libavcodec/ac3dec.c
0ec2cc35
 /*
  * AC-3 Audio Decoder
bf09b550
  * This code was developed as part of Google Summer of Code 2006.
  * E-AC-3 support was added as part of Google Summer of Code 2007.
032732d4
  *
406792e7
  * Copyright (c) 2006 Kartikey Mahendra BHATT (bhattkm at gmail dot com)
bf09b550
  * Copyright (c) 2007-2008 Bartlomiej Wolowiec <bartek.wolowiec@gmail.com>
38c1a5c4
  * Copyright (c) 2007 Justin Ruggles <justin.ruggles@gmail.com>
032732d4
  *
0ec2cc35
  * This file is part of FFmpeg.
2aa2c5c4
  *
0ec2cc35
  * FFmpeg is free software; you can redistribute it and/or
1754fe4d
  * modify it under the terms of the GNU Lesser General Public
2aa2c5c4
  * License as published by the Free Software Foundation; either
1754fe4d
  * version 2.1 of the License, or (at your option) any later version.
2aa2c5c4
  *
0ec2cc35
  * FFmpeg is distributed in the hope that it will be useful,
2aa2c5c4
  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
1754fe4d
  * Lesser General Public License for more details.
2aa2c5c4
  *
1754fe4d
  * You should have received a copy of the GNU Lesser General Public
0ec2cc35
  * License along with FFmpeg; if not, write to the Free Software
2aa2c5c4
  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  */
 
 #include <stdio.h>
 #include <stddef.h>
 #include <math.h>
 #include <string.h>
 
245976da
 #include "libavutil/crc.h"
9b83919f
 #include "libavutil/opt.h"
dbbec0c2
 #include "internal.h"
11d6f38c
 #include "aac_ac3_parser.h"
9fc1ab72
 #include "ac3_parser.h"
58ce349f
 #include "ac3dec.h"
227322b8
 #include "ac3dec_data.h"
a45fbda9
 #include "kbdwin.h"
98a27a8a
 
7417120b
 /**
  * table for ungrouping 3 values in 7 bits.
  * used for exponents and bap=2 mantissas
  */
 static uint8_t ungroup_3_in_7_bits_tab[128][3];
967d397a
 
5aefe3eb
 /** tables for ungrouping mantissas */
a4de6dd2
 static int b1_mantissas[32][3];
 static int b2_mantissas[128][3];
 static int b3_mantissas[8];
 static int b4_mantissas[128][2];
 static int b5_mantissas[16];
967d397a
 
5aefe3eb
 /**
  * Quantization table: levels for symmetric. bits for asymmetric.
  * reference: Table 7.18 Mapping of bap to Quantizer
  */
e2270b4e
 static const uint8_t quantization_tab[16] = {
5aefe3eb
     0, 3, 5, 7, 11, 15,
     5, 6, 7, 8, 9, 10, 11, 12, 14, 16
 };
967d397a
 
3357ff33
 /** dynamic range table. converts codes to scale factors. */
e2270b4e
 static float dynamic_range_tab[256];
3357ff33
 
5066f515
 /** Adjustments in dB gain */
caf0fbc8
 static const float gain_levels[9] = {
     LEVEL_PLUS_3DB,
     LEVEL_PLUS_1POINT5DB,
3bbb0bf8
     LEVEL_ONE,
caf0fbc8
     LEVEL_MINUS_1POINT5DB,
3bbb0bf8
     LEVEL_MINUS_3DB,
     LEVEL_MINUS_4POINT5DB,
     LEVEL_MINUS_6DB,
caf0fbc8
     LEVEL_ZERO,
3bbb0bf8
     LEVEL_MINUS_9DB
 };
967d397a
 
3bbb0bf8
 /**
  * Table for default stereo downmixing coefficients
  * reference: Section 7.8.2 Downmixing Into Two Channels
  */
 static const uint8_t ac3_default_coeffs[8][5][2] = {
caf0fbc8
     { { 2, 7 }, { 7, 2 },                               },
     { { 4, 4 },                                         },
     { { 2, 7 }, { 7, 2 },                               },
     { { 2, 7 }, { 5, 5 }, { 7, 2 },                     },
     { { 2, 7 }, { 7, 2 }, { 6, 6 },                     },
     { { 2, 7 }, { 5, 5 }, { 7, 2 }, { 8, 8 },           },
     { { 2, 7 }, { 7, 2 }, { 6, 7 }, { 7, 6 },           },
     { { 2, 7 }, { 5, 5 }, { 7, 2 }, { 6, 7 }, { 7, 6 }, },
3bbb0bf8
 };
967d397a
 
2fbbd087
 /**
5066f515
  * Symmetrical Dequantization
  * reference: Section 7.3.3 Expansion of Mantissas for Symmetrical Quantization
  *            Tables 7.19 to 7.23
  */
a4de6dd2
 static inline int
5aefe3eb
 symmetric_dequant(int code, int levels)
98a27a8a
 {
a4de6dd2
     return ((code - (levels >> 1)) << 24) / levels;
98a27a8a
 }
 
c7cfc48f
 /*
  * Initialize tables at runtime.
  */
98a6fff9
 static av_cold void ac3_tables_init(void)
00585845
 {
4415076f
     int i;
98a27a8a
 
7417120b
     /* generate table for ungrouping 3 values in 7 bits
        reference: Section 7.1.3 Exponent Decoding */
541d083a
     for (i = 0; i < 128; i++) {
7417120b
         ungroup_3_in_7_bits_tab[i][0] =  i / 25;
         ungroup_3_in_7_bits_tab[i][1] = (i % 25) / 5;
         ungroup_3_in_7_bits_tab[i][2] = (i % 25) % 5;
     }
 
5aefe3eb
     /* generate grouped mantissa tables
        reference: Section 7.3.5 Ungrouping of Mantissas */
541d083a
     for (i = 0; i < 32; i++) {
5aefe3eb
         /* bap=1 mantissas */
602116df
         b1_mantissas[i][0] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][0], 3);
         b1_mantissas[i][1] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][1], 3);
         b1_mantissas[i][2] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][2], 3);
5aefe3eb
     }
541d083a
     for (i = 0; i < 128; i++) {
5aefe3eb
         /* bap=2 mantissas */
7417120b
         b2_mantissas[i][0] = symmetric_dequant(ungroup_3_in_7_bits_tab[i][0], 5);
         b2_mantissas[i][1] = symmetric_dequant(ungroup_3_in_7_bits_tab[i][1], 5);
         b2_mantissas[i][2] = symmetric_dequant(ungroup_3_in_7_bits_tab[i][2], 5);
5aefe3eb
 
         /* bap=4 mantissas */
         b4_mantissas[i][0] = symmetric_dequant(i / 11, 11);
         b4_mantissas[i][1] = symmetric_dequant(i % 11, 11);
     }
     /* generate ungrouped mantissa tables
        reference: Tables 7.21 and 7.23 */
541d083a
     for (i = 0; i < 7; i++) {
5aefe3eb
         /* bap=3 mantissas */
         b3_mantissas[i] = symmetric_dequant(i, 7);
     }
541d083a
     for (i = 0; i < 15; i++) {
5aefe3eb
         /* bap=5 mantissas */
         b5_mantissas[i] = symmetric_dequant(i, 15);
     }
c7cfc48f
 
3357ff33
     /* generate dynamic range table
        reference: Section 7.7.1 Dynamic Range Control */
541d083a
     for (i = 0; i < 256; i++) {
3357ff33
         int v = (i >> 5) - ((i >> 7) << 3) - 5;
e2270b4e
         dynamic_range_tab[i] = powf(2.0f, v) * ((i & 0x1F) | 0x20);
3357ff33
     }
00585845
 }
 
5066f515
 /**
  * AVCodec initialization
  */
98a6fff9
 static av_cold int ac3_decode_init(AVCodecContext *avctx)
1b293437
 {
d802d7ca
     AC3DecodeContext *s = avctx->priv_data;
     s->avctx = avctx;
1b293437
 
dff80041
     ff_ac3_common_init();
98a27a8a
     ac3_tables_init();
7d485f16
     ff_mdct_init(&s->imdct_256, 8, 1, 1.0);
     ff_mdct_init(&s->imdct_512, 9, 1, 1.0);
3ed546fe
     ff_kbd_window_init(s->window, 5.0, 256);
9cf0841e
     ff_dsputil_init(&s->dsp, avctx);
6d9f52b2
     ff_ac3dsp_init(&s->ac3dsp, avctx->flags & CODEC_FLAG_BITEXACT);
fe2ff6d2
     ff_fmt_convert_init(&s->fmt_conv, avctx);
ec0350c9
     av_lfg_init(&s->dith_state, 0);
2aa2c5c4
 
b5ec6383
     /* set scale value for float to int16 conversion */
9aa8193a
     if (avctx->request_sample_fmt == AV_SAMPLE_FMT_FLT) {
         s->mul_bias = 1.0f;
         avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
     } else {
         s->mul_bias = 32767.0f;
         avctx->sample_fmt = AV_SAMPLE_FMT_S16;
     }
4e092320
 
95283c17
     /* allow downmixing to stereo or mono */
     if (avctx->channels > 0 && avctx->request_channels > 0 &&
             avctx->request_channels < avctx->channels &&
             avctx->request_channels <= 2) {
         avctx->channels = avctx->request_channels;
     }
38dae9c3
     s->downmixed = 1;
95283c17
 
