libavcodec/aacdec.c
71e9a1b8
 /*
  * AAC decoder
  * Copyright (c) 2005-2006 Oded Shimon ( ods15 ods15 dyndns org )
  * Copyright (c) 2006-2007 Maxim Gavrilov ( maxim.gavrilov gmail com )
  *
  * This file is part of FFmpeg.
  *
  * FFmpeg is free software; you can redistribute it and/or
  * modify it under the terms of the GNU Lesser General Public
  * License as published by the Free Software Foundation; either
  * version 2.1 of the License, or (at your option) any later version.
  *
  * FFmpeg is distributed in the hope that it will be useful,
  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  * Lesser General Public License for more details.
  *
  * You should have received a copy of the GNU Lesser General Public
  * License along with FFmpeg; if not, write to the Free Software
  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  */
 
 /**
ba87f080
  * @file
71e9a1b8
  * AAC decoder
  * @author Oded Shimon  ( ods15 ods15 dyndns org )
  * @author Maxim Gavrilov ( maxim.gavrilov gmail com )
  */
 
 /*
  * supported tools
  *
  * Support?             Name
  * N (code in SoC repo) gain control
  * Y                    block switching
  * Y                    window shapes - standard
  * N                    window shapes - Low Delay
  * Y                    filterbank - standard
  * N (code in SoC repo) filterbank - Scalable Sample Rate
  * Y                    Temporal Noise Shaping
  * N (code in SoC repo) Long Term Prediction
  * Y                    intensity stereo
  * Y                    channel coupling
7633a041
  * Y                    frequency domain prediction
71e9a1b8
  * Y                    Perceptual Noise Substitution
  * Y                    Mid/Side stereo
  * N                    Scalable Inverse AAC Quantization
  * N                    Frequency Selective Switch
  * N                    upsampling filter
  * Y                    quantization & coding - AAC
  * N                    quantization & coding - TwinVQ
  * N                    quantization & coding - BSAC
  * N                    AAC Error Resilience tools
  * N                    Error Resilience payload syntax
  * N                    Error Protection tool
  * N                    CELP
  * N                    Silence Compression
  * N                    HVXC
  * N                    HVXC 4kbits/s VR
  * N                    Structured Audio tools
  * N                    Structured Audio Sample Bank Format
  * N                    MIDI
  * N                    Harmonic and Individual Lines plus Noise
  * N                    Text-To-Speech Interface
ed492b61
  * Y                    Spectral Band Replication
71e9a1b8
  * Y (not in this code) Layer-1
  * Y (not in this code) Layer-2
  * Y (not in this code) Layer-3
  * N                    SinuSoidal Coding (Transient, Sinusoid, Noise)
ba90f938
  * Y                    Parametric Stereo
71e9a1b8
  * N                    Direct Stream Transfer
  *
  * Note: - HE AAC v1 comprises LC AAC with Spectral Band Replication.
  *       - HE AAC v2 comprises LC AAC with Spectral Band Replication and
            Parametric Stereo.
  */
 
 
 #include "avcodec.h"
dbbec0c2
 #include "internal.h"
9106a698
 #include "get_bits.h"
71e9a1b8
 #include "dsputil.h"
1429224b
 #include "fft.h"
1be0fc29
 #include "lpc.h"
71e9a1b8
 
 #include "aac.h"
 #include "aactab.h"
cc0591da
 #include "aacdectab.h"
c26bce10
 #include "cbrt_tablegen.h"
ed492b61
 #include "sbr.h"
 #include "aacsbr.h"
71e9a1b8
 #include "mpeg4audio.h"
158b3912
 #include "aac_parser.h"
71e9a1b8
 
 #include <assert.h>
 #include <errno.h>
 #include <math.h>
 #include <string.h>
 
798339fb
 #if ARCH_ARM
 #   include "arm/aac.h"
 #endif
 
577d383b
 union float754 {
     float f;
     uint32_t i;
 };
4a39ccb4
 
71e9a1b8
 static VLC vlc_scalefactors;
 static VLC vlc_spectral[11];
 
8d637124
 static const char overread_err[] = "Input buffer exhausted before END element found\n";
 
577d383b
 static ChannelElement *get_che(AACContext *ac, int type, int elem_id)
 {
ba90f938
     /* Some buggy encoders appear to set all elem_ids to zero and rely on
     channels always occurring in the same order. This is expressly forbidden
     by the spec but we will try to work around it.
     */
     int err_printed = 0;
     while (ac->tags_seen_this_frame[type][elem_id] && elem_id < MAX_ELEM_ID) {
         if (ac->output_configured < OC_LOCKED && !err_printed) {
             av_log(ac->avctx, AV_LOG_WARNING, "Duplicate channel tag found, attempting to remap.\n");
             err_printed = 1;
         }
         elem_id++;
     }
     if (elem_id == MAX_ELEM_ID)
         return NULL;
     ac->tags_seen_this_frame[type][elem_id] = 1;
 
bb5c0988
     if (ac->tag_che_map[type][elem_id]) {
         return ac->tag_che_map[type][elem_id];
     }
     if (ac->tags_mapped >= tags_per_config[ac->m4ac.chan_config]) {
         return NULL;
     }
     switch (ac->m4ac.chan_config) {
577d383b
     case 7:
         if (ac->tags_mapped == 3 && type == TYPE_CPE) {
             ac->tags_mapped++;
             return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][2];
         }
     case 6:
         /* Some streams incorrectly code 5.1 audio as SCE[0] CPE[0] CPE[1] SCE[1]
ba90f938
            instead of SCE[0] CPE[0] CPE[1] LFE[0]. If we seem to have
            encountered such a stream, transfer the LFE[0] element to the SCE[1]'s mapping */
577d383b
         if (ac->tags_mapped == tags_per_config[ac->m4ac.chan_config] - 1 && (type == TYPE_LFE || type == TYPE_SCE)) {
             ac->tags_mapped++;
             return ac->tag_che_map[type][elem_id] = ac->che[TYPE_LFE][0];
         }
     case 5:
         if (ac->tags_mapped == 2 && type == TYPE_CPE) {
             ac->tags_mapped++;
             return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][1];
         }
     case 4:
         if (ac->tags_mapped == 2 && ac->m4ac.chan_config == 4 && type == TYPE_SCE) {
             ac->tags_mapped++;
             return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][1];
         }
     case 3:
     case 2:
         if (ac->tags_mapped == (ac->m4ac.chan_config != 2) && type == TYPE_CPE) {
             ac->tags_mapped++;
             return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][0];
         } else if (ac->m4ac.chan_config == 2) {
bb5c0988
             return NULL;
577d383b
         }
     case 1:
         if (!ac->tags_mapped && type == TYPE_SCE) {
             ac->tags_mapped++;
             return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][0];
         }
     default:
         return NULL;
bb5c0988
     }
 }
 
9cc04edf
 /**
754ff9a7
  * Check for the channel element in the current channel position configuration.
  * If it exists, make sure the appropriate element is allocated and map the
  * channel order to match the internal FFmpeg channel layout.
  *
  * @param   che_pos current channel position configuration
  * @param   type channel element type
  * @param   id channel element id
  * @param   channels count of the number of channels in the configuration
  *
  * @return  Returns error status. 0 - OK, !0 - error
  */
89584458
 static av_cold int che_configure(AACContext *ac,
754ff9a7
                          enum ChannelPosition che_pos[4][MAX_ELEM_ID],
                          int type, int id,
                          int *channels)
 {
     if (che_pos[type][id]) {
         if (!ac->che[type][id] && !(ac->che[type][id] = av_mallocz(sizeof(ChannelElement))))
             return AVERROR(ENOMEM);
ed492b61
         ff_aac_sbr_ctx_init(&ac->che[type][id]->sbr);
754ff9a7
         if (type != TYPE_CCE) {
             ac->output_data[(*channels)++] = ac->che[type][id]->ch[0].ret;
ba90f938
             if (type == TYPE_CPE ||
                 (type == TYPE_SCE && ac->m4ac.ps == 1)) {
754ff9a7
                 ac->output_data[(*channels)++] = ac->che[type][id]->ch[1].ret;
             }
         }
ed492b61
     } else {
         if (ac->che[type][id])
             ff_aac_sbr_ctx_close(&ac->che[type][id]->sbr);
754ff9a7
         av_freep(&ac->che[type][id]);
ed492b61
     }
754ff9a7
     return 0;
 }
 
 /**
62a57fae
  * Configure output channel order based on the current program configuration element.
  *
  * @param   che_pos current channel position configuration
  * @param   new_che_pos New channel position configuration - we only do something if it differs from the current one.
  *
  * @return  Returns error status. 0 - OK, !0 - error
  */
ff98c17c
 static av_cold int output_configure(AACContext *ac,
577d383b
                             enum ChannelPosition che_pos[4][MAX_ELEM_ID],
                             enum ChannelPosition new_che_pos[4][MAX_ELEM_ID],
981b8fd7
                             int channel_config, enum OCStatus oc_type)
577d383b
 {
ba90f938
     AVCodecContext *avctx = ac->avctx;
754ff9a7
     int i, type, channels = 0, ret;
62a57fae
 
ba90f938
     if (new_che_pos != che_pos)
62a57fae
     memcpy(che_pos, new_che_pos, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
 
e22da6b6
     if (channel_config) {
         for (i = 0; i < tags_per_config[channel_config]; i++) {
754ff9a7
             if ((ret = che_configure(ac, che_pos,
                                      aac_channel_layout_map[channel_config - 1][i][0],
                                      aac_channel_layout_map[channel_config - 1][i][1],
                                      &channels)))
                 return ret;
e22da6b6
         }
 
         memset(ac->tag_che_map, 0,       4 * MAX_ELEM_ID * sizeof(ac->che[0][0]));
         ac->tags_mapped = 0;
 
         avctx->channel_layout = aac_channel_layout[channel_config - 1];
     } else {
2309923c
         /* Allocate or free elements depending on if they are in the
          * current program configuration.
          *
          * Set up default 1:1 output mapping.
          *
          * For a 5.1 stream the output order will be:
          *    [ Center ] [ Front Left ] [ Front Right ] [ LFE ] [ Surround Left ] [ Surround Right ]
          */
 
         for (i = 0; i < MAX_ELEM_ID; i++) {
             for (type = 0; type < 4; type++) {
754ff9a7
                 if ((ret = che_configure(ac, che_pos, type, i, &channels)))
                     return ret;
2309923c
             }
62a57fae
         }
 
bb5c0988
         memcpy(ac->tag_che_map, ac->che, 4 * MAX_ELEM_ID * sizeof(ac->che[0][0]));
577d383b
         ac->tags_mapped = 4 * MAX_ELEM_ID;
e22da6b6
 
         avctx->channel_layout = 0;
bb5c0988
     }
 
62a57fae
     avctx->channels = channels;
bb5c0988
 
981b8fd7
     ac->output_configured = oc_type;
6308765c
 
62a57fae
     return 0;
 }
 
 /**
9cc04edf
  * Decode an array of 4 bit element IDs, optionally interleaved with a stereo/mono switching bit.
  *
  * @param cpe_map Stereo (Channel Pair Element) map, NULL if stereo bit is not present.
  * @param sce_map mono (Single Channel Element) map
  * @param type speaker type/position for these channels
  */
 static void decode_channel_map(enum ChannelPosition *cpe_map,
577d383b
                                enum ChannelPosition *sce_map,
                                enum ChannelPosition type,
                                GetBitContext *gb, int n)
 {
     while (n--) {
9cc04edf
         enum ChannelPosition *map = cpe_map && get_bits1(gb) ? cpe_map : sce_map; // stereo or mono map
         map[get_bits(gb, 4)] = type;
     }
 }
 
