libavcodec/adpcmenc.c
826c56d1
 /*
  * Copyright (c) 2001-2003 The ffmpeg Project
  *
9765caec
  * This file is part of FFmpeg.
826c56d1
  *
9765caec
  * FFmpeg is free software; you can redistribute it and/or
826c56d1
  * modify it under the terms of the GNU Lesser General Public
  * License as published by the Free Software Foundation; either
  * version 2.1 of the License, or (at your option) any later version.
  *
9765caec
  * FFmpeg is distributed in the hope that it will be useful,
826c56d1
  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  * Lesser General Public License for more details.
  *
  * You should have received a copy of the GNU Lesser General Public
9765caec
  * License along with FFmpeg; if not, write to the Free Software
826c56d1
  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  */
 
 #include "avcodec.h"
 #include "get_bits.h"
 #include "put_bits.h"
 #include "bytestream.h"
 #include "adpcm.h"
 #include "adpcm_data.h"
24e74f0a
 #include "internal.h"
826c56d1
 
 /**
  * @file
  * ADPCM encoders
  * First version by Francois Revol (revol@free.fr)
  * Fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
  *   by Mike Melanson (melanson@pcisys.net)
  *
7c287b18
  * See ADPCM decoder reference documents for codec information.
826c56d1
  */
 
 typedef struct TrellisPath {
     int nibble;
     int prev;
 } TrellisPath;
 
 typedef struct TrellisNode {
     uint32_t ssd;
     int path;
     int sample1;
     int sample2;
     int step;
 } TrellisNode;
 
 typedef struct ADPCMEncodeContext {
     ADPCMChannelStatus status[6];
     TrellisPath *paths;
     TrellisNode *node_buf;
     TrellisNode **nodep_buf;
     uint8_t *trellis_hash;
 } ADPCMEncodeContext;
 
 #define FREEZE_INTERVAL 128
 
f870fc2f
 static av_cold int adpcm_encode_close(AVCodecContext *avctx);
 
826c56d1
 static av_cold int adpcm_encode_init(AVCodecContext *avctx)
 {
     ADPCMEncodeContext *s = avctx->priv_data;
     uint8_t *extradata;
     int i;
877a1d40
     int ret = AVERROR(ENOMEM);
 
     if (avctx->channels > 2) {
         av_log(avctx, AV_LOG_ERROR, "only stereo or mono is supported\n");
         return AVERROR(EINVAL);
     }
826c56d1
 
dc6d0430
     if (avctx->trellis && (unsigned)avctx->trellis > 16U) {
826c56d1
         av_log(avctx, AV_LOG_ERROR, "invalid trellis size\n");
877a1d40
         return AVERROR(EINVAL);
826c56d1
     }
 
     if (avctx->trellis) {
dc6d0430
         int frontier  = 1 << avctx->trellis;
826c56d1
         int max_paths =  frontier * FREEZE_INTERVAL;
dc6d0430
         FF_ALLOC_OR_GOTO(avctx, s->paths,
                          max_paths * sizeof(*s->paths), error);
         FF_ALLOC_OR_GOTO(avctx, s->node_buf,
                          2 * frontier * sizeof(*s->node_buf),  error);
         FF_ALLOC_OR_GOTO(avctx, s->nodep_buf,
                          2 * frontier * sizeof(*s->nodep_buf), error);
         FF_ALLOC_OR_GOTO(avctx, s->trellis_hash,
                          65536 * sizeof(*s->trellis_hash), error);
826c56d1
     }
 
9ff6d079
     avctx->bits_per_coded_sample = av_get_bits_per_sample(avctx->codec->id);
 