0eea2129
     avcodec_get_frame_defaults(&s->frame);
     avctx->coded_frame = &s->frame;
 
1b293437
     return 0;
2aa2c5c4
 }
 
9fc1ab72
 /**
5066f515
  * Parse the 'sync info' and 'bit stream info' from the AC-3 bitstream.
c7cfc48f
  * GetBitContext within AC3DecodeContext must point to
14b70628
  * the start of the synchronized AC-3 bitstream.
c7cfc48f
  */
d802d7ca
 static int ac3_parse_header(AC3DecodeContext *s)
2aa2c5c4
 {
4397d95c
     GetBitContext *gbc = &s->gbc;
     int i;
 
     /* read the rest of the bsi. read twice for dual mono mode. */
3dc99a18
     i = !s->channel_mode;
4397d95c
     do {
         skip_bits(gbc, 5); // skip dialog normalization
         if (get_bits1(gbc))
             skip_bits(gbc, 8); //skip compression
         if (get_bits1(gbc))
             skip_bits(gbc, 8); //skip language code
         if (get_bits1(gbc))
             skip_bits(gbc, 7); //skip audio production information
     } while (i--);
 
     skip_bits(gbc, 2); //skip copyright bit and original bitstream bit
 
     /* skip the timecodes (or extra bitstream information for Alternate Syntax)
        TODO: read & use the xbsi1 downmix levels */
     if (get_bits1(gbc))
         skip_bits(gbc, 14); //skip timecode1 / xbsi1
     if (get_bits1(gbc))
         skip_bits(gbc, 14); //skip timecode2 / xbsi2
 
     /* skip additional bitstream info */
     if (get_bits1(gbc)) {
         i = get_bits(gbc, 6);
         do {
             skip_bits(gbc, 8);
541d083a
         } while (i--);
4397d95c
     }
 
     return 0;
 }
 
 /**
14b70628
  * Common function to parse AC-3 or E-AC-3 frame header
4397d95c
  */
 static int parse_frame_header(AC3DecodeContext *s)
 {
9fc1ab72
     AC3HeaderInfo hdr;
4397d95c
     int err;
9fc1ab72
 
6f89efea
     err = avpriv_ac3_parse_header(&s->gbc, &hdr);
541d083a
     if (err)
9fc1ab72
         return err;
 
     /* get decoding parameters from header info */
d802d7ca
     s->bit_alloc_params.sr_code     = hdr.sr_code;
be187388
     s->bitstream_mode               = hdr.bitstream_mode;
d802d7ca
     s->channel_mode                 = hdr.channel_mode;
bfeca7be
     s->channel_layout               = hdr.channel_layout;
1b70d88b
     s->lfe_on                       = hdr.lfe_on;
d802d7ca
     s->bit_alloc_params.sr_shift    = hdr.sr_shift;
866181e5
     s->sample_rate                  = hdr.sample_rate;
d802d7ca
     s->bit_rate                     = hdr.bit_rate;
     s->channels                     = hdr.channels;
     s->fbw_channels                 = s->channels - s->lfe_on;
     s->lfe_ch                       = s->fbw_channels + 1;
     s->frame_size                   = hdr.frame_size;
55736cfb
     s->center_mix_level             = hdr.center_mix_level;
     s->surround_mix_level           = hdr.surround_mix_level;
6730e9f3
     s->num_blocks                   = hdr.num_blocks;
be5f17b9
     s->frame_type                   = hdr.frame_type;
3596aa6f
     s->substreamid                  = hdr.substreamid;
7bfd22f2
 
541d083a
     if (s->lfe_on) {
         s->start_freq[s->lfe_ch]     = 0;
         s->end_freq[s->lfe_ch]       = 7;
6e74513a
         s->num_exp_groups[s->lfe_ch] = 2;
         s->channel_in_cpl[s->lfe_ch] = 0;
     }
 
bf09b550
     if (hdr.bitstream_id <= 10) {
         s->eac3                  = 0;
         s->snr_offset_strategy   = 2;
         s->block_switch_syntax   = 1;
         s->dither_flag_syntax    = 1;
         s->bit_allocation_syntax = 1;
         s->fast_gain_syntax      = 0;
         s->first_cpl_leak        = 0;
         s->dba_syntax            = 1;
         s->skip_syntax           = 1;
         memset(s->channel_uses_aht, 0, sizeof(s->channel_uses_aht));
ab2a942a
         return ac3_parse_header(s);
d1515324
     } else if (CONFIG_EAC3_DECODER) {
1f6a594d
         s->eac3 = 1;
         return ff_eac3_parse_header(s);
d1515324
     } else {
         av_log(s->avctx, AV_LOG_ERROR, "E-AC-3 support not compiled in\n");
         return -1;
bf09b550
     }
f0b3a7ba
 }
 
 /**
  * Set stereo downmixing coefficients based on frame header info.
  * reference: Section 7.8.2 Downmixing Into Two Channels
  */
 static void set_downmix_coeffs(AC3DecodeContext *s)
 {
     int i;
99a42f3f
     float cmix = gain_levels[s->  center_mix_level];
     float smix = gain_levels[s->surround_mix_level];
557ac0c4
     float norm0, norm1;
f0b3a7ba
 
541d083a
     for (i = 0; i < s->fbw_channels; i++) {
d802d7ca
         s->downmix_coeffs[i][0] = gain_levels[ac3_default_coeffs[s->channel_mode][i][0]];
         s->downmix_coeffs[i][1] = gain_levels[ac3_default_coeffs[s->channel_mode][i][1]];
3bbb0bf8
     }
541d083a
     if (s->channel_mode > 1 && s->channel_mode & 1) {
f0b3a7ba
         s->downmix_coeffs[1][0] = s->downmix_coeffs[1][1] = cmix;
3bbb0bf8
     }
541d083a
     if (s->channel_mode == AC3_CHMODE_2F1R || s->channel_mode == AC3_CHMODE_3F1R) {
d802d7ca
         int nf = s->channel_mode - 2;
f0b3a7ba
         s->downmix_coeffs[nf][0] = s->downmix_coeffs[nf][1] = smix * LEVEL_MINUS_3DB;
3bbb0bf8
     }
541d083a
     if (s->channel_mode == AC3_CHMODE_2F2R || s->channel_mode == AC3_CHMODE_3F2R) {
d802d7ca
         int nf = s->channel_mode - 4;
f0b3a7ba
         s->downmix_coeffs[nf][0] = s->downmix_coeffs[nf+1][1] = smix;
3bbb0bf8
     }
9d10e6e6
 
557ac0c4
     /* renormalize */
     norm0 = norm1 = 0.0;
541d083a
     for (i = 0; i < s->fbw_channels; i++) {
557ac0c4
         norm0 += s->downmix_coeffs[i][0];
         norm1 += s->downmix_coeffs[i][1];
     }
     norm0 = 1.0f / norm0;
     norm1 = 1.0f / norm1;
541d083a
     for (i = 0; i < s->fbw_channels; i++) {
557ac0c4
         s->downmix_coeffs[i][0] *= norm0;
         s->downmix_coeffs[i][1] *= norm1;
     }
 
541d083a
     if (s->output_mode == AC3_CHMODE_MONO) {
         for (i = 0; i < s->fbw_channels; i++)
             s->downmix_coeffs[i][0] = (s->downmix_coeffs[i][0] +
                                        s->downmix_coeffs[i][1]) * LEVEL_MINUS_3DB;
9d10e6e6
     }
2aa2c5c4
 }
 
3bb004fc
 /**
5066f515
  * Decode the grouped exponents according to exponent strategy.
  * reference: Section 7.1.3 Exponent Decoding
2aa2c5c4
  */
ce7d842f
 static int decode_exponents(GetBitContext *gbc, int exp_strategy, int ngrps,
80670324
                             uint8_t absexp, int8_t *dexps)
2aa2c5c4
 {
e2270b4e
     int i, j, grp, group_size;
4415076f
     int dexp[256];
     int expacc, prevexp;
 
     /* unpack groups */
e2270b4e
     group_size = exp_strategy + (exp_strategy == EXP_D45);
541d083a
     for (grp = 0, i = 0; grp < ngrps; grp++) {
23c8cb89
         expacc = get_bits(gbc, 7);
7417120b
         dexp[i++] = ungroup_3_in_7_bits_tab[expacc][0];
         dexp[i++] = ungroup_3_in_7_bits_tab[expacc][1];
         dexp[i++] = ungroup_3_in_7_bits_tab[expacc][2];
4415076f
     }
2aa2c5c4
 