 /**
  * Decode program configuration element; reference: table 4.2.
  *
  * @param   new_che_pos New channel position configuration - we only do something if it differs from the current one.
  *
  * @return  Returns error status. 0 - OK, !0 - error
  */
577d383b
 static int decode_pce(AACContext *ac, enum ChannelPosition new_che_pos[4][MAX_ELEM_ID],
                       GetBitContext *gb)
 {
99665a21
     int num_front, num_side, num_back, num_lfe, num_assoc_data, num_cc, sampling_index;
8d637124
     int comment_len;
9cc04edf
 
     skip_bits(gb, 2);  // object_type
 
99665a21
     sampling_index = get_bits(gb, 4);
401a9950
     if (ac->m4ac.sampling_index != sampling_index)
ba90f938
         av_log(ac->avctx, AV_LOG_WARNING, "Sample rate index in program config element does not match the sample rate index configured by the container.\n");
401a9950
 
71e9a1b8
     num_front       = get_bits(gb, 4);
     num_side        = get_bits(gb, 4);
     num_back        = get_bits(gb, 4);
     num_lfe         = get_bits(gb, 2);
     num_assoc_data  = get_bits(gb, 3);
     num_cc          = get_bits(gb, 4);
 
cc0591da
     if (get_bits1(gb))
         skip_bits(gb, 4); // mono_mixdown_tag
     if (get_bits1(gb))
         skip_bits(gb, 4); // stereo_mixdown_tag
71e9a1b8
 
cc0591da
     if (get_bits1(gb))
         skip_bits(gb, 3); // mixdown_coeff_index and pseudo_surround
71e9a1b8
 
cc0591da
     decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_FRONT, gb, num_front);
     decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_SIDE,  gb, num_side );
     decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_BACK,  gb, num_back );
     decode_channel_map(NULL,                  new_che_pos[TYPE_LFE], AAC_CHANNEL_LFE,   gb, num_lfe  );
71e9a1b8
 
     skip_bits_long(gb, 4 * num_assoc_data);
 
cc0591da
     decode_channel_map(new_che_pos[TYPE_CCE], new_che_pos[TYPE_CCE], AAC_CHANNEL_CC,    gb, num_cc   );
71e9a1b8
 
     align_get_bits(gb);
 
     /* comment field, first byte is length */
8d637124
     comment_len = get_bits(gb, 8) * 8;
     if (get_bits_left(gb) < comment_len) {
ba90f938
         av_log(ac->avctx, AV_LOG_ERROR, overread_err);
8d637124
         return -1;
     }
     skip_bits_long(gb, comment_len);
cc0591da
     return 0;
 }
71e9a1b8
 
9cc04edf
 /**
  * Set up channel positions based on a default channel configuration
  * as specified in table 1.17.
  *
  * @param   new_che_pos New channel position configuration - we only do something if it differs from the current one.
  *
  * @return  Returns error status. 0 - OK, !0 - error
  */
ff98c17c
 static av_cold int set_default_channel_config(AACContext *ac,
577d383b
                                       enum ChannelPosition new_che_pos[4][MAX_ELEM_ID],
                                       int channel_config)
9cc04edf
 {
577d383b
     if (channel_config < 1 || channel_config > 7) {
ba90f938
         av_log(ac->avctx, AV_LOG_ERROR, "invalid default channel configuration (%d)\n",
9cc04edf
                channel_config);
         return -1;
     }
 
     /* default channel configurations:
      *
      * 1ch : front center (mono)
      * 2ch : L + R (stereo)
      * 3ch : front center + L + R
      * 4ch : front center + L + R + back center
      * 5ch : front center + L + R + back stereo
      * 6ch : front center + L + R + back stereo + LFE
      * 7ch : front center + L + R + outer front left + outer front right + back stereo + LFE
      */
 
577d383b
     if (channel_config != 2)
9cc04edf
         new_che_pos[TYPE_SCE][0] = AAC_CHANNEL_FRONT; // front center (or mono)
577d383b
     if (channel_config > 1)
9cc04edf
         new_che_pos[TYPE_CPE][0] = AAC_CHANNEL_FRONT; // L + R (or stereo)
577d383b
     if (channel_config == 4)
9cc04edf
         new_che_pos[TYPE_SCE][1] = AAC_CHANNEL_BACK;  // back center
577d383b
     if (channel_config > 4)
9cc04edf
         new_che_pos[TYPE_CPE][(channel_config == 7) + 1]
577d383b
         = AAC_CHANNEL_BACK;  // back stereo
     if (channel_config > 5)
9cc04edf
         new_che_pos[TYPE_LFE][0] = AAC_CHANNEL_LFE;   // LFE
577d383b
     if (channel_config == 7)
9cc04edf
         new_che_pos[TYPE_CPE][1] = AAC_CHANNEL_FRONT; // outer front left + outer front right
 
     return 0;
 }
 
62a57fae
 /**
  * Decode GA "General Audio" specific configuration; reference: table 4.1.
  *
  * @return  Returns error status. 0 - OK, !0 - error
  */
577d383b
 static int decode_ga_specific_config(AACContext *ac, GetBitContext *gb,
                                      int channel_config)
 {
62a57fae
     enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
     int extension_flag, ret;
 
577d383b
     if (get_bits1(gb)) { // frameLengthFlag
ba90f938
         av_log_missing_feature(ac->avctx, "960/120 MDCT window is", 1);
9cc04edf
         return -1;
     }
 
     if (get_bits1(gb))       // dependsOnCoreCoder
         skip_bits(gb, 14);   // coreCoderDelay
     extension_flag = get_bits1(gb);
 
577d383b
     if (ac->m4ac.object_type == AOT_AAC_SCALABLE ||
         ac->m4ac.object_type == AOT_ER_AAC_SCALABLE)
9cc04edf
         skip_bits(gb, 3);     // layerNr
 
     memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
     if (channel_config == 0) {
         skip_bits(gb, 4);  // element_instance_tag
577d383b
         if ((ret = decode_pce(ac, new_che_pos, gb)))
9cc04edf
             return ret;
     } else {
577d383b
         if ((ret = set_default_channel_config(ac, new_che_pos, channel_config)))
9cc04edf
             return ret;
     }
4fab6627
     if ((ret = output_configure(ac, ac->che_pos, new_che_pos, channel_config, OC_GLOBAL_HDR)))
9cc04edf
         return ret;
 
     if (extension_flag) {
         switch (ac->m4ac.object_type) {
577d383b
         case AOT_ER_BSAC:
             skip_bits(gb, 5);    // numOfSubFrame
             skip_bits(gb, 11);   // layer_length
             break;
         case AOT_ER_AAC_LC:
         case AOT_ER_AAC_LTP:
         case AOT_ER_AAC_SCALABLE:
         case AOT_ER_AAC_LD:
             skip_bits(gb, 3);  /* aacSectionDataResilienceFlag
9cc04edf
                                     * aacScalefactorDataResilienceFlag
                                     * aacSpectralDataResilienceFlag
                                     */
577d383b
             break;
9cc04edf
         }
         skip_bits1(gb);    // extensionFlag3 (TBD in version 3)
     }
     return 0;
 }
 
 /**
  * Decode audio specific configuration; reference: table 1.13.
  *
  * @param   data        pointer to AVCodecContext extradata
  * @param   data_size   size of AVCCodecContext extradata
  *
  * @return  Returns error status. 0 - OK, !0 - error
  */
577d383b
 static int decode_audio_specific_config(AACContext *ac, void *data,
                                         int data_size)
 {
9cc04edf
     GetBitContext gb;
     int i;
 
     init_get_bits(&gb, data, data_size * 8);
 
577d383b
     if ((i = ff_mpeg4audio_get_config(&ac->m4ac, data, data_size)) < 0)
9cc04edf
         return -1;
577d383b
     if (ac->m4ac.sampling_index > 12) {
ba90f938
         av_log(ac->avctx, AV_LOG_ERROR, "invalid sampling rate index %d\n", ac->m4ac.sampling_index);
9cc04edf
         return -1;
     }
ba90f938
     if (ac->m4ac.sbr == 1 && ac->m4ac.ps == -1)
         ac->m4ac.ps = 1;
9cc04edf
 
     skip_bits_long(&gb, i);
 
     switch (ac->m4ac.object_type) {
7633a041
     case AOT_AAC_MAIN:
9cc04edf
     case AOT_AAC_LC:
         if (decode_ga_specific_config(ac, &gb, ac->m4ac.chan_config))
             return -1;
         break;
     default:
ba90f938
         av_log(ac->avctx, AV_LOG_ERROR, "Audio object type %s%d is not supported.\n",
9cc04edf
                ac->m4ac.sbr == 1? "SBR+" : "", ac->m4ac.object_type);
         return -1;
     }
     return 0;
 }
 
62a57fae
 /**
  * linear congruential pseudorandom number generator
  *
  * @param   previous_val    pointer to the current state of the generator
  *
  * @return  Returns a 32-bit pseudorandom integer
  */
577d383b
 static av_always_inline int lcg_random(int previous_val)
 {
62a57fae
     return previous_val * 1664525 + 1013904223;
 }
 
ab2a3028
 static av_always_inline void reset_predict_state(PredictorState *ps)
577d383b
 {
     ps->r0   = 0.0f;
     ps->r1   = 0.0f;
7633a041
     ps->cor0 = 0.0f;
     ps->cor1 = 0.0f;
     ps->var0 = 1.0f;
     ps->var1 = 1.0f;
 }
 