dc6d0430
     switch (avctx->codec->id) {
826c56d1
     case CODEC_ID_ADPCM_IMA_WAV:
dc6d0430
         /* each 16 bits sample gives one nibble
            and we have 4 bytes per channel overhead */
         avctx->frame_size = (BLKSIZE - 4 * avctx->channels) * 8 /
                             (4 * avctx->channels) + 1;
         /* seems frame_size isn't taken into account...
            have to buffer the samples :-( */
826c56d1
         avctx->block_align = BLKSIZE;
9765caec
         avctx->bits_per_coded_sample = 4;
826c56d1
         break;
     case CODEC_ID_ADPCM_IMA_QT:
dc6d0430
         avctx->frame_size  = 64;
826c56d1
         avctx->block_align = 34 * avctx->channels;
         break;
     case CODEC_ID_ADPCM_MS:
dc6d0430
         /* each 16 bits sample gives one nibble
            and we have 7 bytes per channel overhead */
70713859
         avctx->frame_size = (BLKSIZE - 7 * avctx->channels) * 2 / avctx->channels + 2;
9765caec
         avctx->bits_per_coded_sample = 4;
dc6d0430
         avctx->block_align    = BLKSIZE;
dd88ae83
         if (!(avctx->extradata = av_malloc(32 + FF_INPUT_BUFFER_PADDING_SIZE)))
             goto error;
826c56d1
         avctx->extradata_size = 32;
dd88ae83
         extradata = avctx->extradata;
826c56d1
         bytestream_put_le16(&extradata, avctx->frame_size);
         bytestream_put_le16(&extradata, 7); /* wNumCoef */
         for (i = 0; i < 7; i++) {
             bytestream_put_le16(&extradata, ff_adpcm_AdaptCoeff1[i] * 4);
             bytestream_put_le16(&extradata, ff_adpcm_AdaptCoeff2[i] * 4);
         }
         break;
     case CODEC_ID_ADPCM_YAMAHA:
770a5c6d
         avctx->frame_size  = BLKSIZE * 2 / avctx->channels;
826c56d1
         avctx->block_align = BLKSIZE;
         break;
     case CODEC_ID_ADPCM_SWF:
         if (avctx->sample_rate != 11025 &&
             avctx->sample_rate != 22050 &&
             avctx->sample_rate != 44100) {
dc6d0430
             av_log(avctx, AV_LOG_ERROR, "Sample rate must be 11025, "
                    "22050 or 44100\n");
877a1d40
             ret = AVERROR(EINVAL);
826c56d1
             goto error;
         }
         avctx->frame_size = 512 * (avctx->sample_rate / 11025);
         break;
     default:
877a1d40
         ret = AVERROR(EINVAL);
826c56d1
         goto error;
     }
 
24e74f0a
 #if FF_API_OLD_ENCODE_AUDIO
cb023d9a
     if (!(avctx->coded_frame = avcodec_alloc_frame()))
82c25297
         goto error;
24e74f0a
 #endif
826c56d1
 
     return 0;
 error:
f870fc2f
     adpcm_encode_close(avctx);
877a1d40
     return ret;
826c56d1
 }
 
 static av_cold int adpcm_encode_close(AVCodecContext *avctx)
 {
     ADPCMEncodeContext *s = avctx->priv_data;
24e74f0a
 #if FF_API_OLD_ENCODE_AUDIO
826c56d1
     av_freep(&avctx->coded_frame);
24e74f0a
 #endif
826c56d1
     av_freep(&s->paths);
     av_freep(&s->node_buf);
     av_freep(&s->nodep_buf);
     av_freep(&s->trellis_hash);
 
     return 0;
 }
 
 
149f2058
 static inline uint8_t adpcm_ima_compress_sample(ADPCMChannelStatus *c,
                                                 int16_t sample)
826c56d1
 {
dc6d0430
     int delta  = sample - c->prev_sample;
     int nibble = FFMIN(7, abs(delta) * 4 /
                        ff_adpcm_step_table[c->step_index]) + (delta < 0) * 8;
     c->prev_sample += ((ff_adpcm_step_table[c->step_index] *
                         ff_adpcm_yamaha_difflookup[nibble]) / 8);
826c56d1
     c->prev_sample = av_clip_int16(c->prev_sample);
dc6d0430
     c->step_index  = av_clip(c->step_index + ff_adpcm_index_table[nibble], 0, 88);
826c56d1
     return nibble;
 }
 
149f2058
 static inline uint8_t adpcm_ima_qt_compress_sample(ADPCMChannelStatus *c,
                                                    int16_t sample)
9765caec
 {
dc6d0430
     int delta  = sample - c->prev_sample;
9765caec
     int diff, step = ff_adpcm_step_table[c->step_index];
     int nibble = 8*(delta < 0);
 
     delta= abs(delta);
     diff = delta + (step >> 3);
 
     if (delta >= step) {
         nibble |= 4;
70713859
         delta  -= step;
9765caec
     }
     step >>= 1;
     if (delta >= step) {
         nibble |= 2;
70713859
         delta  -= step;
9765caec
     }
     step >>= 1;
     if (delta >= step) {
         nibble |= 1;
70713859
         delta  -= step;
9765caec
     }
     diff -= delta;
 
