTSIZE * 1] +=  (tmp1 + tmp6);
             wsptr[DCTSIZE * 2] +=  (tmp2 + tmp5);
             wsptr[DCTSIZE * 3] +=  (tmp3 - tmp4);
             wsptr[DCTSIZE * 4] +=  (tmp3 + tmp4);
             wsptr[DCTSIZE * 5] +=  (tmp2 - tmp5);
             wsptr[DCTSIZE * 6]  =  (tmp1 - tmp6);
             wsptr[DCTSIZE * 7]  =  (tmp0 - tmp7);
             //
             dataptr++; //next column
             wsptr++;
             threshold++;
         }
         dataptr += 8; //skip each second start pos
         wsptr   += 8;
     }
 }
 
466e32bf
 static void row_idct_c(int16_t *workspace, int16_t *output_adr, ptrdiff_t output_stride, int cnt)
bdc4db0e
 {
     int_simd16_t tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
     int_simd16_t tmp10, tmp11, tmp12, tmp13;
     int_simd16_t z5, z10, z11, z12, z13;
     int16_t *outptr;
     int16_t *wsptr;
 
     cnt *= 4;
     wsptr = workspace;
     outptr = output_adr;
     for (; cnt > 0; cnt--) {
         // Even part
         //Simd version reads 4x4 block and transposes it
         tmp10 = wsptr[2] +  wsptr[3];
         tmp11 = wsptr[2] -  wsptr[3];
 
         tmp13 = wsptr[0] +  wsptr[1];
         tmp12 = (MULTIPLY16H(wsptr[0] - wsptr[1], FIX_1_414213562_A) << 2) - tmp13;//this shift order to avoid overflow
 
         tmp0 = tmp10 + tmp13; //->temps
         tmp3 = tmp10 - tmp13; //->temps
         tmp1 = tmp11 + tmp12;
         tmp2 = tmp11 - tmp12;
 
         // Odd part
         //Also transpose, with previous:
         // ---- ----      ||||
         // ---- ---- idct ||||
         // ---- ---- ---> ||||
         // ---- ----      ||||
         z13 = wsptr[4] + wsptr[5];
         z10 = wsptr[4] - wsptr[5];
         z11 = wsptr[6] + wsptr[7];
         z12 = wsptr[6] - wsptr[7];
 
         tmp7 = z11 + z13;
         tmp11 = MULTIPLY16H(z11 - z13, FIX_1_414213562);
 
         z5 =    MULTIPLY16H(z10 + z12, FIX_1_847759065);
         tmp10 = MULTIPLY16H(z12,       FIX_1_082392200) - z5;
         tmp12 = MULTIPLY16H(z10,       FIX_2_613125930) + z5; // - FIX_
 
         tmp6 = (tmp12 << 3) - tmp7;
         tmp5 = (tmp11 << 3) - tmp6;
         tmp4 = (tmp10 << 3) + tmp5;
 
         // Final output stage: descale and write column
         outptr[0 * output_stride] += DESCALE(tmp0 + tmp7, 3);
         outptr[1 * output_stride] += DESCALE(tmp1 + tmp6, 3);
         outptr[2 * output_stride] += DESCALE(tmp2 + tmp5, 3);
         outptr[3 * output_stride] += DESCALE(tmp3 - tmp4, 3);
         outptr[4 * output_stride] += DESCALE(tmp3 + tmp4, 3);
         outptr[5 * output_stride] += DESCALE(tmp2 - tmp5, 3);
         outptr[6 * output_stride] += DESCALE(tmp1 - tmp6, 3); //no += ?
         outptr[7 * output_stride] += DESCALE(tmp0 - tmp7, 3); //no += ?
         outptr++;
 
         wsptr += DCTSIZE;       // advance pointer to next row
     }
 }
 
466e32bf
 static void row_fdct_c(int16_t *data, const uint8_t *pixels, ptrdiff_t line_size, int cnt)
bdc4db0e
 {
     int_simd16_t tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
     int_simd16_t tmp10, tmp11, tmp12, tmp13;
     int_simd16_t z1, z2, z3, z4, z5, z11, z13;
     int16_t *dataptr;
 
     cnt *= 4;
     // Pass 1: process rows.
 