4415076f
     /* convert to absolute exps and expand groups */
     prevexp = absexp;
541d083a
     for (i = 0, j = 0; i < ngrps * 3; i++) {
ce7d842f
         prevexp += dexp[i] - 2;
2ceccf04
         if (prevexp > 24U)
ce7d842f
             return -1;
96f229d6
         switch (group_size) {
541d083a
         case 4: dexps[j++] = prevexp;
                 dexps[j++] = prevexp;
         case 2: dexps[j++] = prevexp;
         case 1: dexps[j++] = prevexp;
1b293437
         }
2aa2c5c4
     }
ce7d842f
     return 0;
2aa2c5c4
 }
 
d7dc7ad0
 /**
5066f515
  * Generate transform coefficients for each coupled channel in the coupling
d7dc7ad0
  * range using the coupling coefficients and coupling coordinates.
  * reference: Section 7.4.3 Coupling Coordinate Format
  */
5e3e4075
 static void calc_transform_coeffs_cpl(AC3DecodeContext *s)
d7dc7ad0
 {
3b6c5ad2
     int bin, band, ch;
02587373
 
     bin = s->start_freq[CPL_CH];
     for (band = 0; band < s->num_cpl_bands; band++) {
8b11b44e
         int band_start = bin;
3b6c5ad2
         int band_end = bin + s->cpl_band_sizes[band];
8b11b44e
         for (ch = 1; ch <= s->fbw_channels; ch++) {
             if (s->channel_in_cpl[ch]) {
1460c790
                 int cpl_coord = s->cpl_coords[ch][band] << 5;
8b11b44e
                 for (bin = band_start; bin < band_end; bin++) {
541d083a
                     s->fixed_coeffs[ch][bin] =
                         MULH(s->fixed_coeffs[CPL_CH][bin] << 4, cpl_coord);
8b11b44e
                 }
                 if (ch == 2 && s->phase_flags[band]) {
                     for (bin = band_start; bin < band_end; bin++)
                         s->fixed_coeffs[2][bin] = -s->fixed_coeffs[2][bin];
d7dc7ad0
                 }
b972c06a
             }
60313902
         }
8b11b44e
         bin = band_end;
d7dc7ad0
     }
 }
 
5066f515
 /**
  * Grouped mantissas for 3-level 5-level and 11-level quantization
  */
 typedef struct {
d869a460
     int b1_mant[2];
     int b2_mant[2];
     int b4_mant;
     int b1;
     int b2;
     int b4;
486637af
 } mant_groups;
 
5066f515
 /**
e522bd49
  * Decode the transform coefficients for a particular channel
5066f515
  * reference: Section 7.3 Quantization and Decoding of Mantissas
  */
e43b29ab
 static void ac3_decode_transform_coeffs_ch(AC3DecodeContext *s, int ch_index, mant_groups *m)
1b293437
 {
d869a460
     int start_freq = s->start_freq[ch_index];
541d083a
     int end_freq   = s->end_freq[ch_index];
     uint8_t *baps  = s->bap[ch_index];
     int8_t *exps   = s->dexps[ch_index];
     int *coeffs    = s->fixed_coeffs[ch_index];
     int dither     = (ch_index == CPL_CH) || s->dither_flag[ch_index];
d802d7ca
     GetBitContext *gbc = &s->gbc;
d869a460
     int freq;
2fbbd087
 
541d083a
     for (freq = start_freq; freq < end_freq; freq++) {
d869a460
         int bap = baps[freq];
         int mantissa;
541d083a
         switch (bap) {
         case 0:
             if (dither)
                 mantissa = (av_lfg_get(&s->dith_state) & 0x7FFFFF) - 0x400000;
             else
                 mantissa = 0;
             break;
         case 1:
             if (m->b1) {
                 m->b1--;
                 mantissa = m->b1_mant[m->b1];
             } else {
                 int bits      = get_bits(gbc, 5);
                 mantissa      = b1_mantissas[bits][0];
                 m->b1_mant[1] = b1_mantissas[bits][1];
                 m->b1_mant[0] = b1_mantissas[bits][2];
                 m->b1         = 2;
             }
             break;
         case 2:
             if (m->b2) {
                 m->b2--;
                 mantissa = m->b2_mant[m->b2];
             } else {
                 int bits      = get_bits(gbc, 7);
                 mantissa      = b2_mantissas[bits][0];
                 m->b2_mant[1] = b2_mantissas[bits][1];
                 m->b2_mant[0] = b2_mantissas[bits][2];
                 m->b2         = 2;
             }
             break;
         case 3:
             mantissa = b3_mantissas[get_bits(gbc, 3)];
             break;
         case 4:
             if (m->b4) {
                 m->b4 = 0;
                 mantissa = m->b4_mant;
             } else {
                 int bits   = get_bits(gbc, 7);
                 mantissa   = b4_mantissas[bits][0];
                 m->b4_mant = b4_mantissas[bits][1];
                 m->b4      = 1;
             }
             break;
         case 5:
             mantissa = b5_mantissas[get_bits(gbc, 4)];
             break;
         default: /* 6 to 15 */
             /* Shift mantissa and sign-extend it. */
             mantissa = get_sbits(gbc, quantization_tab[bap]);
             mantissa <<= 24 - quantization_tab[bap];
             break;
1b293437
         }
d869a460
         coeffs[freq] = mantissa >> exps[freq];
1b293437
     }
 }
 
60f07fad
 /**
25dcd182
  * Remove random dithering from coupling range coefficients with zero-bit
  * mantissas for coupled channels which do not use dithering.
60f07fad
  * reference: Section 7.3.4 Dither for Zero Bit Mantissas (bap=0)
  */
d802d7ca
 static void remove_dithering(AC3DecodeContext *s) {
60f07fad
     int ch, i;
 
541d083a
     for (ch = 1; ch <= s->fbw_channels; ch++) {
         if (!s->dither_flag[ch] && s->channel_in_cpl[ch]) {
             for (i = s->start_freq[CPL_CH]; i < s->end_freq[CPL_CH]; i++) {
                 if (!s->bap[CPL_CH][i])
25dcd182
                     s->fixed_coeffs[ch][i] = 0;
60f07fad
             }
         }
     }
 }
 
6a68105e
 static void decode_transform_coeffs_ch(AC3DecodeContext *s, int blk, int ch,
541d083a
                                        mant_groups *m)
bf09b550
 {
     if (!s->channel_uses_aht[ch]) {
6a68105e
         ac3_decode_transform_coeffs_ch(s, ch, m);
bf09b550
     } else {
         /* if AHT is used, mantissas for all blocks are encoded in the first
            block of the frame. */
         int bin;
d1515324
         if (!blk && CONFIG_EAC3_DECODER)
6a68105e
             ff_eac3_decode_transform_coeffs_aht_ch(s, ch);
bf09b550
         for (bin = s->start_freq[ch]; bin < s->end_freq[ch]; bin++) {
ae04de31
             s->fixed_coeffs[ch][bin] = s->pre_mantissa[ch][bin][blk] >> s->dexps[ch][bin];
bf09b550
         }
     }
 }
 
5066f515
 /**
164e169f
  * Decode the transform coefficients.
c7cfc48f
  */
e43b29ab
 static void decode_transform_coeffs(AC3DecodeContext *s, int blk)
1b293437
 {
7b4076a7
     int ch, end;
1b293437
     int got_cplchan = 0;
486637af
     mant_groups m;
 
d869a460
     m.b1 = m.b2 = m.b4 = 0;
1b293437
 
d802d7ca
     for (ch = 1; ch <= s->channels; ch++) {
5066f515
         /* transform coefficients for full-bandwidth channel */
e43b29ab
         decode_transform_coeffs_ch(s, blk, ch, &m);
5066f515
         /* tranform coefficients for coupling channel come right after the
            coefficients for the first coupled channel*/
d802d7ca
         if (s->channel_in_cpl[ch])  {
486637af
             if (!got_cplchan) {
e43b29ab
                 decode_transform_coeffs_ch(s, blk, CPL_CH, &m);
5e3e4075
                 calc_transform_coeffs_cpl(s);
486637af
                 got_cplchan = 1;
             }
d802d7ca
             end = s->end_freq[CPL_CH];
eaf84d97
         } else {
d802d7ca
             end = s->end_freq[ch];
eaf84d97
         }
486637af
         do
bd98e9e2
             s->fixed_coeffs[ch][end] = 0;
541d083a
         while (++end < 256);
486637af
     }
1b293437
 
ea364c74
     /* zero the dithered coefficients for appropriate channels */
86662b1c
     remove_dithering(s);
2aa2c5c4
 }
 
8b60bbbf
 /**
5066f515
  * Stereo rematrixing.
8b60bbbf
  * reference: Section 7.5.4 Rematrixing : Decoding Technique
  */
d802d7ca
 static void do_rematrixing(AC3DecodeContext *s)
1b293437
 {
8b60bbbf
     int bnd, i;
2fbbd087
     int end, bndend;
 
d802d7ca
     end = FFMIN(s->end_freq[1], s->end_freq[2]);
1b293437
 
541d083a
     for (bnd = 0; bnd < s->num_rematrixing_bands; bnd++) {
         if (s->rematrixing_flags[bnd]) {
             bndend = FFMIN(end, ff_ac3_rematrix_band_tab[bnd + 1]);
             for (i = ff_ac3_rematrix_band_tab[bnd]; i < bndend; i++) {
2ed44396
                 int tmp0 = s->fixed_coeffs[1][i];
3fdccca0
                 s->fixed_coeffs[1][i] += s->fixed_coeffs[2][i];
2ed44396
                 s->fixed_coeffs[2][i]  = tmp0 - s->fixed_coeffs[2][i];
8b60bbbf
             }
         }
1b293437
     }
 }
2aa2c5c4
 
5066f515
 /**
  * Inverse MDCT Transform.
  * Convert frequency domain coefficients to time-domain audio samples.
  * reference: Section 7.9.4 Transformation Equations
  */
38dae9c3
 static inline void do_imdct(AC3DecodeContext *s, int channels)
486637af
 {
0de73a46
     int ch;
7b4076a7
 