     if (nibble & 8)
         c->prev_sample -= diff;
     else
         c->prev_sample += diff;
 
     c->prev_sample = av_clip_int16(c->prev_sample);
dc6d0430
     c->step_index  = av_clip(c->step_index + ff_adpcm_index_table[nibble], 0, 88);
9765caec
 
     return nibble;
 }
 
149f2058
 static inline uint8_t adpcm_ms_compress_sample(ADPCMChannelStatus *c,
                                                int16_t sample)
826c56d1
 {
     int predictor, nibble, bias;
 
dc6d0430
     predictor = (((c->sample1) * (c->coeff1)) +
                 (( c->sample2) * (c->coeff2))) / 64;
826c56d1
 
dc6d0430
     nibble = sample - predictor;
     if (nibble >= 0)
         bias =  c->idelta / 2;
     else
         bias = -c->idelta / 2;
826c56d1
 
dc6d0430
     nibble = (nibble + bias) / c->idelta;
     nibble = av_clip(nibble, -8, 7) & 0x0F;
826c56d1
 
a3a0691b
     predictor += ((nibble & 0x08) ? (nibble - 0x10) : nibble) * c->idelta;
826c56d1
 
     c->sample2 = c->sample1;
     c->sample1 = av_clip_int16(predictor);
 
a3a0691b
     c->idelta = (ff_adpcm_AdaptationTable[nibble] * c->idelta) >> 8;
dc6d0430
     if (c->idelta < 16)
         c->idelta = 16;
826c56d1
 
     return nibble;
 }
 
149f2058
 static inline uint8_t adpcm_yamaha_compress_sample(ADPCMChannelStatus *c,
                                                    int16_t sample)
826c56d1
 {
     int nibble, delta;
 
dc6d0430
     if (!c->step) {
826c56d1
         c->predictor = 0;
dc6d0430
         c->step      = 127;
826c56d1
     }
 
     delta = sample - c->predictor;
 
dc6d0430
     nibble = FFMIN(7, abs(delta) * 4 / c->step) + (delta < 0) * 8;
826c56d1
 
     c->predictor += ((c->step * ff_adpcm_yamaha_difflookup[nibble]) / 8);
     c->predictor = av_clip_int16(c->predictor);
     c->step = (c->step * ff_adpcm_yamaha_indexscale[nibble]) >> 8;
     c->step = av_clip(c->step, 127, 24567);
 
     return nibble;
 }
 
149f2058
 static void adpcm_compress_trellis(AVCodecContext *avctx,
                                    const int16_t *samples, uint8_t *dst,
                                    ADPCMChannelStatus *c, int n)
826c56d1
 {
     //FIXME 6% faster if frontier is a compile-time constant
     ADPCMEncodeContext *s = avctx->priv_data;
     const int frontier = 1 << avctx->trellis;
dc6d0430
     const int stride   = avctx->channels;
     const int version  = avctx->codec->id;
     TrellisPath *paths       = s->paths, *p;
     TrellisNode *node_buf    = s->node_buf;
     TrellisNode **nodep_buf  = s->nodep_buf;
     TrellisNode **nodes      = nodep_buf; // nodes[] is always sorted by .ssd
826c56d1
     TrellisNode **nodes_next = nodep_buf + frontier;
     int pathn = 0, froze = -1, i, j, k, generation = 0;
     uint8_t *hash = s->trellis_hash;
     memset(hash, 0xff, 65536 * sizeof(*hash));
 
     memset(nodep_buf, 0, 2 * frontier * sizeof(*nodep_buf));
dc6d0430
     nodes[0]          = node_buf + frontier;
     nodes[0]->ssd     = 0;
     nodes[0]->path    = 0;
     nodes[0]->step    = c->step_index;
826c56d1
     nodes[0]->sample1 = c->sample1;
     nodes[0]->sample2 = c->sample2;
dc6d0430
     if (version == CODEC_ID_ADPCM_IMA_WAV ||
         version == CODEC_ID_ADPCM_IMA_QT  ||
         version == CODEC_ID_ADPCM_SWF)
826c56d1
         nodes[0]->sample1 = c->prev_sample;
dc6d0430
     if (version == CODEC_ID_ADPCM_MS)
826c56d1
         nodes[0]->step = c->idelta;
dc6d0430
     if (version == CODEC_ID_ADPCM_YAMAHA) {
         if (c->step == 0) {
             nodes[0]->step    = 127;
826c56d1
             nodes[0]->sample1 = 0;
         } else {
dc6d0430
             nodes[0]->step    = c->step;
826c56d1
             nodes[0]->sample1 = c->predictor;
         }
     }
 