577d383b
 static void reset_all_predictors(PredictorState *ps)
 {
7633a041
     int i;
     for (i = 0; i < MAX_PREDICTORS; i++)
         reset_predict_state(&ps[i]);
 }
 
577d383b
 static void reset_predictor_group(PredictorState *ps, int group_num)
 {
7633a041
     int i;
577d383b
     for (i = group_num - 1; i < MAX_PREDICTORS; i += 30)
7633a041
         reset_predict_state(&ps[i]);
 }
 
ba90f938
 #define AAC_INIT_VLC_STATIC(num, size) \
     INIT_VLC_STATIC(&vlc_spectral[num], 8, ff_aac_spectral_sizes[num], \
          ff_aac_spectral_bits[num], sizeof( ff_aac_spectral_bits[num][0]), sizeof( ff_aac_spectral_bits[num][0]), \
         ff_aac_spectral_codes[num], sizeof(ff_aac_spectral_codes[num][0]), sizeof(ff_aac_spectral_codes[num][0]), \
         size);
 
 static av_cold int aac_decode_init(AVCodecContext *avctx)
577d383b
 {
ba90f938
     AACContext *ac = avctx->priv_data;
71e9a1b8
 
ba90f938
     ac->avctx = avctx;
     ac->m4ac.sample_rate = avctx->sample_rate;
71e9a1b8
 
ba90f938
     if (avctx->extradata_size > 0) {
         if (decode_audio_specific_config(ac, avctx->extradata, avctx->extradata_size))
158b3912
             return -1;
     }
cc0591da
 
ba90f938
     avctx->sample_fmt = SAMPLE_FMT_S16;
71e9a1b8
 
2ef21b91
     AAC_INIT_VLC_STATIC( 0, 304);
     AAC_INIT_VLC_STATIC( 1, 270);
     AAC_INIT_VLC_STATIC( 2, 550);
     AAC_INIT_VLC_STATIC( 3, 300);
     AAC_INIT_VLC_STATIC( 4, 328);
     AAC_INIT_VLC_STATIC( 5, 294);
     AAC_INIT_VLC_STATIC( 6, 306);
     AAC_INIT_VLC_STATIC( 7, 268);
     AAC_INIT_VLC_STATIC( 8, 510);
     AAC_INIT_VLC_STATIC( 9, 366);
     AAC_INIT_VLC_STATIC(10, 462);
71e9a1b8
 
ed492b61
     ff_aac_sbr_init();
 
ba90f938
     dsputil_init(&ac->dsp, avctx);
71e9a1b8
 
9cc04edf
     ac->random_state = 0x1f2e3d4c;
 
71e9a1b8
     // -1024 - Compensate wrong IMDCT method.
     // 32768 - Required to scale values to the correct range for the bias method
     //         for float to int16 conversion.
 
144fec83
     if (ac->dsp.float_to_int16_interleave == ff_float_to_int16_interleave_c) {
577d383b
         ac->add_bias  = 385.0f;
         ac->sf_scale  = 1. / (-1024. * 32768.);
71e9a1b8
         ac->sf_offset = 0;
     } else {
577d383b
         ac->add_bias  = 0.0f;
         ac->sf_scale  = 1. / -1024.;
71e9a1b8
         ac->sf_offset = 60;
     }
 
ba90f938
     ff_aac_tableinit();
71e9a1b8
 
37d3e066
     INIT_VLC_STATIC(&vlc_scalefactors,7,FF_ARRAY_ELEMS(ff_aac_scalefactor_code),
577d383b
                     ff_aac_scalefactor_bits, sizeof(ff_aac_scalefactor_bits[0]), sizeof(ff_aac_scalefactor_bits[0]),
                     ff_aac_scalefactor_code, sizeof(ff_aac_scalefactor_code[0]), sizeof(ff_aac_scalefactor_code[0]),
                     352);
71e9a1b8
 
7d485f16
     ff_mdct_init(&ac->mdct, 11, 1, 1.0);
     ff_mdct_init(&ac->mdct_small, 8, 1, 1.0);
9ffd5c1c
     // window initialization
     ff_kbd_window_init(ff_aac_kbd_long_1024, 4.0, 1024);
     ff_kbd_window_init(ff_aac_kbd_short_128, 6.0, 128);
14b86070
     ff_init_ff_sine_windows(10);
     ff_init_ff_sine_windows( 7);
9ffd5c1c
 
c26bce10
     cbrt_tableinit();
dc0d86fa
 
71e9a1b8
     return 0;
 }
 
9cc04edf
 /**
  * Skip data_stream_element; reference: table 4.10.
  */
8d637124
 static int skip_data_stream_element(AACContext *ac, GetBitContext *gb)
577d383b
 {
71e9a1b8
     int byte_align = get_bits1(gb);
     int count = get_bits(gb, 8);
     if (count == 255)
         count += get_bits(gb, 8);
     if (byte_align)
         align_get_bits(gb);
8d637124
 
     if (get_bits_left(gb) < 8 * count) {
ba90f938
         av_log(ac->avctx, AV_LOG_ERROR, overread_err);
8d637124
         return -1;
     }
71e9a1b8
     skip_bits_long(gb, 8 * count);
8d637124
     return 0;
71e9a1b8
 }
 
577d383b
 static int decode_prediction(AACContext *ac, IndividualChannelStream *ics,
                              GetBitContext *gb)
 {
7633a041
     int sfb;
     if (get_bits1(gb)) {
         ics->predictor_reset_group = get_bits(gb, 5);
         if (ics->predictor_reset_group == 0 || ics->predictor_reset_group > 30) {
ba90f938
             av_log(ac->avctx, AV_LOG_ERROR, "Invalid Predictor Reset Group.\n");
7633a041
             return -1;
         }
     }
     for (sfb = 0; sfb < FFMIN(ics->max_sfb, ff_aac_pred_sfb_max[ac->m4ac.sampling_index]); sfb++) {
         ics->prediction_used[sfb] = get_bits1(gb);
     }
     return 0;
 }
 
71e9a1b8
 /**
9cc04edf
  * Decode Individual Channel Stream info; reference: table 4.6.
  *
  * @param   common_window   Channels have independent [0], or shared [1], Individual Channel Stream information.
  */
577d383b
 static int decode_ics_info(AACContext *ac, IndividualChannelStream *ics,
                            GetBitContext *gb, int common_window)
 {
9cc04edf
     if (get_bits1(gb)) {
ba90f938
         av_log(ac->avctx, AV_LOG_ERROR, "Reserved bit set.\n");
9cc04edf
         memset(ics, 0, sizeof(IndividualChannelStream));
         return -1;
     }
     ics->window_sequence[1] = ics->window_sequence[0];
     ics->window_sequence[0] = get_bits(gb, 2);
577d383b
     ics->use_kb_window[1]   = ics->use_kb_window[0];
     ics->use_kb_window[0]   = get_bits1(gb);
     ics->num_window_groups  = 1;
     ics->group_len[0]       = 1;
9ffd5c1c
     if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
         int i;
         ics->max_sfb = get_bits(gb, 4);
         for (i = 0; i < 7; i++) {
             if (get_bits1(gb)) {
577d383b
                 ics->group_len[ics->num_window_groups - 1]++;
9ffd5c1c
             } else {
                 ics->num_window_groups++;
577d383b
                 ics->group_len[ics->num_window_groups - 1] = 1;
9ffd5c1c
             }
         }
577d383b
         ics->num_windows       = 8;
         ics->swb_offset        =    ff_swb_offset_128[ac->m4ac.sampling_index];
         ics->num_swb           =   ff_aac_num_swb_128[ac->m4ac.sampling_index];
         ics->tns_max_bands     = ff_tns_max_bands_128[ac->m4ac.sampling_index];
7633a041
         ics->predictor_present = 0;
9ffd5c1c
     } else {
577d383b
         ics->max_sfb               = get_bits(gb, 6);
         ics->num_windows           = 1;
         ics->swb_offset            =    ff_swb_offset_1024[ac->m4ac.sampling_index];
         ics->num_swb               =   ff_aac_num_swb_1024[ac->m4ac.sampling_index];
         ics->tns_max_bands         = ff_tns_max_bands_1024[ac->m4ac.sampling_index];
         ics->predictor_present     = get_bits1(gb);
7633a041
         ics->predictor_reset_group = 0;
         if (ics->predictor_present) {
             if (ac->m4ac.object_type == AOT_AAC_MAIN) {
                 if (decode_prediction(ac, ics, gb)) {
                     memset(ics, 0, sizeof(IndividualChannelStream));
                     return -1;
                 }
             } else if (ac->m4ac.object_type == AOT_AAC_LC) {
ba90f938
                 av_log(ac->avctx, AV_LOG_ERROR, "Prediction is not allowed in AAC-LC.\n");
7633a041
                 memset(ics, 0, sizeof(IndividualChannelStream));
                 return -1;
             } else {
ba90f938
                 av_log_missing_feature(ac->avctx, "Predictor bit set but LTP is", 1);
8f5aaa6d
                 memset(ics, 0, sizeof(IndividualChannelStream));
                 return -1;
7633a041
             }
62a57fae
         }
     }
 
577d383b
     if (ics->max_sfb > ics->num_swb) {
ba90f938
         av_log(ac->avctx, AV_LOG_ERROR,
577d383b
                "Number of scalefactor bands in group (%d) exceeds limit (%d).\n",
                ics->max_sfb, ics->num_swb);
62a57fae
         memset(ics, 0, sizeof(IndividualChannelStream));
         return -1;
     }
 