     dataptr = data;
     for (; cnt > 0; cnt--) {
         tmp0 = pixels[line_size * 0] + pixels[line_size * 7];
         tmp7 = pixels[line_size * 0] - pixels[line_size * 7];
         tmp1 = pixels[line_size * 1] + pixels[line_size * 6];
         tmp6 = pixels[line_size * 1] - pixels[line_size * 6];
         tmp2 = pixels[line_size * 2] + pixels[line_size * 5];
         tmp5 = pixels[line_size * 2] - pixels[line_size * 5];
         tmp3 = pixels[line_size * 3] + pixels[line_size * 4];
         tmp4 = pixels[line_size * 3] - pixels[line_size * 4];
 
         // Even part
 
         tmp10 = tmp0 + tmp3;
         tmp13 = tmp0 - tmp3;
         tmp11 = tmp1 + tmp2;
         tmp12 = tmp1 - tmp2;
         //Even columns are written first, this leads to different order of columns
         //in column_fidct(), but they are processed independently, so all ok.
         //Later in the row_idct() columns readed at the same order.
         dataptr[2] = tmp10 + tmp11;
         dataptr[3] = tmp10 - tmp11;
 
         z1 = MULTIPLY16H((tmp12 + tmp13) << 2, FIX_0_707106781);
         dataptr[0] = tmp13 + z1;
         dataptr[1] = tmp13 - z1;
 
         // Odd part
 
         tmp10 = (tmp4 + tmp5) << 2;
         tmp11 = (tmp5 + tmp6) << 2;
         tmp12 = (tmp6 + tmp7) << 2;
 
         z5 = MULTIPLY16H(tmp10 - tmp12, FIX_0_382683433);
         z2 = MULTIPLY16H(tmp10,         FIX_0_541196100) + z5;
         z4 = MULTIPLY16H(tmp12,         FIX_1_306562965) + z5;
         z3 = MULTIPLY16H(tmp11,         FIX_0_707106781);
 
         z11 = tmp7 + z3;
         z13 = tmp7 - z3;
 
         dataptr[4] = z13 + z2;
         dataptr[5] = z13 - z2;
         dataptr[6] = z11 + z4;
         dataptr[7] = z11 - z4;
 
         pixels++;               // advance pointer to next column
         dataptr += DCTSIZE;
     }
 }
 
 static int query_formats(AVFilterContext *ctx)
 {
0f16dfda
     static const enum AVPixelFormat pix_fmts[] = {
bdc4db0e
         AV_PIX_FMT_YUV444P,  AV_PIX_FMT_YUV422P,
         AV_PIX_FMT_YUV420P,  AV_PIX_FMT_YUV411P,
         AV_PIX_FMT_YUV410P,  AV_PIX_FMT_YUV440P,
         AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVJ422P,
         AV_PIX_FMT_YUVJ420P, AV_PIX_FMT_YUVJ440P,
a4b13dbd
         AV_PIX_FMT_GBRP, AV_PIX_FMT_GRAY8,
bdc4db0e
         AV_PIX_FMT_NONE
     };
a0854c08
 