dc6d0430
     for (i = 0; i < n; i++) {
826c56d1
         TrellisNode *t = node_buf + frontier*(i&1);
         TrellisNode **u;
dc6d0430
         int sample   = samples[i * stride];
826c56d1
         int heap_pos = 0;
dc6d0430
         memset(nodes_next, 0, frontier * sizeof(TrellisNode*));
         for (j = 0; j < frontier && nodes[j]; j++) {
             // higher j have higher ssd already, so they're likely
             // to yield a suboptimal next sample too
             const int range = (j < frontier / 2) ? 1 : 0;
             const int step  = nodes[j]->step;
826c56d1
             int nidx;
dc6d0430
             if (version == CODEC_ID_ADPCM_MS) {
                 const int predictor = ((nodes[j]->sample1 * c->coeff1) +
                                        (nodes[j]->sample2 * c->coeff2)) / 64;
                 const int div  = (sample - predictor) / step;
826c56d1
                 const int nmin = av_clip(div-range, -8, 6);
                 const int nmax = av_clip(div+range, -7, 7);
dc6d0430
                 for (nidx = nmin; nidx <= nmax; nidx++) {
826c56d1
                     const int nibble = nidx & 0xf;
dc6d0430
                     int dec_sample   = predictor + nidx * step;
826c56d1
 #define STORE_NODE(NAME, STEP_INDEX)\
                     int d;\
                     uint32_t ssd;\
                     int pos;\
                     TrellisNode *u;\
                     uint8_t *h;\
                     dec_sample = av_clip_int16(dec_sample);\
                     d = sample - dec_sample;\
                     ssd = nodes[j]->ssd + d*d;\
                     /* Check for wraparound, skip such samples completely. \
                      * Note, changing ssd to a 64 bit variable would be \
                      * simpler, avoiding this check, but it's slower on \
                      * x86 32 bit at the moment. */\
                     if (ssd < nodes[j]->ssd)\
                         goto next_##NAME;\
                     /* Collapse any two states with the same previous sample value. \
                      * One could also distinguish states by step and by 2nd to last
                      * sample, but the effects of that are negligible.
                      * Since nodes in the previous generation are iterated
                      * through a heap, they're roughly ordered from better to
                      * worse, but not strictly ordered. Therefore, an earlier
                      * node with the same sample value is better in most cases
                      * (and thus the current is skipped), but not strictly
                      * in all cases. Only skipping samples where ssd >=
                      * ssd of the earlier node with the same sample gives
                      * slightly worse quality, though, for some reason. */ \
                     h = &hash[(uint16_t) dec_sample];\
                     if (*h == generation)\
                         goto next_##NAME;\
                     if (heap_pos < frontier) {\
                         pos = heap_pos++;\
                     } else {\
                         /* Try to replace one of the leaf nodes with the new \
                          * one, but try a different slot each time. */\
dc6d0430
                         pos = (frontier >> 1) +\
                               (heap_pos & ((frontier >> 1) - 1));\
826c56d1
                         if (ssd > nodes_next[pos]->ssd)\
                             goto next_##NAME;\
                         heap_pos++;\
                     }\
                     *h = generation;\
dc6d0430
                     u  = nodes_next[pos];\
                     if (!u) {\
                         assert(pathn < FREEZE_INTERVAL << avctx->trellis);\
826c56d1
                         u = t++;\
                         nodes_next[pos] = u;\
                         u->path = pathn++;\
                     }\
dc6d0430
                     u->ssd  = ssd;\
826c56d1
                     u->step = STEP_INDEX;\
                     u->sample2 = nodes[j]->sample1;\
                     u->sample1 = dec_sample;\
                     paths[u->path].nibble = nibble;\
dc6d0430
                     paths[u->path].prev   = nodes[j]->path;\
826c56d1
                     /* Sift the newly inserted node up in the heap to \
                      * restore the heap property. */\
                     while (pos > 0) {\
                         int parent = (pos - 1) >> 1;\
                         if (nodes_next[parent]->ssd <= ssd)\
                             break;\
                         FFSWAP(TrellisNode*, nodes_next[parent], nodes_next[pos]);\
                         pos = parent;\
                     }\
                     next_##NAME:;
dc6d0430
                     STORE_NODE(ms, FFMAX(16,
                                (ff_adpcm_AdaptationTable[nibble] * step) >> 8));
826c56d1
                 }
dc6d0430
             } else if (version == CODEC_ID_ADPCM_IMA_WAV ||
                        version == CODEC_ID_ADPCM_IMA_QT  ||
                        version == CODEC_ID_ADPCM_SWF) {
826c56d1
 #define LOOP_NODES(NAME, STEP_TABLE, STEP_INDEX)\
                 const int predictor = nodes[j]->sample1;\
                 const int div = (sample - predictor) * 4 / STEP_TABLE;\
dc6d0430
                 int nmin = av_clip(div - range, -7, 6);\
                 int nmax = av_clip(div + range, -6, 7);\
                 if (nmin <= 0)\
                     nmin--; /* distinguish -0 from +0 */\
                 if (nmax < 0)\
                     nmax--;\
                 for (nidx = nmin; nidx <= nmax; nidx++) {\
                     const int nibble = nidx < 0 ? 7 - nidx : nidx;\
                     int dec_sample = predictor +\
                                     (STEP_TABLE *\
                                      ff_adpcm_yamaha_difflookup[nibble]) / 8;\
826c56d1
                     STORE_NODE(NAME, STEP_INDEX);\
                 }
dc6d0430
                 LOOP_NODES(ima, ff_adpcm_step_table[step],
                            av_clip(step + ff_adpcm_index_table[nibble], 0, 88));
826c56d1
             } else { //CODEC_ID_ADPCM_YAMAHA
dc6d0430
                 LOOP_NODES(yamaha, step,
                            av_clip((step * ff_adpcm_yamaha_indexscale[nibble]) >> 8,
                                    127, 24567));
826c56d1
 #undef LOOP_NODES
 #undef STORE_NODE
             }
         }
 