9cc04edf
     return 0;
 }
 
 /**
  * Decode band types (section_data payload); reference: table 4.46.
  *
  * @param   band_type           array of the used band type
  * @param   band_type_run_end   array of the last scalefactor band of a band type run
  *
  * @return  Returns error status. 0 - OK, !0 - error
  */
577d383b
 static int decode_band_types(AACContext *ac, enum BandType band_type[120],
                              int band_type_run_end[120], GetBitContext *gb,
                              IndividualChannelStream *ics)
 {
cc0591da
     int g, idx = 0;
     const int bits = (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) ? 3 : 5;
     for (g = 0; g < ics->num_window_groups; g++) {
         int k = 0;
         while (k < ics->max_sfb) {
01d19fbc
             uint8_t sect_end = k;
cc0591da
             int sect_len_incr;
             int sect_band_type = get_bits(gb, 4);
             if (sect_band_type == 12) {
ba90f938
                 av_log(ac->avctx, AV_LOG_ERROR, "invalid band type\n");
cc0591da
                 return -1;
             }
577d383b
             while ((sect_len_incr = get_bits(gb, bits)) == (1 << bits) - 1)
01d19fbc
                 sect_end += sect_len_incr;
             sect_end += sect_len_incr;
c4a90caa
             if (get_bits_left(gb) < 0) {
ba90f938
                 av_log(ac->avctx, AV_LOG_ERROR, overread_err);
c4a90caa
                 return -1;
             }
01d19fbc
             if (sect_end > ics->max_sfb) {
ba90f938
                 av_log(ac->avctx, AV_LOG_ERROR,
577d383b
                        "Number of bands (%d) exceeds limit (%d).\n",
01d19fbc
                        sect_end, ics->max_sfb);
cc0591da
                 return -1;
             }
01d19fbc
             for (; k < sect_end; k++) {
9ffd5c1c
                 band_type        [idx]   = sect_band_type;
01d19fbc
                 band_type_run_end[idx++] = sect_end;
9ffd5c1c
             }
9cc04edf
         }
     }
     return 0;
 }
cc0591da
 
9cc04edf
 /**
  * Decode scalefactors; reference: table 4.47.
cc0591da
  *
  * @param   global_gain         first scalefactor value as scalefactors are differentially coded
  * @param   band_type           array of the used band type
  * @param   band_type_run_end   array of the last scalefactor band of a band type run
  * @param   sf                  array of scalefactors or intensity stereo positions
  *
  * @return  Returns error status. 0 - OK, !0 - error
  */
577d383b
 static int decode_scalefactors(AACContext *ac, float sf[120], GetBitContext *gb,
                                unsigned int global_gain,
                                IndividualChannelStream *ics,
                                enum BandType band_type[120],
                                int band_type_run_end[120])
 {
cc0591da
     const int sf_offset = ac->sf_offset + (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE ? 12 : 0);
     int g, i, idx = 0;
     int offset[3] = { global_gain, global_gain - 90, 100 };
     int noise_flag = 1;
     static const char *sf_str[3] = { "Global gain", "Noise gain", "Intensity stereo position" };
     for (g = 0; g < ics->num_window_groups; g++) {
         for (i = 0; i < ics->max_sfb;) {
             int run_end = band_type_run_end[idx];
             if (band_type[idx] == ZERO_BT) {
577d383b
                 for (; i < run_end; i++, idx++)
cc0591da
                     sf[idx] = 0.;
577d383b
             } else if ((band_type[idx] == INTENSITY_BT) || (band_type[idx] == INTENSITY_BT2)) {
                 for (; i < run_end; i++, idx++) {
cc0591da
                     offset[2] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
577d383b
                     if (offset[2] > 255U) {
ba90f938
                         av_log(ac->avctx, AV_LOG_ERROR,
577d383b
                                "%s (%d) out of range.\n", sf_str[2], offset[2]);
cc0591da
                         return -1;
                     }
577d383b
                     sf[idx] = ff_aac_pow2sf_tab[-offset[2] + 300];
cc0591da
                 }
577d383b
             } else if (band_type[idx] == NOISE_BT) {
                 for (; i < run_end; i++, idx++) {
                     if (noise_flag-- > 0)
cc0591da
                         offset[1] += get_bits(gb, 9) - 256;
                     else
                         offset[1] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
577d383b
                     if (offset[1] > 255U) {
ba90f938
                         av_log(ac->avctx, AV_LOG_ERROR,
577d383b
                                "%s (%d) out of range.\n", sf_str[1], offset[1]);
cc0591da
                         return -1;
                     }
577d383b
                     sf[idx] = -ff_aac_pow2sf_tab[offset[1] + sf_offset + 100];
cc0591da
                 }
577d383b
             } else {
                 for (; i < run_end; i++, idx++) {
cc0591da
                     offset[0] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
577d383b
                     if (offset[0] > 255U) {
ba90f938
                         av_log(ac->avctx, AV_LOG_ERROR,
577d383b
                                "%s (%d) out of range.\n", sf_str[0], offset[0]);
cc0591da
                         return -1;
                     }
                     sf[idx] = -ff_aac_pow2sf_tab[ offset[0] + sf_offset];
                 }
             }
         }
     }
     return 0;
 }
 
 /**
  * Decode pulse data; reference: table 4.7.
  */
577d383b
 static int decode_pulses(Pulse *pulse, GetBitContext *gb,
                          const uint16_t *swb_offset, int num_swb)
 {
aac0eda4
     int i, pulse_swb;
cc0591da
     pulse->num_pulse = get_bits(gb, 2) + 1;
aac0eda4
     pulse_swb        = get_bits(gb, 6);
     if (pulse_swb >= num_swb)
         return -1;
     pulse->pos[0]    = swb_offset[pulse_swb];
408992ba
     pulse->pos[0]   += get_bits(gb, 5);
aac0eda4
     if (pulse->pos[0] > 1023)
         return -1;
848a5815
     pulse->amp[0]    = get_bits(gb, 4);
     for (i = 1; i < pulse->num_pulse; i++) {
577d383b
         pulse->pos[i] = get_bits(gb, 5) + pulse->pos[i - 1];
aac0eda4
         if (pulse->pos[i] > 1023)
             return -1;
848a5815
         pulse->amp[i] = get_bits(gb, 4);
cc0591da
     }
aac0eda4
     return 0;
cc0591da
 }
 
 /**
1dece0d2
  * Decode Temporal Noise Shaping data; reference: table 4.48.
  *
  * @return  Returns error status. 0 - OK, !0 - error
  */
577d383b
 static int decode_tns(AACContext *ac, TemporalNoiseShaping *tns,
                       GetBitContext *gb, const IndividualChannelStream *ics)
 {
1dece0d2
     int w, filt, i, coef_len, coef_res, coef_compress;
     const int is8 = ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE;
     const int tns_max_order = is8 ? 7 : ac->m4ac.object_type == AOT_AAC_MAIN ? 20 : 12;
     for (w = 0; w < ics->num_windows; w++) {
fbd91d7c
         if ((tns->n_filt[w] = get_bits(gb, 2 - is8))) {
1dece0d2
             coef_res = get_bits1(gb);
 
65b20b24
             for (filt = 0; filt < tns->n_filt[w]; filt++) {
                 int tmp2_idx;
577d383b
                 tns->length[w][filt] = get_bits(gb, 6 - 2 * is8);
65b20b24
 
577d383b
                 if ((tns->order[w][filt] = get_bits(gb, 5 - 2 * is8)) > tns_max_order) {
ba90f938
                     av_log(ac->avctx, AV_LOG_ERROR, "TNS filter order %d is greater than maximum %d.\n",
65b20b24
                            tns->order[w][filt], tns_max_order);
                     tns->order[w][filt] = 0;
                     return -1;
                 }
51673647
                 if (tns->order[w][filt]) {
35445d29
                     tns->direction[w][filt] = get_bits1(gb);
                     coef_compress = get_bits1(gb);
                     coef_len = coef_res + 3 - coef_compress;
577d383b
                     tmp2_idx = 2 * coef_compress + coef_res;
1dece0d2
 
35445d29
                     for (i = 0; i < tns->order[w][filt]; i++)
                         tns->coef[w][filt][i] = tns_tmp2_map[tmp2_idx][get_bits(gb, coef_len)];
51673647
                 }
65b20b24
             }
fbd91d7c
         }
1dece0d2
     }
     return 0;
 }
 
 /**
9cc04edf
  * Decode Mid/Side data; reference: table 4.54.
  *
  * @param   ms_present  Indicates mid/side stereo presence. [0] mask is all 0s;
  *                      [1] mask is decoded from bitstream; [2] mask is all 1s;
  *                      [3] reserved for scalable AAC
  */
577d383b
 static void decode_mid_side_stereo(ChannelElement *cpe, GetBitContext *gb,
                                    int ms_present)
 {
62a57fae
     int idx;
     if (ms_present == 1) {
         for (idx = 0; idx < cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb; idx++)
             cpe->ms_mask[idx] = get_bits1(gb);
     } else if (ms_present == 2) {
         memset(cpe->ms_mask, 1, cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb * sizeof(cpe->ms_mask[0]));
     }
 }
9cc04edf
 
798339fb
 #ifndef VMUL2
c816d3d0
 static inline float *VMUL2(float *dst, const float *v, unsigned idx,
                            const float *scale)
 {
     float s = *scale;
     *dst++ = v[idx    & 15] * s;
     *dst++ = v[idx>>4 & 15] * s;
     return dst;
 }
798339fb
 #endif
c816d3d0
 
798339fb
 #ifndef VMUL4
c816d3d0
 static inline float *VMUL4(float *dst, const float *v, unsigned idx,
                            const float *scale)
 {
     float s = *scale;
     *dst++ = v[idx    & 3] * s;
     *dst++ = v[idx>>2 & 3] * s;
     *dst++ = v[idx>>4 & 3] * s;
     *dst++ = v[idx>>6 & 3] * s;
     return dst;
 }
798339fb
 #endif
c816d3d0
 
798339fb
 #ifndef VMUL2S
c816d3d0
 static inline float *VMUL2S(float *dst, const float *v, unsigned idx,
                             unsigned sign, const float *scale)
 {
     union float754 s0, s1;
 
     s0.f = s1.f = *scale;
     s0.i ^= sign >> 1 << 31;
     s1.i ^= sign      << 31;
 