541d083a
     for (ch = 1; ch <= channels; ch++) {
d802d7ca
         if (s->block_switch[ch]) {
916d5d6c
             int i;
541d083a
             float *x = s->tmp_output + 128;
             for (i = 0; i < 128; i++)
                 x[i] = s->transform_coeffs[ch][2 * i];
26f548bb
             s->imdct_256.imdct_half(&s->imdct_256, s->tmp_output, x);
541d083a
             s->dsp.vector_fmul_window(s->output[ch - 1], s->delay[ch - 1],
                                       s->tmp_output, s->window, 128);
             for (i = 0; i < 128; i++)
                 x[i] = s->transform_coeffs[ch][2 * i + 1];
             s->imdct_256.imdct_half(&s->imdct_256, s->delay[ch - 1], x);
eaf84d97
         } else {
26f548bb
             s->imdct_512.imdct_half(&s->imdct_512, s->tmp_output, s->transform_coeffs[ch]);
541d083a
             s->dsp.vector_fmul_window(s->output[ch - 1], s->delay[ch - 1],
                                       s->tmp_output, s->window, 128);
             memcpy(s->delay[ch - 1], s->tmp_output + 128, 128 * sizeof(float));
eaf84d97
         }
486637af
     }
 }
 
3bbb0bf8
 /**
5066f515
  * Downmix the output to mono or stereo.
3bbb0bf8
  */
541d083a
 void ff_ac3_downmix_c(float (*samples)[256], float (*matrix)[2],
                       int out_ch, int in_ch, int len)
3bbb0bf8
 {
     int i, j;
9d10e6e6
     float v0, v1;
541d083a
     if (out_ch == 2) {
         for (i = 0; i < len; i++) {
557ac0c4
             v0 = v1 = 0.0f;
541d083a
             for (j = 0; j < in_ch; j++) {
ac2e5564
                 v0 += samples[j][i] * matrix[j][0];
                 v1 += samples[j][i] * matrix[j][1];
557ac0c4
             }
             samples[0][i] = v0;
             samples[1][i] = v1;
3bbb0bf8
         }
541d083a
     } else if (out_ch == 1) {
         for (i = 0; i < len; i++) {
557ac0c4
             v0 = 0.0f;
541d083a
             for (j = 0; j < in_ch; j++)
ac2e5564
                 v0 += samples[j][i] * matrix[j][0];
557ac0c4
             samples[0][i] = v0;
3bbb0bf8
         }
     }
 }
 
5066f515
 /**
38dae9c3
  * Upmix delay samples from stereo to original channel layout.
  */
 static void ac3_upmix_delay(AC3DecodeContext *s)
 {
e6300276
     int channel_data_size = sizeof(s->delay[0]);
541d083a
     switch (s->channel_mode) {
     case AC3_CHMODE_DUALMONO:
     case AC3_CHMODE_STEREO:
         /* upmix mono to stereo */
         memcpy(s->delay[1], s->delay[0], channel_data_size);
         break;
     case AC3_CHMODE_2F2R:
         memset(s->delay[3], 0, channel_data_size);
     case AC3_CHMODE_2F1R:
         memset(s->delay[2], 0, channel_data_size);
         break;
     case AC3_CHMODE_3F2R:
         memset(s->delay[4], 0, channel_data_size);
     case AC3_CHMODE_3F1R:
         memset(s->delay[3], 0, channel_data_size);
     case AC3_CHMODE_3F:
         memcpy(s->delay[2], s->delay[1], channel_data_size);
         memset(s->delay[1], 0, channel_data_size);
         break;
38dae9c3
     }
 }
 
 /**
0c5d750d
  * Decode band structure for coupling, spectral extension, or enhanced coupling.
eb98cdfa
  * The band structure defines how many subbands are in each band.  For each
  * subband in the range, 1 means it is combined with the previous band, and 0
  * means that it starts a new band.
  *
0c5d750d
  * @param[in] gbc bit reader context
  * @param[in] blk block number
  * @param[in] eac3 flag to indicate E-AC-3
  * @param[in] ecpl flag to indicate enhanced coupling
  * @param[in] start_subband subband number for start of range
  * @param[in] end_subband subband number for end of range
  * @param[in] default_band_struct default band structure table
  * @param[out] num_bands number of bands (optionally NULL)
  * @param[out] band_sizes array containing the number of bins in each band (optionally NULL)
  */
 static void decode_band_structure(GetBitContext *gbc, int blk, int eac3,
                                   int ecpl, int start_subband, int end_subband,
                                   const uint8_t *default_band_struct,
c36ea060
                                   int *num_bands, uint8_t *band_sizes)
0c5d750d
 {
f23dc1e1
     int subbnd, bnd, n_subbands, n_bands=0;
75b53b21
     uint8_t bnd_sz[22];
3f937168
     uint8_t coded_band_struct[22];
     const uint8_t *band_struct;
0c5d750d
 
     n_subbands = end_subband - start_subband;
 
     /* decode band structure from bitstream or use default */
     if (!eac3 || get_bits1(gbc)) {
         for (subbnd = 0; subbnd < n_subbands - 1; subbnd++) {
3f937168
             coded_band_struct[subbnd] = get_bits1(gbc);
0c5d750d
         }
3f937168
         band_struct = coded_band_struct;
0c5d750d
     } else if (!blk) {
3f937168
         band_struct = &default_band_struct[start_subband+1];
     } else {
         /* no change in band structure */
         return;
0c5d750d
     }
 
     /* calculate number of bands and band sizes based on band structure.
        note that the first 4 subbands in enhanced coupling span only 6 bins
        instead of 12. */
     if (num_bands || band_sizes ) {
e202cc25
         n_bands = n_subbands;
0c5d750d
         bnd_sz[0] = ecpl ? 6 : 12;
         for (bnd = 0, subbnd = 1; subbnd < n_subbands; subbnd++) {
             int subbnd_size = (ecpl && subbnd < 4) ? 6 : 12;
541d083a
             if (band_struct[subbnd - 1]) {
0c5d750d
                 n_bands--;
                 bnd_sz[bnd] += subbnd_size;
             } else {
                 bnd_sz[++bnd] = subbnd_size;
             }
         }
     }
 
     /* set optional output params */
     if (num_bands)
         *num_bands = n_bands;
     if (band_sizes)
75b53b21
         memcpy(band_sizes, bnd_sz, n_bands);
0c5d750d
 }
 
 /**
022845ed
  * Decode a single audio block from the AC-3 bitstream.
c7cfc48f
  */
022845ed
 static int decode_audio_block(AC3DecodeContext *s, int blk)
2aa2c5c4
 {
d802d7ca
     int fbw_channels = s->fbw_channels;
     int channel_mode = s->channel_mode;
0bff58a5
     int i, bnd, seg, ch;
38dae9c3
     int different_transforms;
     int downmix_output;
54624396
     int cpl_in_use;
d802d7ca
     GetBitContext *gbc = &s->gbc;
a92be9b8
     uint8_t bit_alloc_stages[AC3_MAX_CHANNELS] = { 0 };
7b4076a7
 
5066f515
     /* block switch flags */
38dae9c3
     different_transforms = 0;
bf09b550
     if (s->block_switch_syntax) {
ab2a942a
         for (ch = 1; ch <= fbw_channels; ch++) {
             s->block_switch[ch] = get_bits1(gbc);
541d083a
             if (ch > 1 && s->block_switch[ch] != s->block_switch[1])
ab2a942a
                 different_transforms = 1;
         }
bf09b550
     }
98a27a8a
 
5066f515
     /* dithering flags */
bf09b550
     if (s->dither_flag_syntax) {
ab2a942a
         for (ch = 1; ch <= fbw_channels; ch++) {
             s->dither_flag[ch] = get_bits1(gbc);
         }
bf09b550
     }
98a27a8a
 
77416325
     /* dynamic range */
3dc99a18
     i = !s->channel_mode;
77416325
     do {
541d083a
         if (get_bits1(gbc)) {
             s->dynamic_range[i] = ((dynamic_range_tab[get_bits(gbc, 8)] - 1.0) *
                                   s->drc_scale) + 1.0;
         } else if (blk == 0) {
d802d7ca
             s->dynamic_range[i] = 1.0f;
9fc1ab72
         }
541d083a
     } while (i--);
98a27a8a
 
6fafb020
     /* spectral extension strategy */
     if (s->eac3 && (!blk || get_bits1(gbc))) {
ca6e7708
         s->spx_in_use = get_bits1(gbc);
         if (s->spx_in_use) {
             int dst_start_freq, dst_end_freq, src_start_freq,
                 start_subband, end_subband;
 
             /* determine which channels use spx */
             if (s->channel_mode == AC3_CHMODE_MONO) {
                 s->channel_uses_spx[1] = 1;
             } else {
                 for (ch = 1; ch <= fbw_channels; ch++)
                     s->channel_uses_spx[ch] = get_bits1(gbc);
             }
 
             /* get the frequency bins of the spx copy region and the spx start
                and end subbands */
             dst_start_freq = get_bits(gbc, 2);
             start_subband  = get_bits(gbc, 3) + 2;
             if (start_subband > 7)
                 start_subband += start_subband - 7;
             end_subband    = get_bits(gbc, 3) + 5;
             if (end_subband   > 7)
                 end_subband   += end_subband   - 7;
             dst_start_freq = dst_start_freq * 12 + 25;
             src_start_freq = start_subband  * 12 + 25;
             dst_end_freq   = end_subband    * 12 + 25;
 