         u = nodes;
         nodes = nodes_next;
         nodes_next = u;
 
         generation++;
         if (generation == 255) {
             memset(hash, 0xff, 65536 * sizeof(*hash));
             generation = 0;
         }
 
         // prevent overflow
dc6d0430
         if (nodes[0]->ssd > (1 << 28)) {
             for (j = 1; j < frontier && nodes[j]; j++)
826c56d1
                 nodes[j]->ssd -= nodes[0]->ssd;
             nodes[0]->ssd = 0;
         }
 
         // merge old paths to save memory
dc6d0430
         if (i == froze + FREEZE_INTERVAL) {
826c56d1
             p = &paths[nodes[0]->path];
dc6d0430
             for (k = i; k > froze; k--) {
826c56d1
                 dst[k] = p->nibble;
                 p = &paths[p->prev];
             }
             froze = i;
             pathn = 0;
             // other nodes might use paths that don't coincide with the frozen one.
             // checking which nodes do so is too slow, so just kill them all.
             // this also slightly improves quality, but I don't know why.
dc6d0430
             memset(nodes + 1, 0, (frontier - 1) * sizeof(TrellisNode*));
826c56d1
         }
     }
 
     p = &paths[nodes[0]->path];
dc6d0430
     for (i = n - 1; i > froze; i--) {
826c56d1
         dst[i] = p->nibble;
         p = &paths[p->prev];
     }
 
dc6d0430
     c->predictor  = nodes[0]->sample1;
     c->sample1    = nodes[0]->sample1;
     c->sample2    = nodes[0]->sample2;
826c56d1
     c->step_index = nodes[0]->step;
dc6d0430
     c->step       = nodes[0]->step;
     c->idelta     = nodes[0]->step;
826c56d1
 }
 
24e74f0a
 static int adpcm_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
                               const AVFrame *frame, int *got_packet_ptr)
826c56d1
 {
24e74f0a
     int n, i, st, pkt_size, ret;
     const int16_t *samples;
149f2058
     uint8_t *dst;
826c56d1
     ADPCMEncodeContext *c = avctx->priv_data;
     uint8_t *buf;
 