     *dst++ = v[idx    & 15] * s0.f;
     *dst++ = v[idx>>4 & 15] * s1.f;
 
     return dst;
 }
798339fb
 #endif
c816d3d0
 
798339fb
 #ifndef VMUL4S
c816d3d0
 static inline float *VMUL4S(float *dst, const float *v, unsigned idx,
                             unsigned sign, const float *scale)
 {
     unsigned nz = idx >> 12;
     union float754 s = { .f = *scale };
     union float754 t;
 
     t.i = s.i ^ (sign & 1<<31);
     *dst++ = v[idx    & 3] * t.f;
 
     sign <<= nz & 1; nz >>= 1;
     t.i = s.i ^ (sign & 1<<31);
     *dst++ = v[idx>>2 & 3] * t.f;
 
     sign <<= nz & 1; nz >>= 1;
     t.i = s.i ^ (sign & 1<<31);
     *dst++ = v[idx>>4 & 3] * t.f;
 
     sign <<= nz & 1; nz >>= 1;
     t.i = s.i ^ (sign & 1<<31);
     *dst++ = v[idx>>6 & 3] * t.f;
 
     return dst;
 }
798339fb
 #endif
c816d3d0
 
9cc04edf
 /**
9ffd5c1c
  * Decode spectral data; reference: table 4.50.
  * Dequantize and scale spectral data; reference: 4.6.3.3.
  *
  * @param   coef            array of dequantized, scaled spectral data
  * @param   sf              array of scalefactors or intensity stereo positions
  * @param   pulse_present   set if pulses are present
  * @param   pulse           pointer to pulse data struct
  * @param   band_type       array of the used band type
  *
  * @return  Returns error status. 0 - OK, !0 - error
  */
577d383b
 static int decode_spectrum_and_dequant(AACContext *ac, float coef[1024],
3963a17d
                                        GetBitContext *gb, const float sf[120],
577d383b
                                        int pulse_present, const Pulse *pulse,
                                        const IndividualChannelStream *ics,
                                        enum BandType band_type[120])
 {
9ffd5c1c
     int i, k, g, idx = 0;
577d383b
     const int c = 1024 / ics->num_windows;
     const uint16_t *offsets = ics->swb_offset;
9ffd5c1c
     float *coef_base = coef;
c816d3d0
     int err_idx;
9ffd5c1c
 
     for (g = 0; g < ics->num_windows; g++)
577d383b
         memset(coef + g * 128 + offsets[ics->max_sfb], 0, sizeof(float) * (c - offsets[ics->max_sfb]));
9ffd5c1c
 
     for (g = 0; g < ics->num_window_groups; g++) {
05f9d8fc
         unsigned g_len = ics->group_len[g];
 
9ffd5c1c
         for (i = 0; i < ics->max_sfb; i++, idx++) {
05f9d8fc
             const unsigned cbt_m1 = band_type[idx] - 1;
             float *cfo = coef + offsets[i];
             int off_len = offsets[i + 1] - offsets[i];
9ffd5c1c
             int group;
05f9d8fc
 
             if (cbt_m1 >= INTENSITY_BT2 - 1) {
                 for (group = 0; group < g_len; group++, cfo+=128) {
                     memset(cfo, 0, off_len * sizeof(float));
9ffd5c1c
                 }
05f9d8fc
             } else if (cbt_m1 == NOISE_BT - 1) {
                 for (group = 0; group < g_len; group++, cfo+=128) {
d0ee5021
                     float scale;
b418a6ca
                     float band_energy;
42d3fbb3
 
05f9d8fc
                     for (k = 0; k < off_len; k++) {
9ffd5c1c
                         ac->random_state  = lcg_random(ac->random_state);
05f9d8fc
                         cfo[k] = ac->random_state;
d0ee5021
                     }
42d3fbb3
 
05f9d8fc
                     band_energy = ac->dsp.scalarproduct_float(cfo, cfo, off_len);
d0ee5021
                     scale = sf[idx] / sqrtf(band_energy);
05f9d8fc
                     ac->dsp.vector_fmul_scalar(cfo, cfo, scale, off_len);
9ffd5c1c
                 }
577d383b
             } else {
05f9d8fc
                 const float *vq = ff_aac_codebook_vector_vals[cbt_m1];
                 const uint16_t *cb_vector_idx = ff_aac_codebook_vector_idx[cbt_m1];
                 VLC_TYPE (*vlc_tab)[2] = vlc_spectral[cbt_m1].table;
                 const int cb_size = ff_aac_spectral_sizes[cbt_m1];
d356a53f
                 OPEN_READER(re, gb);
c816d3d0
 
95dff4ac
                 switch (cbt_m1 >> 1) {
                 case 0:
                     for (group = 0; group < g_len; group++, cfo+=128) {
                         float *cf = cfo;
                         int len = off_len;
42d3fbb3
 
c816d3d0
                         do {
d356a53f
                             int code;
c816d3d0
                             unsigned cb_idx;
 
d356a53f
                             UPDATE_CACHE(re, gb);
                             GET_VLC(code, re, gb, vlc_tab, 8, 2);
 
                             if (code >= cb_size) {
                                 err_idx = code;
c816d3d0
                                 goto err_cb_overflow;
                             }
 
d356a53f
                             cb_idx = cb_vector_idx[code];
c816d3d0
                             cf = VMUL4(cf, vq, cb_idx, sf + idx);
                         } while (len -= 4);
95dff4ac
                     }
                     break;
 
                 case 1:
                     for (group = 0; group < g_len; group++, cfo+=128) {
                         float *cf = cfo;
                         int len = off_len;
 
c816d3d0
                         do {
d356a53f
                             int code;
c816d3d0
                             unsigned nnz;
                             unsigned cb_idx;
                             uint32_t bits;
 
d356a53f
                             UPDATE_CACHE(re, gb);
                             GET_VLC(code, re, gb, vlc_tab, 8, 2);
 
                             if (code >= cb_size) {
                                 err_idx = code;
c816d3d0
                                 goto err_cb_overflow;
                             }
 
d356a53f
 #if MIN_CACHE_BITS < 20
                             UPDATE_CACHE(re, gb);
 #endif
                             cb_idx = cb_vector_idx[code];
c816d3d0
                             nnz = cb_idx >> 8 & 15;
d356a53f
                             bits = SHOW_UBITS(re, gb, nnz) << (32-nnz);
                             LAST_SKIP_BITS(re, gb, nnz);
c816d3d0
                             cf = VMUL4S(cf, vq, cb_idx, bits, sf + idx);
                         } while (len -= 4);
95dff4ac
                     }
                     break;
 
                 case 2:
                     for (group = 0; group < g_len; group++, cfo+=128) {
                         float *cf = cfo;
                         int len = off_len;
 
c816d3d0
                         do {
d356a53f
                             int code;
c816d3d0
                             unsigned cb_idx;
 
d356a53f
                             UPDATE_CACHE(re, gb);
                             GET_VLC(code, re, gb, vlc_tab, 8, 2);
 
                             if (code >= cb_size) {
                                 err_idx = code;
c816d3d0
                                 goto err_cb_overflow;
c0893c3a
                             }
c816d3d0
 
d356a53f
                             cb_idx = cb_vector_idx[code];
c816d3d0
                             cf = VMUL2(cf, vq, cb_idx, sf + idx);
                         } while (len -= 2);
95dff4ac
                     }
                     break;
 
                 case 3:
                 case 4:
                     for (group = 0; group < g_len; group++, cfo+=128) {
                         float *cf = cfo;
                         int len = off_len;
 
c816d3d0
                         do {
d356a53f
                             int code;
c816d3d0
                             unsigned nnz;
                             unsigned cb_idx;
                             unsigned sign;
 
d356a53f
                             UPDATE_CACHE(re, gb);
                             GET_VLC(code, re, gb, vlc_tab, 8, 2);
 
                             if (code >= cb_size) {
                                 err_idx = code;
c816d3d0
                                 goto err_cb_overflow;
                             }
 
d356a53f
                             cb_idx = cb_vector_idx[code];
c816d3d0
                             nnz = cb_idx >> 8 & 15;
d356a53f
                             sign = SHOW_UBITS(re, gb, nnz) << (cb_idx >> 12);
                             LAST_SKIP_BITS(re, gb, nnz);
c816d3d0
                             cf = VMUL2S(cf, vq, cb_idx, sign, sf + idx);
                         } while (len -= 2);
95dff4ac
                     }
                     break;
 
                 default:
                     for (group = 0; group < g_len; group++, cfo+=128) {
                         float *cf = cfo;
                         uint32_t *icf = (uint32_t *) cf;
                         int len = off_len;
 
05f9d8fc
                         do {
d356a53f
                             int code;
c816d3d0
                             unsigned nzt, nnz;
                             unsigned cb_idx;
                             uint32_t bits;
                             int j;
 
d356a53f
                             UPDATE_CACHE(re, gb);
                             GET_VLC(code, re, gb, vlc_tab, 8, 2);
 
                             if (!code) {
05f9d8fc
                                 *icf++ = 0;
                                 *icf++ = 0;
c816d3d0
                                 continue;
                             }
 
d356a53f
                             if (code >= cb_size) {
                                 err_idx = code;
c816d3d0
                                 goto err_cb_overflow;
                             }
 
d356a53f
                             cb_idx = cb_vector_idx[code];
c816d3d0
                             nnz = cb_idx >> 12;
                             nzt = cb_idx >> 8;
d356a53f
                             bits = SHOW_UBITS(re, gb, nnz) << (32-nnz);
                             LAST_SKIP_BITS(re, gb, nnz);
c816d3d0
 
                             for (j = 0; j < 2; j++) {
                                 if (nzt & 1<<j) {
d356a53f
                                     uint32_t b;
                                     int n;
c816d3d0
                                     /* The total length of escape_sequence must be < 22 bits according
                                        to the specification (i.e. max is 111111110xxxxxxxxxxxx). */
d356a53f
                                     UPDATE_CACHE(re, gb);
                                     b = GET_CACHE(re, gb);
                                     b = 31 - av_log2(~b);
 
                                     if (b > 8) {
ba90f938
                                         av_log(ac->avctx, AV_LOG_ERROR, "error in spectral data, ESC overflow\n");
c816d3d0
                                         return -1;
                                     }
d356a53f
 
 #if MIN_CACHE_BITS < 21
                                     LAST_SKIP_BITS(re, gb, b + 1);
                                     UPDATE_CACHE(re, gb);
 #else
                                     SKIP_BITS(re, gb, b + 1);
 #endif
                                     b += 4;
                                     n = (1 << b) + SHOW_UBITS(re, gb, b);
                                     LAST_SKIP_BITS(re, gb, b);
05f9d8fc
                                     *icf++ = cbrt_tab[n] | (bits & 1<<31);
c816d3d0
                                     bits <<= 1;
                                 } else {
                                     unsigned v = ((const uint32_t*)vq)[cb_idx & 15];
05f9d8fc
                                     *icf++ = (bits & 1<<31) | v;
c816d3d0
                                     bits <<= !!v;
e8d5c07b
                                 }
c816d3d0
                                 cb_idx >>= 4;
9ffd5c1c
                             }
05f9d8fc
                         } while (len -= 2);
42d3fbb3
 