             /* check validity of spx ranges */
             if (start_subband >= end_subband) {
                 av_log(s->avctx, AV_LOG_ERROR, "invalid spectral extension "
                        "range (%d >= %d)\n", start_subband, end_subband);
                 return -1;
             }
             if (dst_start_freq >= src_start_freq) {
                 av_log(s->avctx, AV_LOG_ERROR, "invalid spectral extension "
                        "copy start bin (%d >= %d)\n", dst_start_freq, src_start_freq);
                 return -1;
             }
 
             s->spx_dst_start_freq = dst_start_freq;
             s->spx_src_start_freq = src_start_freq;
             s->spx_dst_end_freq   = dst_end_freq;
 
             decode_band_structure(gbc, blk, s->eac3, 0,
                                   start_subband, end_subband,
                                   ff_eac3_default_spx_band_struct,
                                   &s->num_spx_bands,
                                   s->spx_band_sizes);
         } else {
             for (ch = 1; ch <= fbw_channels; ch++) {
                 s->channel_uses_spx[ch] = 0;
                 s->first_spx_coords[ch] = 1;
             }
6fafb020
         }
     }
 
ca6e7708
     /* spectral extension coordinates */
     if (s->spx_in_use) {
         for (ch = 1; ch <= fbw_channels; ch++) {
             if (s->channel_uses_spx[ch]) {
                 if (s->first_spx_coords[ch] || get_bits1(gbc)) {
                     float spx_blend;
                     int bin, master_spx_coord;
 
                     s->first_spx_coords[ch] = 0;
                     spx_blend = get_bits(gbc, 5) * (1.0f/32);
                     master_spx_coord = get_bits(gbc, 2) * 3;
 
                     bin = s->spx_src_start_freq;
                     for (bnd = 0; bnd < s->num_spx_bands; bnd++) {
                         int bandsize;
                         int spx_coord_exp, spx_coord_mant;
                         float nratio, sblend, nblend, spx_coord;
 
                         /* calculate blending factors */
                         bandsize = s->spx_band_sizes[bnd];
                         nratio = ((float)((bin + (bandsize >> 1))) / s->spx_dst_end_freq) - spx_blend;
                         nratio = av_clipf(nratio, 0.0f, 1.0f);
541d083a
                         nblend = sqrtf(3.0f * nratio); // noise is scaled by sqrt(3)
                                                        // to give unity variance
ca6e7708
                         sblend = sqrtf(1.0f - nratio);
                         bin += bandsize;
 
                         /* decode spx coordinates */
                         spx_coord_exp  = get_bits(gbc, 4);
                         spx_coord_mant = get_bits(gbc, 2);
                         if (spx_coord_exp == 15) spx_coord_mant <<= 1;
                         else                     spx_coord_mant += 4;
                         spx_coord_mant <<= (25 - spx_coord_exp - master_spx_coord);
541d083a
                         spx_coord = spx_coord_mant * (1.0f / (1 << 23));
ca6e7708
 
                         /* multiply noise and signal blending factors by spx coordinate */
                         s->spx_noise_blend [ch][bnd] = nblend * spx_coord;
                         s->spx_signal_blend[ch][bnd] = sblend * spx_coord;
                     }
                 }
             } else {
                 s->first_spx_coords[ch] = 1;
             }
         }
     }
6fafb020
 
5066f515
     /* coupling strategy */
225c3042
     if (s->eac3 ? s->cpl_strategy_exists[blk] : get_bits1(gbc)) {
7b4076a7
         memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
6fafb020
         if (!s->eac3)
0569993e
             s->cpl_in_use[blk] = get_bits1(gbc);
4760aec6
         if (s->cpl_in_use[blk]) {
5066f515
             /* coupling in use */
24834c19
             int cpl_start_subband, cpl_end_subband;
b6acc57f
 
3af91313
             if (channel_mode < AC3_CHMODE_STEREO) {
                 av_log(s->avctx, AV_LOG_ERROR, "coupling not allowed in mono or dual-mono\n");
                 return -1;
             }
 
6fafb020
             /* check for enhanced coupling */
             if (s->eac3 && get_bits1(gbc)) {
                 /* TODO: parse enhanced coupling strategy info */
ce863d7f
                 av_log_missing_feature(s->avctx, "Enhanced coupling", 1);
6fafb020
                 return -1;
             }
 
5066f515
             /* determine which channels are coupled */
6fafb020
             if (s->eac3 && s->channel_mode == AC3_CHMODE_STEREO) {
                 s->channel_in_cpl[1] = 1;
                 s->channel_in_cpl[2] = 1;
             } else {
0569993e
                 for (ch = 1; ch <= fbw_channels; ch++)
                     s->channel_in_cpl[ch] = get_bits1(gbc);
6fafb020
             }
98a27a8a
 
5066f515
             /* phase flags in use */
e59cc205
             if (channel_mode == AC3_CHMODE_STEREO)
d802d7ca
                 s->phase_flags_in_use = get_bits1(gbc);
98a27a8a
 
6fafb020
             /* coupling frequency range */
24834c19
             cpl_start_subband = get_bits(gbc, 4);
ca6e7708
             cpl_end_subband = s->spx_in_use ? (s->spx_src_start_freq - 37) / 12 :
                                               get_bits(gbc, 4) + 3;
1ac7d1ac
             if (cpl_start_subband >= cpl_end_subband) {
                 av_log(s->avctx, AV_LOG_ERROR, "invalid coupling range (%d >= %d)\n",
6ee6d068
                        cpl_start_subband, cpl_end_subband);
00585845
                 return -1;
98a27a8a
             }
24834c19
             s->start_freq[CPL_CH] = cpl_start_subband * 12 + 37;
6ee6d068
             s->end_freq[CPL_CH]   = cpl_end_subband   * 12 + 37;
6fafb020
 
778bc09b
             decode_band_structure(gbc, blk, s->eac3, 0, cpl_start_subband,
                                   cpl_end_subband,
                                   ff_eac3_default_cpl_band_struct,
c36ea060
                                   &s->num_cpl_bands, s->cpl_band_sizes);
878c40a1
         } else {
5066f515
             /* coupling not in use */
6fafb020
             for (ch = 1; ch <= fbw_channels; ch++) {
d802d7ca
                 s->channel_in_cpl[ch] = 0;
6fafb020
                 s->first_cpl_coords[ch] = 1;
             }
63d72fb1
             s->first_cpl_leak = s->eac3;
6fafb020
             s->phase_flags_in_use = 0;
1b293437
         }
6fafb020
     } else if (!s->eac3) {
541d083a
         if (!blk) {
             av_log(s->avctx, AV_LOG_ERROR, "new coupling strategy must "
                    "be present in block 0\n");
0569993e
             return -1;
         } else {
             s->cpl_in_use[blk] = s->cpl_in_use[blk-1];
         }
6fafb020
     }
4760aec6
     cpl_in_use = s->cpl_in_use[blk];
98a27a8a
 
5066f515
     /* coupling coordinates */
54624396
     if (cpl_in_use) {
e2270b4e
         int cpl_coords_exist = 0;
98a27a8a
 
e2270b4e
         for (ch = 1; ch <= fbw_channels; ch++) {
d802d7ca
             if (s->channel_in_cpl[ch]) {
225c3042
                 if ((s->eac3 && s->first_cpl_coords[ch]) || get_bits1(gbc)) {
e2270b4e
                     int master_cpl_coord, cpl_coord_exp, cpl_coord_mant;
225c3042
                     s->first_cpl_coords[ch] = 0;
e2270b4e
                     cpl_coords_exist = 1;
23c8cb89
                     master_cpl_coord = 3 * get_bits(gbc, 2);
d802d7ca
                     for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
23c8cb89
                         cpl_coord_exp = get_bits(gbc, 4);
                         cpl_coord_mant = get_bits(gbc, 4);
e2270b4e
                         if (cpl_coord_exp == 15)
a4de6dd2
                             s->cpl_coords[ch][bnd] = cpl_coord_mant << 22;
486637af
                         else
a4de6dd2
                             s->cpl_coords[ch][bnd] = (cpl_coord_mant + 16) << 21;
                         s->cpl_coords[ch][bnd] >>= (cpl_coord_exp + master_cpl_coord);
486637af
                     }
82a591d8
                 } else if (!blk) {
541d083a
                     av_log(s->avctx, AV_LOG_ERROR, "new coupling coordinates must "
                            "be present in block 0\n");
82a591d8
                     return -1;
486637af
                 }
225c3042
             } else {
                 /* channel not in coupling */
                 s->first_cpl_coords[ch] = 1;
eaf84d97
             }
         }
5066f515
         /* phase flags */
b02fbf75
         if (channel_mode == AC3_CHMODE_STEREO && cpl_coords_exist) {
d802d7ca
             for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
b02fbf75
                 s->phase_flags[bnd] = s->phase_flags_in_use? get_bits1(gbc) : 0;
eaf84d97
             }
         }
2aa2c5c4
     }
98a27a8a
 