24e74f0a
     samples = (const int16_t *)frame->data[0];
dc6d0430
     st = avctx->channels == 2;
24e74f0a
 
     if (avctx->codec_id == CODEC_ID_ADPCM_SWF)
         pkt_size = (2 + avctx->channels * (22 + 4 * (frame->nb_samples - 1)) + 7) / 8;
     else
         pkt_size = avctx->block_align;
ae2c33b0
     if ((ret = ff_alloc_packet2(avctx, avpkt, pkt_size)))
24e74f0a
         return ret;
     dst = avpkt->data;
826c56d1
 
     switch(avctx->codec->id) {
     case CODEC_ID_ADPCM_IMA_WAV:
24e74f0a
         n = frame->nb_samples / 8;
149f2058
         c->status[0].prev_sample = samples[0];
dc6d0430
         /* c->status[0].step_index = 0;
         XXX: not sure how to init the state machine */
         bytestream_put_le16(&dst, c->status[0].prev_sample);
a3a0691b
         *dst++ = c->status[0].step_index;
dc6d0430
         *dst++ = 0; /* unknown */
         samples++;
         if (avctx->channels == 2) {
149f2058
             c->status[1].prev_sample = samples[0];
dc6d0430
             /* c->status[1].step_index = 0; */
             bytestream_put_le16(&dst, c->status[1].prev_sample);
a3a0691b
             *dst++ = c->status[1].step_index;
dc6d0430
             *dst++ = 0;
826c56d1
             samples++;
dc6d0430
         }
826c56d1
 
dc6d0430
         /* stereo: 4 bytes (8 samples) for left,
             4 bytes for right, 4 bytes left, ... */
         if (avctx->trellis > 0) {
             FF_ALLOC_OR_GOTO(avctx, buf, 2 * n * 8, error);
             adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n * 8);
             if (avctx->channels == 2)
                 adpcm_compress_trellis(avctx, samples + 1, buf + n * 8,
                                        &c->status[1], n * 8);
             for (i = 0; i < n; i++) {
                 *dst++ = buf[8 * i + 0] | (buf[8 * i + 1] << 4);
                 *dst++ = buf[8 * i + 2] | (buf[8 * i + 3] << 4);
                 *dst++ = buf[8 * i + 4] | (buf[8 * i + 5] << 4);
                 *dst++ = buf[8 * i + 6] | (buf[8 * i + 7] << 4);
                 if (avctx->channels == 2) {
                     uint8_t *buf1 = buf + n * 8;
                     *dst++ = buf1[8 * i + 0] | (buf1[8 * i + 1] << 4);
                     *dst++ = buf1[8 * i + 2] | (buf1[8 * i + 3] << 4);
                     *dst++ = buf1[8 * i + 4] | (buf1[8 * i + 5] << 4);
                     *dst++ = buf1[8 * i + 6] | (buf1[8 * i + 7] << 4);
826c56d1
                 }
dc6d0430
             }
             av_free(buf);
         } else {
             for (; n > 0; n--) {
                 *dst    = adpcm_ima_compress_sample(&c->status[0], samples[0]);
                 *dst++ |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels    ]) << 4;
                 *dst    = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 2]);
                 *dst++ |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 3]) << 4;
                 *dst    = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 4]);
                 *dst++ |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 5]) << 4;
                 *dst    = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 6]);
                 *dst++ |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 7]) << 4;
826c56d1
                 /* right channel */
                 if (avctx->channels == 2) {
dc6d0430
                     *dst    = adpcm_ima_compress_sample(&c->status[1], samples[1 ]);
                     *dst++ |= adpcm_ima_compress_sample(&c->status[1], samples[3 ]) << 4;
                     *dst    = adpcm_ima_compress_sample(&c->status[1], samples[5 ]);
                     *dst++ |= adpcm_ima_compress_sample(&c->status[1], samples[7 ]) << 4;
                     *dst    = adpcm_ima_compress_sample(&c->status[1], samples[9 ]);
                     *dst++ |= adpcm_ima_compress_sample(&c->status[1], samples[11]) << 4;
                     *dst    = adpcm_ima_compress_sample(&c->status[1], samples[13]);
                     *dst++ |= adpcm_ima_compress_sample(&c->status[1], samples[15]) << 4;
826c56d1
                 }
                 samples += 8 * avctx->channels;
             }
dc6d0430
         }
826c56d1
         break;
     case CODEC_ID_ADPCM_IMA_QT:
     {
         int ch, i;
         PutBitContext pb;
24e74f0a
         init_put_bits(&pb, dst, pkt_size * 8);
826c56d1
 