05f9d8fc
                         ac->dsp.vector_fmul_scalar(cfo, cfo, sf[idx], off_len);
42d3fbb3
                     }
9ffd5c1c
                 }
d356a53f
 
                 CLOSE_READER(re, gb);
9ffd5c1c
             }
         }
05f9d8fc
         coef += g_len << 7;
9ffd5c1c
     }
 
     if (pulse_present) {
51436848
         idx = 0;
577d383b
         for (i = 0; i < pulse->num_pulse; i++) {
             float co = coef_base[ pulse->pos[i] ];
             while (offsets[idx + 1] <= pulse->pos[i])
51436848
                 idx++;
             if (band_type[idx] != NOISE_BT && sf[idx]) {
70735a3f
                 float ico = -pulse->amp[i];
                 if (co) {
                     co /= sf[idx];
                     ico = co / sqrtf(sqrtf(fabsf(co))) + (co > 0 ? -ico : ico);
                 }
                 coef_base[ pulse->pos[i] ] = cbrtf(fabsf(ico)) * ico * sf[idx];
51436848
             }
9ffd5c1c
         }
     }
     return 0;
c816d3d0
 
 err_cb_overflow:
ba90f938
     av_log(ac->avctx, AV_LOG_ERROR,
c816d3d0
            "Read beyond end of ff_aac_codebook_vectors[%d][]. index %d >= %d\n",
            band_type[idx], err_idx, ff_aac_spectral_sizes[band_type[idx]]);
     return -1;
9ffd5c1c
 }
 
577d383b
 static av_always_inline float flt16_round(float pf)
 {
4a39ccb4
     union float754 tmp;
     tmp.f = pf;
     tmp.i = (tmp.i + 0x00008000U) & 0xFFFF0000U;
     return tmp.f;
7633a041
 }
 
577d383b
 static av_always_inline float flt16_even(float pf)
 {
4a39ccb4
     union float754 tmp;
     tmp.f = pf;
577d383b
     tmp.i = (tmp.i + 0x00007FFFU + (tmp.i & 0x00010000U >> 16)) & 0xFFFF0000U;
4a39ccb4
     return tmp.f;
7633a041
 }
 
577d383b
 static av_always_inline float flt16_trunc(float pf)
 {
4a39ccb4
     union float754 pun;
     pun.f = pf;
     pun.i &= 0xFFFF0000U;
     return pun.f;
7633a041
 }
 
ab2a3028
 static av_always_inline void predict(AACContext *ac, PredictorState *ps, float *coef,
577d383b
                     int output_enable)
 {
     const float a     = 0.953125; // 61.0 / 64
     const float alpha = 0.90625;  // 29.0 / 32
7633a041
     float e0, e1;
     float pv;
     float k1, k2;
 
     k1 = ps->var0 > 1 ? ps->cor0 * flt16_even(a / ps->var0) : 0;
     k2 = ps->var1 > 1 ? ps->cor1 * flt16_even(a / ps->var1) : 0;
 
     pv = flt16_round(k1 * ps->r0 + k2 * ps->r1);
     if (output_enable)
         *coef += pv * ac->sf_scale;
 
     e0 = *coef / ac->sf_scale;
     e1 = e0 - k1 * ps->r0;
 
     ps->cor1 = flt16_trunc(alpha * ps->cor1 + ps->r1 * e1);
     ps->var1 = flt16_trunc(alpha * ps->var1 + 0.5 * (ps->r1 * ps->r1 + e1 * e1));
     ps->cor0 = flt16_trunc(alpha * ps->cor0 + ps->r0 * e0);
     ps->var0 = flt16_trunc(alpha * ps->var0 + 0.5 * (ps->r0 * ps->r0 + e0 * e0));
 
     ps->r1 = flt16_trunc(a * (ps->r0 - k1 * e0));
     ps->r0 = flt16_trunc(a * e0);
 }
 
 /**
  * Apply AAC-Main style frequency domain prediction.
  */
577d383b
 static void apply_prediction(AACContext *ac, SingleChannelElement *sce)
 {
7633a041
     int sfb, k;
 
     if (!sce->ics.predictor_initialized) {
aab54133
         reset_all_predictors(sce->predictor_state);
7633a041
         sce->ics.predictor_initialized = 1;
     }
 
     if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE) {
         for (sfb = 0; sfb < ff_aac_pred_sfb_max[ac->m4ac.sampling_index]; sfb++) {
             for (k = sce->ics.swb_offset[sfb]; k < sce->ics.swb_offset[sfb + 1]; k++) {
aab54133
                 predict(ac, &sce->predictor_state[k], &sce->coeffs[k],
577d383b
                         sce->ics.predictor_present && sce->ics.prediction_used[sfb]);
7633a041
             }
         }
         if (sce->ics.predictor_reset_group)
aab54133
             reset_predictor_group(sce->predictor_state, sce->ics.predictor_reset_group);
7633a041
     } else
aab54133
         reset_all_predictors(sce->predictor_state);
7633a041
 }
 
9ffd5c1c
 /**
9cc04edf
  * Decode an individual_channel_stream payload; reference: table 4.44.
  *
  * @param   common_window   Channels have independent [0], or shared [1], Individual Channel Stream information.
  * @param   scale_flag      scalable [1] or non-scalable [0] AAC (Unused until scalable AAC is implemented.)
  *
  * @return  Returns error status. 0 - OK, !0 - error
  */
577d383b
 static int decode_ics(AACContext *ac, SingleChannelElement *sce,
                       GetBitContext *gb, int common_window, int scale_flag)
 {
9cc04edf
     Pulse pulse;
577d383b
     TemporalNoiseShaping    *tns = &sce->tns;
     IndividualChannelStream *ics = &sce->ics;
     float *out = sce->coeffs;
9cc04edf
     int global_gain, pulse_present = 0;
 
848a5815
     /* This assignment is to silence a GCC warning about the variable being used
      * uninitialized when in fact it always is.
9cc04edf
      */
     pulse.num_pulse = 0;
 
     global_gain = get_bits(gb, 8);
 
     if (!common_window && !scale_flag) {
         if (decode_ics_info(ac, ics, gb, 0) < 0)
             return -1;
     }
 
     if (decode_band_types(ac, sce->band_type, sce->band_type_run_end, gb, ics) < 0)
         return -1;
     if (decode_scalefactors(ac, sce->sf, gb, global_gain, ics, sce->band_type, sce->band_type_run_end) < 0)
         return -1;
 
     pulse_present = 0;
     if (!scale_flag) {
         if ((pulse_present = get_bits1(gb))) {
             if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
ba90f938
                 av_log(ac->avctx, AV_LOG_ERROR, "Pulse tool not allowed in eight short sequence.\n");
9cc04edf
                 return -1;
             }
aac0eda4
             if (decode_pulses(&pulse, gb, ics->swb_offset, ics->num_swb)) {
ba90f938
                 av_log(ac->avctx, AV_LOG_ERROR, "Pulse data corrupt or invalid.\n");
aac0eda4
                 return -1;
             }
9cc04edf
         }
         if ((tns->present = get_bits1(gb)) && decode_tns(ac, tns, gb, ics))
             return -1;
         if (get_bits1(gb)) {
ba90f938
             av_log_missing_feature(ac->avctx, "SSR", 1);
9cc04edf
             return -1;
         }
     }
 
848a5815
     if (decode_spectrum_and_dequant(ac, out, gb, sce->sf, pulse_present, &pulse, ics, sce->band_type) < 0)
9cc04edf
         return -1;
7633a041
 
577d383b
     if (ac->m4ac.object_type == AOT_AAC_MAIN && !common_window)
7633a041
         apply_prediction(ac, sce);
 
9cc04edf
     return 0;
 }
 
 /**
9ffd5c1c
  * Mid/Side stereo decoding; reference: 4.6.8.1.3.
  */
42d3fbb3
 static void apply_mid_side_stereo(AACContext *ac, ChannelElement *cpe)
577d383b
 {
     const IndividualChannelStream *ics = &cpe->ch[0].ics;
9ffd5c1c
     float *ch0 = cpe->ch[0].coeffs;
     float *ch1 = cpe->ch[1].coeffs;
42d3fbb3
     int g, i, group, idx = 0;
577d383b
     const uint16_t *offsets = ics->swb_offset;
9ffd5c1c
     for (g = 0; g < ics->num_window_groups; g++) {
         for (i = 0; i < ics->max_sfb; i++, idx++) {
             if (cpe->ms_mask[idx] &&
577d383b
                     cpe->ch[0].band_type[idx] < NOISE_BT && cpe->ch[1].band_type[idx] < NOISE_BT) {
9ffd5c1c
                 for (group = 0; group < ics->group_len[g]; group++) {
42d3fbb3
                     ac->dsp.butterflies_float(ch0 + group * 128 + offsets[i],
                                               ch1 + group * 128 + offsets[i],
                                               offsets[i+1] - offsets[i]);
9ffd5c1c
                 }
             }
         }
577d383b
         ch0 += ics->group_len[g] * 128;
         ch1 += ics->group_len[g] * 128;
9ffd5c1c
     }
 }
 
 /**
  * intensity stereo decoding; reference: 4.6.8.2.3
  *
  * @param   ms_present  Indicates mid/side stereo presence. [0] mask is all 0s;
  *                      [1] mask is decoded from bitstream; [2] mask is all 1s;
  *                      [3] reserved for scalable AAC
  */
577d383b
 static void apply_intensity_stereo(ChannelElement *cpe, int ms_present)
 {
     const IndividualChannelStream *ics = &cpe->ch[1].ics;
     SingleChannelElement         *sce1 = &cpe->ch[1];
9ffd5c1c
     float *coef0 = cpe->ch[0].coeffs, *coef1 = cpe->ch[1].coeffs;
577d383b
     const uint16_t *offsets = ics->swb_offset;
9ffd5c1c
     int g, group, i, k, idx = 0;
     int c;
     float scale;
     for (g = 0; g < ics->num_window_groups; g++) {
         for (i = 0; i < ics->max_sfb;) {
             if (sce1->band_type[idx] == INTENSITY_BT || sce1->band_type[idx] == INTENSITY_BT2) {
                 const int bt_run_end = sce1->band_type_run_end[idx];
                 for (; i < bt_run_end; i++, idx++) {
                     c = -1 + 2 * (sce1->band_type[idx] - 14);
                     if (ms_present)
                         c *= 1 - 2 * cpe->ms_mask[idx];
                     scale = c * sce1->sf[idx];
                     for (group = 0; group < ics->group_len[g]; group++)
577d383b
                         for (k = offsets[i]; k < offsets[i + 1]; k++)
                             coef1[group * 128 + k] = scale * coef0[group * 128 + k];
9ffd5c1c
                 }
             } else {
                 int bt_run_end = sce1->band_type_run_end[idx];
                 idx += bt_run_end - i;
                 i    = bt_run_end;
             }
         }
577d383b
         coef0 += ics->group_len[g] * 128;
         coef1 += ics->group_len[g] * 128;
9ffd5c1c
     }
 }
 