5066f515
     /* stereo rematrixing strategy and band structure */
e59cc205
     if (channel_mode == AC3_CHMODE_STEREO) {
6fafb020
         if ((s->eac3 && !blk) || get_bits1(gbc)) {
d802d7ca
             s->num_rematrixing_bands = 4;
ca6e7708
             if (cpl_in_use && s->start_freq[CPL_CH] <= 61) {
e202cc25
                 s->num_rematrixing_bands -= 1 + (s->start_freq[CPL_CH] == 37);
ca6e7708
             } else if (s->spx_in_use && s->spx_src_start_freq <= 61) {
                 s->num_rematrixing_bands--;
             }
541d083a
             for (bnd = 0; bnd < s->num_rematrixing_bands; bnd++)
d802d7ca
                 s->rematrixing_flags[bnd] = get_bits1(gbc);
82a591d8
         } else if (!blk) {
541d083a
             av_log(s->avctx, AV_LOG_WARNING, "Warning: "
                    "new rematrixing strategy not present in block 0\n");
535497f1
             s->num_rematrixing_bands = 0;
1b293437
         }
98a27a8a
     }
 
5066f515
     /* exponent strategies for each channel */
54624396
     for (ch = !cpl_in_use; ch <= s->channels; ch++) {
6b4bfed9
         if (!s->eac3)
aec0407f
             s->exp_strategy[blk][ch] = get_bits(gbc, 2 - (ch == s->lfe_ch));
541d083a
         if (s->exp_strategy[blk][ch] != EXP_REUSE)
7b4076a7
             bit_alloc_stages[ch] = 3;
     }
 
5066f515
     /* channel bandwidth */
e2270b4e
     for (ch = 1; ch <= fbw_channels; ch++) {
d802d7ca
         s->start_freq[ch] = 0;
da04be10
         if (s->exp_strategy[blk][ch] != EXP_REUSE) {
b85a15fe
             int group_size;
d802d7ca
             int prev = s->end_freq[ch];
             if (s->channel_in_cpl[ch])
                 s->end_freq[ch] = s->start_freq[CPL_CH];
ca6e7708
             else if (s->channel_uses_spx[ch])
                 s->end_freq[ch] = s->spx_src_start_freq;
00585845
             else {
23c8cb89
                 int bandwidth_code = get_bits(gbc, 6);
e2270b4e
                 if (bandwidth_code > 60) {
6c6f9272
                     av_log(s->avctx, AV_LOG_ERROR, "bandwidth code = %d > 60\n", bandwidth_code);
00585845
                     return -1;
                 }
d802d7ca
                 s->end_freq[ch] = bandwidth_code * 3 + 73;
1b293437
             }
da04be10
             group_size = 3 << (s->exp_strategy[blk][ch] - 1);
541d083a
             s->num_exp_groups[ch] = (s->end_freq[ch] + group_size-4) / group_size;
             if (blk > 0 && s->end_freq[ch] != prev)
7b4076a7
                 memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
00585845
         }
eaf84d97
     }
da04be10
     if (cpl_in_use && s->exp_strategy[blk][CPL_CH] != EXP_REUSE) {
b85a15fe
         s->num_exp_groups[CPL_CH] = (s->end_freq[CPL_CH] - s->start_freq[CPL_CH]) /
da04be10
                                     (3 << (s->exp_strategy[blk][CPL_CH] - 1));
b85a15fe
     }
7b4076a7
 
5066f515
     /* decode exponents for each channel */
54624396
     for (ch = !cpl_in_use; ch <= s->channels; ch++) {
da04be10
         if (s->exp_strategy[blk][ch] != EXP_REUSE) {
d802d7ca
             s->dexps[ch][0] = get_bits(gbc, 4) << !ch;
ce7d842f
             if (decode_exponents(gbc, s->exp_strategy[blk][ch],
1cdd567f
                                  s->num_exp_groups[ch], s->dexps[ch][0],
                                  &s->dexps[ch][s->start_freq[ch]+!!ch])) {
ce7d842f
                 av_log(s->avctx, AV_LOG_ERROR, "exponent out-of-range\n");
                 return -1;
             }
541d083a
             if (ch != CPL_CH && ch != s->lfe_ch)
23c8cb89
                 skip_bits(gbc, 2); /* skip gainrng */
1b293437
         }
eaf84d97
     }
98a27a8a
 
5066f515
     /* bit allocation information */
bf09b550
     if (s->bit_allocation_syntax) {
ab2a942a
         if (get_bits1(gbc)) {
             s->bit_alloc_params.slow_decay = ff_ac3_slow_decay_tab[get_bits(gbc, 2)] >> s->bit_alloc_params.sr_shift;
             s->bit_alloc_params.fast_decay = ff_ac3_fast_decay_tab[get_bits(gbc, 2)] >> s->bit_alloc_params.sr_shift;
             s->bit_alloc_params.slow_gain  = ff_ac3_slow_gain_tab[get_bits(gbc, 2)];
             s->bit_alloc_params.db_per_bit = ff_ac3_db_per_bit_tab[get_bits(gbc, 2)];
e202cc25
             s->bit_alloc_params.floor  = ff_ac3_floor_tab[get_bits(gbc, 3)];
541d083a
             for (ch = !cpl_in_use; ch <= s->channels; ch++)
ab2a942a
                 bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
         } else if (!blk) {
541d083a
             av_log(s->avctx, AV_LOG_ERROR, "new bit allocation info must "
                    "be present in block 0\n");
ab2a942a
             return -1;
         }
bf09b550
     }
98a27a8a
 
5066f515
     /* signal-to-noise ratio offsets and fast gains (signal-to-mask ratios) */
541d083a
     if (!s->eac3 || !blk) {
         if (s->snr_offset_strategy && get_bits1(gbc)) {
f2e4eb62
             int snr = 0;
             int csnr;
             csnr = (get_bits(gbc, 6) - 15) << 4;
             for (i = ch = !cpl_in_use; ch <= s->channels; ch++) {
                 /* snr offset */
                 if (ch == i || s->snr_offset_strategy == 2)
                     snr = (csnr + get_bits(gbc, 4)) << 2;
                 /* run at least last bit allocation stage if snr offset changes */
541d083a
                 if (blk && s->snr_offset[ch] != snr) {
f2e4eb62
                     bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 1);
                 }
                 s->snr_offset[ch] = snr;
8dfc56ec
 
                 /* fast gain (normal AC-3 only) */
                 if (!s->eac3) {
                     int prev = s->fast_gain[ch];
f2e4eb62
                     s->fast_gain[ch] = ff_ac3_fast_gain_tab[get_bits(gbc, 3)];
8dfc56ec
                     /* run last 2 bit allocation stages if fast gain changes */
541d083a
                     if (blk && prev != s->fast_gain[ch])
8dfc56ec
                         bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
                 }
f2e4eb62
             }
8dfc56ec
         } else if (!s->eac3 && !blk) {
f2e4eb62
             av_log(s->avctx, AV_LOG_ERROR, "new snr offsets must be present in block 0\n");
             return -1;
8dfc56ec
         }
1b293437
     }
98a27a8a
 
6fafb020
     /* fast gain (E-AC-3 only) */
     if (s->fast_gain_syntax && get_bits1(gbc)) {
         for (ch = !cpl_in_use; ch <= s->channels; ch++) {
             int prev = s->fast_gain[ch];
             s->fast_gain[ch] = ff_ac3_fast_gain_tab[get_bits(gbc, 3)];
             /* run last 2 bit allocation stages if fast gain changes */
541d083a
             if (blk && prev != s->fast_gain[ch])
6fafb020
                 bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
         }
     } else if (s->eac3 && !blk) {
         for (ch = !cpl_in_use; ch <= s->channels; ch++)
             s->fast_gain[ch] = ff_ac3_fast_gain_tab[4];
     }
 
     /* E-AC-3 to AC-3 converter SNR offset */
     if (s->frame_type == EAC3_FRAME_TYPE_INDEPENDENT && get_bits1(gbc)) {
         skip_bits(gbc, 10); // skip converter snr offset
     }
 
5066f515
     /* coupling leak information */
54624396
     if (cpl_in_use) {
8dfc56ec
         if (s->first_cpl_leak || get_bits1(gbc)) {
             int fl = get_bits(gbc, 3);
             int sl = get_bits(gbc, 3);
             /* run last 2 bit allocation stages for coupling channel if
                coupling leak changes */
541d083a
             if (blk && (fl != s->bit_alloc_params.cpl_fast_leak ||
                 sl != s->bit_alloc_params.cpl_slow_leak)) {
f2e4eb62
                 bit_alloc_stages[CPL_CH] = FFMAX(bit_alloc_stages[CPL_CH], 2);
8dfc56ec
             }
             s->bit_alloc_params.cpl_fast_leak = fl;
             s->bit_alloc_params.cpl_slow_leak = sl;
         } else if (!s->eac3 && !blk) {
541d083a
             av_log(s->avctx, AV_LOG_ERROR, "new coupling leak info must "
                    "be present in block 0\n");
93a2c8c1
             return -1;
         }
8dfc56ec
         s->first_cpl_leak = 0;
43ad93a4
     }
98a27a8a
 