dc6d0430
         for (ch = 0; ch < avctx->channels; ch++) {
e3b7079d
             put_bits(&pb, 9, (c->status[ch].prev_sample & 0xFFFF) >> 7);
dc6d0430
             put_bits(&pb, 7,  c->status[ch].step_index);
             if (avctx->trellis > 0) {
826c56d1
                 uint8_t buf[64];
                 adpcm_compress_trellis(avctx, samples+ch, buf, &c->status[ch], 64);
dc6d0430
                 for (i = 0; i < 64; i++)
                     put_bits(&pb, 4, buf[i ^ 1]);
826c56d1
             } else {
dc6d0430
                 for (i = 0; i < 64; i += 2) {
826c56d1
                     int t1, t2;
dc6d0430
                     t1 = adpcm_ima_qt_compress_sample(&c->status[ch],
                                                       samples[avctx->channels * (i + 0) + ch]);
                     t2 = adpcm_ima_qt_compress_sample(&c->status[ch],
                                                       samples[avctx->channels * (i + 1) + ch]);
826c56d1
                     put_bits(&pb, 4, t2);
                     put_bits(&pb, 4, t1);
                 }
             }
         }
 
         flush_put_bits(&pb);
         break;
     }
     case CODEC_ID_ADPCM_SWF:
     {
         int i;
         PutBitContext pb;
24e74f0a
         init_put_bits(&pb, dst, pkt_size * 8);
826c56d1
 
24e74f0a
         n = frame->nb_samples - 1;
826c56d1
 
dc6d0430
         // store AdpcmCodeSize
         put_bits(&pb, 2, 2);    // set 4-bit flash adpcm format
826c56d1
 
dc6d0430
         // init the encoder state
         for (i = 0; i < avctx->channels; i++) {
             // clip step so it fits 6 bits
             c->status[i].step_index = av_clip(c->status[i].step_index, 0, 63);
826c56d1
             put_sbits(&pb, 16, samples[i]);
             put_bits(&pb, 6, c->status[i].step_index);
149f2058
             c->status[i].prev_sample = samples[i];
826c56d1
         }
 
dc6d0430
         if (avctx->trellis > 0) {
             FF_ALLOC_OR_GOTO(avctx, buf, 2 * n, error);
             adpcm_compress_trellis(avctx, samples + 2, buf, &c->status[0], n);
826c56d1
             if (avctx->channels == 2)
dc6d0430
                 adpcm_compress_trellis(avctx, samples + 3, buf + n,
                                        &c->status[1], n);
             for (i = 0; i < n; i++) {
826c56d1
                 put_bits(&pb, 4, buf[i]);
                 if (avctx->channels == 2)
dc6d0430
                     put_bits(&pb, 4, buf[n + i]);
826c56d1
             }
             av_free(buf);
         } else {
24e74f0a
             for (i = 1; i < frame->nb_samples; i++) {
dc6d0430
                 put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[0],
                          samples[avctx->channels * i]));
826c56d1
                 if (avctx->channels == 2)
dc6d0430
                     put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[1],
                              samples[2 * i + 1]));
826c56d1
             }
         }
         flush_put_bits(&pb);
         break;
     }
     case CODEC_ID_ADPCM_MS:
dc6d0430
         for (i = 0; i < avctx->channels; i++) {
             int predictor = 0;
826c56d1
             *dst++ = predictor;
             c->status[i].coeff1 = ff_adpcm_AdaptCoeff1[predictor];
             c->status[i].coeff2 = ff_adpcm_AdaptCoeff2[predictor];
         }
dc6d0430
         for (i = 0; i < avctx->channels; i++) {
826c56d1
             if (c->status[i].idelta < 16)
                 c->status[i].idelta = 16;
             bytestream_put_le16(&dst, c->status[i].idelta);
         }
dc6d0430
         for (i = 0; i < avctx->channels; i++)
826c56d1
             c->status[i].sample2= *samples++;
dc6d0430
         for (i = 0; i < avctx->channels; i++) {
             c->status[i].sample1 = *samples++;
826c56d1
             bytestream_put_le16(&dst, c->status[i].sample1);
         }
dc6d0430
         for (i = 0; i < avctx->channels; i++)
826c56d1
             bytestream_put_le16(&dst, c->status[i].sample2);
 