 /**
9cc04edf
  * Decode a channel_pair_element; reference: table 4.4.
  *
  * @param   elem_id Identifies the instance of a syntax element.
  *
  * @return  Returns error status. 0 - OK, !0 - error
  */
577d383b
 static int decode_cpe(AACContext *ac, GetBitContext *gb, ChannelElement *cpe)
 {
9cc04edf
     int i, ret, common_window, ms_present = 0;
 
     common_window = get_bits1(gb);
     if (common_window) {
         if (decode_ics_info(ac, &cpe->ch[0].ics, gb, 1))
             return -1;
         i = cpe->ch[1].ics.use_kb_window[0];
         cpe->ch[1].ics = cpe->ch[0].ics;
         cpe->ch[1].ics.use_kb_window[1] = i;
         ms_present = get_bits(gb, 2);
577d383b
         if (ms_present == 3) {
ba90f938
             av_log(ac->avctx, AV_LOG_ERROR, "ms_present = 3 is reserved.\n");
9cc04edf
             return -1;
577d383b
         } else if (ms_present)
9cc04edf
             decode_mid_side_stereo(cpe, gb, ms_present);
     }
     if ((ret = decode_ics(ac, &cpe->ch[0], gb, common_window, 0)))
         return ret;
     if ((ret = decode_ics(ac, &cpe->ch[1], gb, common_window, 0)))
         return ret;
 
aab54133
     if (common_window) {
         if (ms_present)
42d3fbb3
             apply_mid_side_stereo(ac, cpe);
aab54133
         if (ac->m4ac.object_type == AOT_AAC_MAIN) {
             apply_prediction(ac, &cpe->ch[0]);
             apply_prediction(ac, &cpe->ch[1]);
         }
     }
9cc04edf
 
848a5815
     apply_intensity_stereo(cpe, ms_present);
9cc04edf
     return 0;
 }
 
9ffd5c1c
 /**
  * Decode coupling_channel_element; reference: table 4.8.
  *
  * @param   elem_id Identifies the instance of a syntax element.
  *
  * @return  Returns error status. 0 - OK, !0 - error
  */
577d383b
 static int decode_cce(AACContext *ac, GetBitContext *gb, ChannelElement *che)
 {
9ffd5c1c
     int num_gain = 0;
341b28c0
     int c, g, sfb, ret;
9ffd5c1c
     int sign;
     float scale;
577d383b
     SingleChannelElement *sce = &che->ch[0];
     ChannelCoupling     *coup = &che->coup;
9ffd5c1c
 
577d383b
     coup->coupling_point = 2 * get_bits1(gb);
62a57fae
     coup->num_coupled = get_bits(gb, 3);
     for (c = 0; c <= coup->num_coupled; c++) {
         num_gain++;
         coup->type[c] = get_bits1(gb) ? TYPE_CPE : TYPE_SCE;
         coup->id_select[c] = get_bits(gb, 4);
         if (coup->type[c] == TYPE_CPE) {
             coup->ch_select[c] = get_bits(gb, 2);
             if (coup->ch_select[c] == 3)
                 num_gain++;
         } else
88de95c2
             coup->ch_select[c] = 2;
62a57fae
     }
577d383b
     coup->coupling_point += get_bits1(gb) || (coup->coupling_point >> 1);
62a57fae
 
577d383b
     sign  = get_bits(gb, 1);
c8947a56
     scale = pow(2., pow(2., (int)get_bits(gb, 2) - 3));
62a57fae
 
     if ((ret = decode_ics(ac, sce, gb, 0, 0)))
         return ret;
 
     for (c = 0; c < num_gain; c++) {
577d383b
         int idx  = 0;
         int cge  = 1;
62a57fae
         int gain = 0;
         float gain_cache = 1.;
         if (c) {
             cge = coup->coupling_point == AFTER_IMDCT ? 1 : get_bits1(gb);
             gain = cge ? get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60: 0;
88de95c2
             gain_cache = pow(scale, -gain);
62a57fae
         }
f1ade11e
         if (coup->coupling_point == AFTER_IMDCT) {
             coup->gain[c][0] = gain_cache;
         } else {
03b12747
             for (g = 0; g < sce->ics.num_window_groups; g++) {
                 for (sfb = 0; sfb < sce->ics.max_sfb; sfb++, idx++) {
                     if (sce->band_type[idx] != ZERO_BT) {
                         if (!cge) {
                             int t = get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
577d383b
                             if (t) {
03b12747
                                 int s = 1;
                                 t = gain += t;
                                 if (sign) {
                                     s  -= 2 * (t & 0x1);
                                     t >>= 1;
                                 }
                                 gain_cache = pow(scale, -t) * s;
62a57fae
                             }
                         }
03b12747
                         coup->gain[c][idx] = gain_cache;
62a57fae
                     }
                 }
f80a8ca5
             }
         }
62a57fae
     }
     return 0;
 }
 
9cc04edf
 /**
62a57fae
  * Parse whether channels are to be excluded from Dynamic Range Compression; reference: table 4.53.
  *
  * @return  Returns number of bytes consumed.
  */
577d383b
 static int decode_drc_channel_exclusions(DynamicRangeControl *che_drc,
                                          GetBitContext *gb)
 {
62a57fae
     int i;
     int num_excl_chan = 0;
 
     do {
         for (i = 0; i < 7; i++)
             che_drc->exclude_mask[num_excl_chan++] = get_bits1(gb);
     } while (num_excl_chan < MAX_CHANNELS - 7 && get_bits1(gb));
 
     return num_excl_chan / 7;
 }
 
 /**
9cc04edf
  * Decode dynamic range information; reference: table 4.52.
  *
  * @param   cnt length of TYPE_FIL syntactic element in bytes
  *
  * @return  Returns number of bytes consumed.
  */
577d383b
 static int decode_dynamic_range(DynamicRangeControl *che_drc,
                                 GetBitContext *gb, int cnt)
 {
     int n             = 1;
9cc04edf
     int drc_num_bands = 1;
     int i;
 
     /* pce_tag_present? */
577d383b
     if (get_bits1(gb)) {
9cc04edf
         che_drc->pce_instance_tag  = get_bits(gb, 4);
         skip_bits(gb, 4); // tag_reserved_bits
         n++;
     }
 
     /* excluded_chns_present? */
577d383b
     if (get_bits1(gb)) {
9cc04edf
         n += decode_drc_channel_exclusions(che_drc, gb);
     }
 
     /* drc_bands_present? */
     if (get_bits1(gb)) {
         che_drc->band_incr            = get_bits(gb, 4);
         che_drc->interpolation_scheme = get_bits(gb, 4);
         n++;
         drc_num_bands += che_drc->band_incr;
         for (i = 0; i < drc_num_bands; i++) {
             che_drc->band_top[i] = get_bits(gb, 8);
             n++;
         }
     }
 
     /* prog_ref_level_present? */
     if (get_bits1(gb)) {
         che_drc->prog_ref_level = get_bits(gb, 7);
         skip_bits1(gb); // prog_ref_level_reserved_bits
         n++;
     }
 
     for (i = 0; i < drc_num_bands; i++) {
         che_drc->dyn_rng_sgn[i] = get_bits1(gb);
         che_drc->dyn_rng_ctl[i] = get_bits(gb, 7);
         n++;
     }
 
     return n;
 }
 
 /**
  * Decode extension data (incomplete); reference: table 4.51.
  *
  * @param   cnt length of TYPE_FIL syntactic element in bytes
  *
  * @return Returns number of bytes consumed
  */
ed492b61
 static int decode_extension_payload(AACContext *ac, GetBitContext *gb, int cnt,
                                     ChannelElement *che, enum RawDataBlockType elem_type)
577d383b
 {
cc0591da
     int crc_flag = 0;
     int res = cnt;
     switch (get_bits(gb, 4)) { // extension type
577d383b
     case EXT_SBR_DATA_CRC:
         crc_flag++;
     case EXT_SBR_DATA:
ed492b61
         if (!che) {
ba90f938
             av_log(ac->avctx, AV_LOG_ERROR, "SBR was found before the first channel element.\n");
ed492b61
             return res;
         } else if (!ac->m4ac.sbr) {
ba90f938
             av_log(ac->avctx, AV_LOG_ERROR, "SBR signaled to be not-present but was found in the bitstream.\n");
ed492b61
             skip_bits_long(gb, 8 * cnt - 4);
             return res;
         } else if (ac->m4ac.sbr == -1 && ac->output_configured == OC_LOCKED) {
ba90f938
             av_log(ac->avctx, AV_LOG_ERROR, "Implicit SBR was found with a first occurrence after the first frame.\n");
ed492b61
             skip_bits_long(gb, 8 * cnt - 4);
             return res;
ba90f938
         } else if (ac->m4ac.ps == -1 && ac->output_configured < OC_LOCKED && ac->avctx->channels == 1) {
             ac->m4ac.sbr = 1;
             ac->m4ac.ps = 1;
             output_configure(ac, ac->che_pos, ac->che_pos, ac->m4ac.chan_config, ac->output_configured);
ed492b61
         } else {
             ac->m4ac.sbr = 1;
         }
         res = ff_decode_sbr_extension(ac, &che->sbr, gb, crc_flag, cnt, elem_type);
577d383b
         break;
     case EXT_DYNAMIC_RANGE:
         res = decode_dynamic_range(&ac->che_drc, gb, cnt);
         break;
     case EXT_FILL:
     case EXT_FILL_DATA:
     case EXT_DATA_ELEMENT:
     default:
         skip_bits_long(gb, 8 * cnt - 4);
         break;
cc0591da
     };
     return res;
 }
 