     AVFilterFormats *fmts_list = ff_make_format_list(pix_fmts);
     if (!fmts_list)
         return AVERROR(ENOMEM);
     return ff_set_common_formats(ctx, fmts_list);
bdc4db0e
 }
 
 static int config_input(AVFilterLink *inlink)
 {
     AVFilterContext *ctx = inlink->dst;
     FSPPContext *fspp = ctx->priv;
     const int h = FFALIGN(inlink->h + 16, 16);
     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
 
     fspp->hsub = desc->log2_chroma_w;
     fspp->vsub = desc->log2_chroma_h;
 
     fspp->temp_stride = FFALIGN(inlink->w + 16, 16);
     fspp->temp = av_malloc_array(fspp->temp_stride, h * sizeof(*fspp->temp));
     fspp->src  = av_malloc_array(fspp->temp_stride, h * sizeof(*fspp->src));
 
     if (!fspp->temp || !fspp->src)
         return AVERROR(ENOMEM);
 
     if (!fspp->use_bframe_qp && !fspp->qp) {
21f94684
         fspp->non_b_qp_alloc_size = AV_CEIL_RSHIFT(inlink->w, 4) * AV_CEIL_RSHIFT(inlink->h, 4);
bdc4db0e
         fspp->non_b_qp_table = av_calloc(fspp->non_b_qp_alloc_size, sizeof(*fspp->non_b_qp_table));
         if (!fspp->non_b_qp_table)
             return AVERROR(ENOMEM);
     }
 
     fspp->store_slice  = store_slice_c;
     fspp->store_slice2 = store_slice2_c;
     fspp->mul_thrmat   = mul_thrmat_c;
     fspp->column_fidct = column_fidct_c;
     fspp->row_idct     = row_idct_c;
     fspp->row_fdct     = row_fdct_c;
 
     if (ARCH_X86)
         ff_fspp_init_x86(fspp);
 
     return 0;
 }
 
 static int filter_frame(AVFilterLink *inlink, AVFrame *in)
 {
     AVFilterContext *ctx = inlink->dst;
     FSPPContext *fspp = ctx->priv;
     AVFilterLink *outlink = ctx->outputs[0];
     AVFrame *out = in;
 
     int qp_stride = 0;
     uint8_t *qp_table = NULL;
     int i, bias;
     int custom_threshold_m[64];
 
     bias = (1 << 4) + fspp->strength;
 
     for (i = 0; i < 64; i++) //FIXME: tune custom_threshold[] and remove this !
         custom_threshold_m[i] = (int)(custom_threshold[i] * (bias / 71.0) + 0.5);
 
     for (i = 0; i < 8; i++) {
         fspp->threshold_mtx_noq[2 * i] = (uint64_t)custom_threshold_m[i * 8 + 2]
                                       |(((uint64_t)custom_threshold_m[i * 8 + 6]) << 16)
                                       |(((uint64_t)custom_threshold_m[i * 8 + 0]) << 32)
                                       |(((uint64_t)custom_threshold_m[i * 8 + 4]) << 48);
 
         fspp->threshold_mtx_noq[2 * i + 1] = (uint64_t)custom_threshold_m[i * 8 + 5]
                                           |(((uint64_t)custom_threshold_m[i * 8 + 3]) << 16)
                                           |(((uint64_t)custom_threshold_m[i * 8 + 1]) << 32)
                                           |(((uint64_t)custom_threshold_m[i * 8 + 7]) << 48);
     }
 
     if (fspp->qp)
466e32bf
         fspp->prev_q = fspp->qp, fspp->mul_thrmat((int16_t *)(&fspp->threshold_mtx_noq[0]), (int16_t *)(&fspp->threshold_mtx[0]), fspp->qp);
bdc4db0e
 
     /* if we are not in a constant user quantizer mode and we don't want to use
      * the quantizers from the B-frames (B-frames often have a higher QP), we
      * need to save the qp table from the last non B-frame; this is what the
      * following code block does */
     if (!fspp->qp) {
         qp_table = av_frame_get_qp_table(in, &qp_stride, &fspp->qscale_type);
 
         if (qp_table && !fspp->use_bframe_qp && in->pict_type != AV_PICTURE_TYPE_B) {
             int w, h;
 