dc6d0430
         if (avctx->trellis > 0) {
             int n = avctx->block_align - 7 * avctx->channels;
             FF_ALLOC_OR_GOTO(avctx, buf, 2 * n, error);
             if (avctx->channels == 1) {
826c56d1
                 adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n);
dc6d0430
                 for (i = 0; i < n; i += 2)
                     *dst++ = (buf[i] << 4) | buf[i + 1];
826c56d1
             } else {
dc6d0430
                 adpcm_compress_trellis(avctx, samples,     buf,     &c->status[0], n);
                 adpcm_compress_trellis(avctx, samples + 1, buf + n, &c->status[1], n);
                 for (i = 0; i < n; i++)
                     *dst++ = (buf[i] << 4) | buf[n + i];
826c56d1
             }
             av_free(buf);
dc6d0430
         } else {
             for (i = 7 * avctx->channels; i < avctx->block_align; i++) {
                 int nibble;
                 nibble  = adpcm_ms_compress_sample(&c->status[ 0], *samples++) << 4;
                 nibble |= adpcm_ms_compress_sample(&c->status[st], *samples++);
                 *dst++  = nibble;
             }
826c56d1
         }
         break;
     case CODEC_ID_ADPCM_YAMAHA:
24e74f0a
         n = frame->nb_samples / 2;
dc6d0430
         if (avctx->trellis > 0) {
             FF_ALLOC_OR_GOTO(avctx, buf, 2 * n * 2, error);
826c56d1
             n *= 2;
dc6d0430
             if (avctx->channels == 1) {
826c56d1
                 adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n);
dc6d0430
                 for (i = 0; i < n; i += 2)
                     *dst++ = buf[i] | (buf[i + 1] << 4);
826c56d1
             } else {
dc6d0430
                 adpcm_compress_trellis(avctx, samples,     buf,     &c->status[0], n);
                 adpcm_compress_trellis(avctx, samples + 1, buf + n, &c->status[1], n);
                 for (i = 0; i < n; i++)
                     *dst++ = buf[i] | (buf[n + i] << 4);
826c56d1
             }
             av_free(buf);
         } else
dc6d0430
             for (n *= avctx->channels; n > 0; n--) {
826c56d1
                 int nibble;
                 nibble  = adpcm_yamaha_compress_sample(&c->status[ 0], *samples++);
                 nibble |= adpcm_yamaha_compress_sample(&c->status[st], *samples++) << 4;
dc6d0430
                 *dst++  = nibble;
826c56d1
             }
         break;
     default:
877a1d40
         return AVERROR(EINVAL);
826c56d1
     }
24e74f0a
 
     avpkt->size = pkt_size;
     *got_packet_ptr = 1;
     return 0;
877a1d40
 error:
     return AVERROR(ENOMEM);
826c56d1
 }
 
 
86714887
 #define ADPCM_ENCODER(id_, name_, long_name_)               \
 AVCodec ff_ ## name_ ## _encoder = {                        \
     .name           = #name_,                               \
     .type           = AVMEDIA_TYPE_AUDIO,                   \
     .id             = id_,                                  \
     .priv_data_size = sizeof(ADPCMEncodeContext),           \
     .init           = adpcm_encode_init,                    \
24e74f0a
     .encode2        = adpcm_encode_frame,                   \
86714887
     .close          = adpcm_encode_close,                   \
00c3b67b
     .sample_fmts    = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_S16,    \
                                                       AV_SAMPLE_FMT_NONE }, \
86714887
     .long_name      = NULL_IF_CONFIG_SMALL(long_name_),     \
826c56d1
 }
 
dc6d0430
 ADPCM_ENCODER(CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt,   "ADPCM IMA QuickTime");
826c56d1
 ADPCM_ENCODER(CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav, "ADPCM IMA WAV");
dc6d0430
 ADPCM_ENCODER(CODEC_ID_ADPCM_MS, adpcm_ms,           "ADPCM Microsoft");
 ADPCM_ENCODER(CODEC_ID_ADPCM_SWF, adpcm_swf,         "ADPCM Shockwave Flash");
 ADPCM_ENCODER(CODEC_ID_ADPCM_YAMAHA, adpcm_yamaha,   "ADPCM Yamaha");