5066f515
     /* delta bit allocation information */
bf09b550
     if (s->dba_syntax && get_bits1(gbc)) {
5066f515
         /* delta bit allocation exists (strategy) */
54624396
         for (ch = !cpl_in_use; ch <= fbw_channels; ch++) {
d802d7ca
             s->dba_mode[ch] = get_bits(gbc, 2);
             if (s->dba_mode[ch] == DBA_RESERVED) {
                 av_log(s->avctx, AV_LOG_ERROR, "delta bit allocation strategy reserved\n");
1b293437
                 return -1;
             }
7b4076a7
             bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
1b293437
         }
5066f515
         /* channel delta offset, len and bit allocation */
54624396
         for (ch = !cpl_in_use; ch <= fbw_channels; ch++) {
d802d7ca
             if (s->dba_mode[ch] == DBA_NEW) {
4c64c8e9
                 s->dba_nsegs[ch] = get_bits(gbc, 3) + 1;
                 for (seg = 0; seg < s->dba_nsegs[ch]; seg++) {
d802d7ca
                     s->dba_offsets[ch][seg] = get_bits(gbc, 5);
                     s->dba_lengths[ch][seg] = get_bits(gbc, 4);
541d083a
                     s->dba_values[ch][seg]  = get_bits(gbc, 3);
1b293437
                 }
e25973a1
                 /* run last 2 bit allocation stages if new dba values */
                 bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
1b293437
             }
eaf84d97
         }
541d083a
     } else if (blk == 0) {
         for (ch = 0; ch <= s->channels; ch++) {
d802d7ca
             s->dba_mode[ch] = DBA_NONE;
9fc1ab72
         }
1b293437
     }
00585845
 
5066f515
     /* Bit allocation */
541d083a
     for (ch = !cpl_in_use; ch <= s->channels; ch++) {
         if (bit_alloc_stages[ch] > 2) {
7b4076a7
             /* Exponent mapping into PSD and PSD integration */
d802d7ca
             ff_ac3_bit_alloc_calc_psd(s->dexps[ch],
                                       s->start_freq[ch], s->end_freq[ch],
                                       s->psd[ch], s->band_psd[ch]);
eaf84d97
         }
541d083a
         if (bit_alloc_stages[ch] > 1) {
7b4076a7
             /* Compute excitation function, Compute masking curve, and
                Apply delta bit allocation */
72a6244b
             if (ff_ac3_bit_alloc_calc_mask(&s->bit_alloc_params, s->band_psd[ch],
541d083a
                                            s->start_freq[ch],  s->end_freq[ch],
                                            s->fast_gain[ch],   (ch == s->lfe_ch),
                                            s->dba_mode[ch],    s->dba_nsegs[ch],
20e04726
                                            s->dba_offsets[ch], s->dba_lengths[ch],
541d083a
                                            s->dba_values[ch],  s->mask[ch])) {
72a6244b
                 av_log(s->avctx, AV_LOG_ERROR, "error in bit allocation\n");
                 return -1;
             }
eaf84d97
         }
541d083a
         if (bit_alloc_stages[ch] > 0) {
7b4076a7
             /* Compute bit allocation */
bf09b550
             const uint8_t *bap_tab = s->channel_uses_aht[ch] ?
                                      ff_eac3_hebap_tab : ff_ac3_bap_tab;
6d9f52b2
             s->ac3dsp.bit_alloc_calc_bap(s->mask[ch], s->psd[ch],
d802d7ca
                                       s->start_freq[ch], s->end_freq[ch],
                                       s->snr_offset[ch],
                                       s->bit_alloc_params.floor,
bf09b550
                                       bap_tab, s->bap[ch]);
eaf84d97
         }
2fbbd087
     }
98a27a8a
 
5066f515
     /* unused dummy data */
bf09b550
     if (s->skip_syntax && get_bits1(gbc)) {
23c8cb89
         int skipl = get_bits(gbc, 9);
541d083a
         while (skipl--)
23c8cb89
             skip_bits(gbc, 8);
1b293437
     }
f5cefb21
 
1b293437
     /* unpack the transform coefficients
5066f515
        this also uncouples channels if coupling is in use. */
e43b29ab
     decode_transform_coeffs(s, blk);
486637af
 
bf09b550
     /* TODO: generate enhanced coupling coordinates and uncouple */
 
1b293437
     /* recover coefficients if rematrixing is in use */
541d083a
     if (s->channel_mode == AC3_CHMODE_STEREO)
d802d7ca
         do_rematrixing(s);
1b293437
 
03726b70
     /* apply scaling to coefficients (headroom, dynrng) */
541d083a
     for (ch = 1; ch <= s->channels; ch++) {
a4de6dd2
         float gain = s->mul_bias / 4194304.0f;
541d083a
         if (s->channel_mode == AC3_CHMODE_DUALMONO) {
             gain *= s->dynamic_range[2 - ch];
7bfd22f2
         } else {
d802d7ca
             gain *= s->dynamic_range[0];
7bfd22f2
         }
541d083a
         s->fmt_conv.int32_to_float_fmul_scalar(s->transform_coeffs[ch],
                                                s->fixed_coeffs[ch], gain, 256);
7bfd22f2
     }
d7bcc4ad
 
ca6e7708
     /* apply spectral extension to high frequency bins */
eb0a4d32
     if (s->spx_in_use && CONFIG_EAC3_DECODER) {
ca6e7708
         ff_eac3_apply_spectral_extension(s);
     }
 
38dae9c3
     /* downmix and MDCT. order depends on whether block switching is used for
        any channel in this block. this is because coefficients for the long
        and short transforms cannot be mixed. */
     downmix_output = s->channels != s->out_channels &&
                      !((s->output_mode & AC3_OUTPUT_LFEON) &&
                      s->fbw_channels == s->out_channels);
541d083a
     if (different_transforms) {
38dae9c3
         /* the delay samples have already been downmixed, so we upmix the delay
            samples in order to reconstruct all channels before downmixing. */
541d083a
         if (s->downmixed) {
38dae9c3
             s->downmixed = 0;
             ac3_upmix_delay(s);
         }
 
         do_imdct(s, s->channels);
 
541d083a
         if (downmix_output) {
             s->dsp.ac3_downmix(s->output, s->downmix_coeffs,
                                s->out_channels, s->fbw_channels, 256);
38dae9c3
         }
     } else {
541d083a
         if (downmix_output) {
             s->dsp.ac3_downmix(s->transform_coeffs + 1, s->downmix_coeffs,
                                s->out_channels, s->fbw_channels, 256);
38dae9c3
         }
 
541d083a
         if (downmix_output && !s->downmixed) {
38dae9c3
             s->downmixed = 1;
541d083a
             s->dsp.ac3_downmix(s->delay, s->downmix_coeffs, s->out_channels,
                                s->fbw_channels, 128);
38dae9c3
         }
486637af
 
38dae9c3
         do_imdct(s, s->out_channels);
3bbb0bf8
     }
 
4e092320
     return 0;
486637af
 }
 
5066f515
 /**
  * Decode a single AC-3 frame.
c7cfc48f
  */
0eea2129
 static int ac3_decode_frame(AVCodecContext * avctx, void *data,
                             int *got_frame_ptr, AVPacket *avpkt)
1b293437
 {
7a00bbad
     const uint8_t *buf = avpkt->data;
     int buf_size = avpkt->size;
0345fade
     AC3DecodeContext *s = avctx->priv_data;
0eea2129
     float   *out_samples_flt;
     int16_t *out_samples_s16;
     int blk, ch, err, ret;
95f3019a
     const uint8_t *channel_map;
13ec9428
     const float *output[AC3_MAX_CHANNELS];
c9f6eab1
 
40728b51
     /* copy input buffer to decoder context to avoid reading past the end
        of the buffer, which can be caused by a damaged input stream. */
4c886d61
     if (buf_size >= 2 && AV_RB16(buf) == 0x770B) {
         // seems to be byte-swapped AC-3
         int cnt = FFMIN(buf_size, AC3_FRAME_BUFFER_SIZE) >> 1;
         s->dsp.bswap16_buf((uint16_t *)s->input_buffer, (const uint16_t *)buf, cnt);
     } else
8e33132b
         memcpy(s->input_buffer, buf, FFMIN(buf_size, AC3_FRAME_BUFFER_SIZE));
67fc8652
     buf = s->input_buffer;
     /* initialize the GetBitContext with the start of valid AC-3 Frame */
c9f6eab1
     init_get_bits(&s->gbc, buf, buf_size * 8);
00585845
 
5066f515
     /* parse the syncinfo */
4397d95c
     err = parse_frame_header(s);
c78c6d6c
 
2c2cdc0b
     if (err) {
541d083a
         switch (err) {
         case AAC_AC3_PARSE_ERROR_SYNC:
             av_log(avctx, AV_LOG_ERROR, "frame sync error\n");
             return -1;
         case AAC_AC3_PARSE_ERROR_BSID:
             av_log(avctx, AV_LOG_ERROR, "invalid bitstream id\n");
             break;
         case AAC_AC3_PARSE_ERROR_SAMPLE_RATE:
             av_log(avctx, AV_LOG_ERROR, "invalid sample rate\n");
             break;
         case AAC_AC3_PARSE_ERROR_FRAME_SIZE:
             av_log(avctx, AV_LOG_ERROR, "invalid frame size\n");
             break;
         case AAC_AC3_PARSE_ERROR_FRAME_TYPE:
             /* skip frame if CRC is ok. otherwise use error concealment. */
             /* TODO: add support for substreams and dependent frames */
             if (s->frame_type == EAC3_FRAME_TYPE_DEPENDENT || s->substreamid) {
                 av_log(avctx, AV_LOG_ERROR, "unsupported frame type : "
                        "skipping frame\n");
                 *got_frame_ptr = 0;
                 return s->frame_size;
             } else {
                 av_log(avctx, AV_LOG_ERROR, "invalid frame type\n");
             }
             break;
         default:
             av_log(avctx, AV_LOG_ERROR, "invalid header\n");
             break;
3df88093
         }
2c2cdc0b
     } else {
         /* check that reported frame size fits in input buffer */
         if (s->frame_size > buf_size) {
             av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
             err = AAC_AC3_PARSE_ERROR_FRAME_SIZE;
eda3758c
         } else if (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL)) {
2c2cdc0b
             /* check for crc mismatch */
541d083a
             if (av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0, &buf[2],
                        s->frame_size - 2)) {
2c2cdc0b
                 av_log(avctx, AV_LOG_ERROR, "frame CRC mismatch\n");
                 err = AAC_AC3_PARSE_ERROR_CRC;
             }
         }
1b293437
     }
2aa2c5c4
 
eccba2bc
     /* if frame is ok, set audio parameters */
     if (!err) {
3336110a
         avctx->sample_rate = s->sample_rate;
541d083a
         avctx->bit_rate    = s->bit_rate;
3336110a
 