             /* if the qp stride is not set, it means the QP are only defined on
              * a line basis */
            if (!qp_stride) {
21f94684
                 w = AV_CEIL_RSHIFT(inlink->w, 4);
bdc4db0e
                 h = 1;
             } else {
                 w = qp_stride;
21f94684
                 h = AV_CEIL_RSHIFT(inlink->h, 4);
bdc4db0e
             }
             if (w * h > fspp->non_b_qp_alloc_size) {
                 int ret = av_reallocp_array(&fspp->non_b_qp_table, w, h);
                 if (ret < 0) {
                     fspp->non_b_qp_alloc_size = 0;
                     return ret;
                 }
                 fspp->non_b_qp_alloc_size = w * h;
             }
 
             av_assert0(w * h <= fspp->non_b_qp_alloc_size);
             memcpy(fspp->non_b_qp_table, qp_table, w * h);
         }
     }
 
     if (fspp->log2_count && !ctx->is_disabled) {
         if (!fspp->use_bframe_qp && fspp->non_b_qp_table)
             qp_table = fspp->non_b_qp_table;
 
         if (qp_table || fspp->qp) {
21f94684
             const int cw = AV_CEIL_RSHIFT(inlink->w, fspp->hsub);
             const int ch = AV_CEIL_RSHIFT(inlink->h, fspp->vsub);
bdc4db0e
 
             /* get a new frame if in-place is not possible or if the dimensions
              * are not multiple of 8 */
             if (!av_frame_is_writable(in) || (inlink->w & 7) || (inlink->h & 7)) {
                 const int aligned_w = FFALIGN(inlink->w, 8);
                 const int aligned_h = FFALIGN(inlink->h, 8);
 
                 out = ff_get_video_buffer(outlink, aligned_w, aligned_h);
                 if (!out) {
                     av_frame_free(&in);
                     return AVERROR(ENOMEM);
                 }
                 av_frame_copy_props(out, in);
62293642
                 out->width = in->width;
                 out->height = in->height;
bdc4db0e
             }
 
             filter(fspp, out->data[0], in->data[0], out->linesize[0], in->linesize[0],
                    inlink->w, inlink->h, qp_table, qp_stride, 1);
             filter(fspp, out->data[1], in->data[1], out->linesize[1], in->linesize[1],
                    cw,        ch,        qp_table, qp_stride, 0);
             filter(fspp, out->data[2], in->data[2], out->linesize[2], in->linesize[2],
                    cw,        ch,        qp_table, qp_stride, 0);
             emms_c();
         }
     }
 
     if (in != out) {
         if (in->data[3])
             av_image_copy_plane(out->data[3], out->linesize[3],
                                 in ->data[3], in ->linesize[3],
                                 inlink->w, inlink->h);
         av_frame_free(&in);
     }
     return ff_filter_frame(outlink, out);
 }
 
 static av_cold void uninit(AVFilterContext *ctx)
 {
     FSPPContext *fspp = ctx->priv;
     av_freep(&fspp->temp);
     av_freep(&fspp->src);
     av_freep(&fspp->non_b_qp_table);
 }
 
 static const AVFilterPad fspp_inputs[] = {
     {
         .name         = "default",
         .type         = AVMEDIA_TYPE_VIDEO,
         .config_props = config_input,
         .filter_frame = filter_frame,
     },
     { NULL }
 };
 
 static const AVFilterPad fspp_outputs[] = {
     {
         .name = "default",
         .type = AVMEDIA_TYPE_VIDEO,
     },
     { NULL }
 };
 
 AVFilter ff_vf_fspp = {
     .name            = "fspp",
     .description     = NULL_IF_CONFIG_SMALL("Apply Fast Simple Post-processing filter."),
     .priv_size       = sizeof(FSPPContext),
     .uninit          = uninit,
     .query_formats   = query_formats,
     .inputs          = fspp_inputs,
     .outputs         = fspp_outputs,
     .priv_class      = &fspp_class,
     .flags           = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL,
 };