         /* channel config */
         s->out_channels = s->channels;
541d083a
         s->output_mode  = s->channel_mode;
         if (s->lfe_on)
eccba2bc
             s->output_mode |= AC3_OUTPUT_LFEON;
3336110a
         if (avctx->request_channels > 0 && avctx->request_channels <= 2 &&
                 avctx->request_channels < s->channels) {
             s->out_channels = avctx->request_channels;
             s->output_mode  = avctx->request_channels == 1 ? AC3_CHMODE_MONO : AC3_CHMODE_STEREO;
3798205a
             s->channel_layout = avpriv_ac3_channel_layout_tab[s->output_mode];
3336110a
         }
541d083a
         avctx->channels       = s->out_channels;
bfeca7be
         avctx->channel_layout = s->channel_layout;
1b293437
 
99a42f3f
         s->loro_center_mix_level   = gain_levels[s->  center_mix_level];
         s->loro_surround_mix_level = gain_levels[s->surround_mix_level];
931187e1
         s->ltrt_center_mix_level   = LEVEL_MINUS_3DB;
         s->ltrt_surround_mix_level = LEVEL_MINUS_3DB;
3336110a
         /* set downmixing coefficients if needed */
541d083a
         if (s->channels != s->out_channels && !((s->output_mode & AC3_OUTPUT_LFEON) &&
3336110a
                 s->fbw_channels == s->out_channels)) {
             set_downmix_coeffs(s);
         }
eccba2bc
     } else if (!s->out_channels) {
         s->out_channels = avctx->channels;
541d083a
         if (s->out_channels < s->channels)
eccba2bc
             s->output_mode  = s->out_channels == 1 ? AC3_CHMODE_MONO : AC3_CHMODE_STEREO;
ecfe94b2
     }
2c22701c
     if (avctx->channels != s->out_channels) {
         av_log(avctx, AV_LOG_ERROR, "channel number mismatching on damaged frame\n");
         return AVERROR_INVALIDDATA;
     }
be187388
     /* set audio service type based on bitstream mode for AC-3 */
     avctx->audio_service_type = s->bitstream_mode;
     if (s->bitstream_mode == 0x7 && s->channels > 1)
         avctx->audio_service_type = AV_AUDIO_SERVICE_TYPE_KARAOKE;
f0b3a7ba
 
0eea2129
     /* get output buffer */
     s->frame.nb_samples = s->num_blocks * 256;
     if ((ret = avctx->get_buffer(avctx, &s->frame)) < 0) {
         av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
         return ret;
     }
     out_samples_flt = (float   *)s->frame.data[0];
     out_samples_s16 = (int16_t *)s->frame.data[0];
 
022845ed
     /* decode the audio blocks */
95f3019a
     channel_map = ff_ac3_dec_channel_map[s->output_mode & ~AC3_OUTPUT_LFEON][s->lfe_on];
52dc3fc8
     for (ch = 0; ch < s->out_channels; ch++)
         output[ch] = s->output[channel_map[ch]];
6730e9f3
     for (blk = 0; blk < s->num_blocks; blk++) {
022845ed
         if (!err && decode_audio_block(s, blk)) {
             av_log(avctx, AV_LOG_ERROR, "error decoding the audio block\n");
af2272b2
             err = 1;
1b293437
         }
4c7ad768
         if (avctx->sample_fmt == AV_SAMPLE_FMT_FLT) {
9aa8193a
             s->fmt_conv.float_interleave(out_samples_flt, output, 256,
                                          s->out_channels);
4c7ad768
             out_samples_flt += 256 * s->out_channels;
         } else {
9aa8193a
             s->fmt_conv.float_to_int16_interleave(out_samples_s16, output, 256,
                                                   s->out_channels);
             out_samples_s16 += 256 * s->out_channels;
4c7ad768
         }
1b293437
     }
0eea2129
 
     *got_frame_ptr   = 1;
     *(AVFrame *)data = s->frame;
 
cc8538ff
     return FFMIN(buf_size, s->frame_size);
2aa2c5c4
 }
1b293437
 
5066f515
 /**
  * Uninitialize the AC-3 decoder.
c7cfc48f
  */
98a6fff9
 static av_cold int ac3_decode_end(AVCodecContext *avctx)
1b293437
 {
0345fade
     AC3DecodeContext *s = avctx->priv_data;
d802d7ca
     ff_mdct_end(&s->imdct_512);
     ff_mdct_end(&s->imdct_256);
c7cfc48f
 
1b293437
     return 0;
 }
 
9b83919f
 #define OFFSET(x) offsetof(AC3DecodeContext, x)
 #define PAR (AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM)
 static const AVOption options[] = {
145f741e
     { "drc_scale", "percentage of dynamic range compression to apply", OFFSET(drc_scale), AV_OPT_TYPE_FLOAT, {1.0}, 0.0, 1.0, PAR },
931187e1
 
f884ef00
 {"dmix_mode", "Preferred Stereo Downmix Mode", OFFSET(preferred_stereo_downmix), AV_OPT_TYPE_INT, {.dbl = -1 }, -1, 2, 0, "dmix_mode"},
 {"ltrt_cmixlev",   "Lt/Rt Center Mix Level",   OFFSET(ltrt_center_mix_level),    AV_OPT_TYPE_FLOAT, {.dbl = -1.0 }, -1.0, 2.0, 0},
 {"ltrt_surmixlev", "Lt/Rt Surround Mix Level", OFFSET(ltrt_surround_mix_level),  AV_OPT_TYPE_FLOAT, {.dbl = -1.0 }, -1.0, 2.0, 0},
 {"loro_cmixlev",   "Lo/Ro Center Mix Level",   OFFSET(loro_center_mix_level),    AV_OPT_TYPE_FLOAT, {.dbl = -1.0 }, -1.0, 2.0, 0},
 {"loro_surmixlev", "Lo/Ro Surround Mix Level", OFFSET(loro_surround_mix_level),  AV_OPT_TYPE_FLOAT, {.dbl = -1.0 }, -1.0, 2.0, 0},
931187e1
 
9b83919f
     { NULL},
 };
 
 static const AVClass ac3_decoder_class = {
a4ea00d0
     .class_name = "AC3 decoder",
9b83919f
     .item_name  = av_default_item_name,
     .option     = options,
     .version    = LIBAVUTIL_VERSION_INT,
 };
 
e7e2df27
 AVCodec ff_ac3_decoder = {
541d083a
     .name           = "ac3",
     .type           = AVMEDIA_TYPE_AUDIO,
     .id             = CODEC_ID_AC3,
e6bca37c
     .priv_data_size = sizeof (AC3DecodeContext),
541d083a
     .init           = ac3_decode_init,
     .close          = ac3_decode_end,
     .decode         = ac3_decode_frame,
     .capabilities   = CODEC_CAP_DR1,
     .long_name      = NULL_IF_CONFIG_SMALL("ATSC A/52A (AC-3)"),
     .sample_fmts    = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLT,
                                                       AV_SAMPLE_FMT_S16,
                                                       AV_SAMPLE_FMT_NONE },
     .priv_class     = &ac3_decoder_class,
2988c93d
 };
 
89547cfb
 #if CONFIG_EAC3_DECODER
a4ea00d0
 static const AVClass eac3_decoder_class = {
     .class_name = "E-AC3 decoder",
     .item_name  = av_default_item_name,
     .option     = options,
     .version    = LIBAVUTIL_VERSION_INT,
 };
541d083a
 
e7e2df27
 AVCodec ff_eac3_decoder = {
541d083a
     .name           = "eac3",
     .type           = AVMEDIA_TYPE_AUDIO,
     .id             = CODEC_ID_EAC3,
2988c93d
     .priv_data_size = sizeof (AC3DecodeContext),
541d083a
     .init           = ac3_decode_init,
     .close          = ac3_decode_end,
     .decode         = ac3_decode_frame,
     .capabilities   = CODEC_CAP_DR1,
     .long_name      = NULL_IF_CONFIG_SMALL("ATSC A/52B (AC-3, E-AC-3)"),
     .sample_fmts    = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLT,
                                                       AV_SAMPLE_FMT_S16,
                                                       AV_SAMPLE_FMT_NONE },
     .priv_class     = &eac3_decoder_class,
1b293437
 };
89547cfb
 #endif