7d8f3de4
 /**
  * Decode Temporal Noise Shaping filter coefficients and apply all-pole filters; reference: 4.6.9.3.
  *
  * @param   decode  1 if tool is used normally, 0 if tool is used in LTP.
  * @param   coef    spectral coefficients
  */
577d383b
 static void apply_tns(float coef[1024], TemporalNoiseShaping *tns,
                       IndividualChannelStream *ics, int decode)
 {
     const int mmm = FFMIN(ics->tns_max_bands, ics->max_sfb);
1098e8d2
     int w, filt, m, i;
7d8f3de4
     int bottom, top, order, start, end, size, inc;
     float lpc[TNS_MAX_ORDER];
 
     for (w = 0; w < ics->num_windows; w++) {
         bottom = ics->num_swb;
         for (filt = 0; filt < tns->n_filt[w]; filt++) {
             top    = bottom;
             bottom = FFMAX(0, top - tns->length[w][filt]);
             order  = tns->order[w][filt];
             if (order == 0)
                 continue;
 
1be0fc29
             // tns_decode_coef
             compute_lpc_coefs(tns->coef[w][filt], order, lpc, 0, 0, 0);
7d8f3de4
 
1dece0d2
             start = ics->swb_offset[FFMIN(bottom, mmm)];
             end   = ics->swb_offset[FFMIN(   top, mmm)];
             if ((size = end - start) <= 0)
                 continue;
             if (tns->direction[w][filt]) {
577d383b
                 inc = -1;
                 start = end - 1;
1dece0d2
             } else {
                 inc = 1;
             }
             start += w * 128;
 
             // ar filter
             for (m = 0; m < size; m++, start += inc)
                 for (i = 1; i <= FFMIN(m, order); i++)
577d383b
                     coef[start] -= coef[start - i * inc] * lpc[i - 1];
1dece0d2
         }
     }
 }
 
cc0591da
 /**
9cc04edf
  * Conduct IMDCT and windowing.
  */
f8a93a20
 static void imdct_and_windowing(AACContext *ac, SingleChannelElement *sce, float bias)
577d383b
 {
     IndividualChannelStream *ics = &sce->ics;
     float *in    = sce->coeffs;
     float *out   = sce->ret;
     float *saved = sce->saved;
     const float *swindow      = ics->use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
     const float *lwindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_long_1024 : ff_sine_1024;
     const float *swindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128;
     float *buf  = ac->buf_mdct;
     float *temp = ac->temp;
9cc04edf
     int i;
 
f4990558
     // imdct
62a57fae
     if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
         if (ics->window_sequence[1] == ONLY_LONG_SEQUENCE || ics->window_sequence[1] == LONG_STOP_SEQUENCE)
ba90f938
             av_log(ac->avctx, AV_LOG_WARNING,
62a57fae
                    "Transition from an ONLY_LONG or LONG_STOP to an EIGHT_SHORT sequence detected. "
                    "If you heard an audible artifact, please submit the sample to the FFmpeg developers.\n");
b0f5852a
         for (i = 0; i < 1024; i += 128)
             ff_imdct_half(&ac->mdct_small, buf + i, in + i);
f4990558
     } else
b0f5852a
         ff_imdct_half(&ac->mdct, buf, in);
f4990558
 
     /* window overlapping
      * NOTE: To simplify the overlapping code, all 'meaningless' short to long
      * and long to short transitions are considered to be short to short
      * transitions. This leaves just two cases (long to long and short to short)
      * with a little special sauce for EIGHT_SHORT_SEQUENCE.
      */
     if ((ics->window_sequence[1] == ONLY_LONG_SEQUENCE || ics->window_sequence[1] == LONG_STOP_SEQUENCE) &&
577d383b
             (ics->window_sequence[0] == ONLY_LONG_SEQUENCE || ics->window_sequence[0] == LONG_START_SEQUENCE)) {
f8a93a20
         ac->dsp.vector_fmul_window(    out,               saved,            buf,         lwindow_prev, bias, 512);
f4990558
     } else {
db38c386
         for (i = 0; i < 448; i++)
f8a93a20
             out[i] = saved[i] + bias;
62a57fae
 
f4990558
         if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
f8a93a20
             ac->dsp.vector_fmul_window(out + 448 + 0*128, saved + 448,      buf + 0*128, swindow_prev, bias, 64);
             ac->dsp.vector_fmul_window(out + 448 + 1*128, buf + 0*128 + 64, buf + 1*128, swindow,      bias, 64);
             ac->dsp.vector_fmul_window(out + 448 + 2*128, buf + 1*128 + 64, buf + 2*128, swindow,      bias, 64);
             ac->dsp.vector_fmul_window(out + 448 + 3*128, buf + 2*128 + 64, buf + 3*128, swindow,      bias, 64);
             ac->dsp.vector_fmul_window(temp,              buf + 3*128 + 64, buf + 4*128, swindow,      bias, 64);
b0f5852a
             memcpy(                    out + 448 + 4*128, temp, 64 * sizeof(float));
f4990558
         } else {
f8a93a20
             ac->dsp.vector_fmul_window(out + 448,         saved + 448,      buf,         swindow_prev, bias, 64);
db38c386
             for (i = 576; i < 1024; i++)
f8a93a20
                 out[i] = buf[i-512] + bias;
f4990558
         }
     }
62a57fae
 
f4990558
     // buffer update
     if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
b0f5852a
         for (i = 0; i < 64; i++)
f8a93a20
             saved[i] = temp[64 + i] - bias;
b0f5852a
         ac->dsp.vector_fmul_window(saved + 64,  buf + 4*128 + 64, buf + 5*128, swindow, 0, 64);
         ac->dsp.vector_fmul_window(saved + 192, buf + 5*128 + 64, buf + 6*128, swindow, 0, 64);
         ac->dsp.vector_fmul_window(saved + 320, buf + 6*128 + 64, buf + 7*128, swindow, 0, 64);
         memcpy(                    saved + 448, buf + 7*128 + 64,  64 * sizeof(float));
f4990558
     } else if (ics->window_sequence[0] == LONG_START_SEQUENCE) {
b0f5852a
         memcpy(                    saved,       buf + 512,        448 * sizeof(float));
         memcpy(                    saved + 448, buf + 7*128 + 64,  64 * sizeof(float));
f4990558
     } else { // LONG_STOP or ONLY_LONG
b0f5852a
         memcpy(                    saved,       buf + 512,        512 * sizeof(float));
62a57fae
     }
 }
 
9cc04edf
 /**
cc0591da
  * Apply dependent channel coupling (applied before IMDCT).
  *
  * @param   index   index into coupling gain array
  */
577d383b
 static void apply_dependent_coupling(AACContext *ac,
                                      SingleChannelElement *target,
                                      ChannelElement *cce, int index)
 {
     IndividualChannelStream *ics = &cce->ch[0].ics;
     const uint16_t *offsets = ics->swb_offset;
     float *dest = target->coeffs;
     const float *src = cce->ch[0].coeffs;
cc0591da
     int g, i, group, k, idx = 0;
577d383b
     if (ac->m4ac.object_type == AOT_AAC_LTP) {
ba90f938
         av_log(ac->avctx, AV_LOG_ERROR,
cc0591da
                "Dependent coupling is not supported together with LTP\n");
         return;
     }
     for (g = 0; g < ics->num_window_groups; g++) {
         for (i = 0; i < ics->max_sfb; i++, idx++) {
fbdae895
             if (cce->ch[0].band_type[idx] != ZERO_BT) {
cfd937b0
                 const float gain = cce->coup.gain[index][idx];
cc0591da
                 for (group = 0; group < ics->group_len[g]; group++) {
577d383b
                     for (k = offsets[i]; k < offsets[i + 1]; k++) {
cc0591da
                         // XXX dsputil-ize
577d383b
                         dest[group * 128 + k] += gain * src[group * 128 + k];
cc0591da
                     }
                 }
             }
         }
577d383b
         dest += ics->group_len[g] * 128;
         src  += ics->group_len[g] * 128;
cc0591da
     }
 }
 
 /**
  * Apply independent channel coupling (applied after IMDCT).
  *
  * @param   index   index into coupling gain array
  */
577d383b
 static void apply_independent_coupling(AACContext *ac,
                                        SingleChannelElement *target,
                                        ChannelElement *cce, int index)
 {
cc0591da
     int i;
039821a8
     const float gain = cce->coup.gain[index][0];
     const float bias = ac->add_bias;
577d383b
     const float *src = cce->ch[0].ret;
     float *dest = target->ret;
ed492b61
     const int len = 1024 << (ac->m4ac.sbr == 1);
039821a8
 
ed492b61
     for (i = 0; i < len; i++)
039821a8
         dest[i] += gain * (src[i] - bias);
cc0591da
 }
 
9ffd5c1c
 /**
  * channel coupling transformation interface
  *
  * @param   index   index into coupling gain array
  * @param   apply_coupling_method   pointer to (in)dependent coupling function
  */
577d383b
 static void apply_channel_coupling(AACContext *ac, ChannelElement *cc,
                                    enum RawDataBlockType type, int elem_id,
                                    enum CouplingPoint coupling_point,
                                    void (*apply_coupling_method)(AACContext *ac, SingleChannelElement *target, ChannelElement *cce, int index))
9ffd5c1c
 {
88de95c2
     int i, c;
 
     for (i = 0; i < MAX_ELEM_ID; i++) {
         ChannelElement *cce = ac->che[TYPE_CCE][i];
         int index = 0;
 
         if (cce && cce->coup.coupling_point == coupling_point) {
577d383b
             ChannelCoupling *coup = &cce->coup;
88de95c2
 
             for (c = 0; c <= coup->num_coupled; c++) {
                 if (coup->type[c] == type && coup->id_select[c] == elem_id) {
                     if (coup->ch_select[c] != 1) {
                         apply_coupling_method(ac, &cc->ch[0], cce, index);
                         if (coup->ch_select[c] != 0)
                             index++;
                     }
                     if (coup->ch_select[c] != 2)
                         apply_coupling_method(ac, &cc->ch[1], cce, index++);
                 } else
                     index += 1 + (coup->ch_select[c] == 3);
9ffd5c1c
             }
         }
     }
 }
 
 /**
  * Convert spectral data to float samples, applying all supported tools as appropriate.
  */
577d383b
 static void spectral_to_sample(AACContext *ac)
 {
b0bc928b
     int i, type;
f8a93a20
     float imdct_bias = (ac->m4ac.sbr <= 0) ? ac->add_bias : 0.0f;
b0bc928b
     for (type = 3; type >= 0; type--) {
88de95c2
         for (i = 0; i < MAX_ELEM_ID; i++) {
9ffd5c1c
             ChannelElement *che = ac->che[type][i];
577d383b
             if (che) {
                 if (type <= TYPE_CPE)
88de95c2
                     apply_channel_coupling(ac, che, type, i, BEFORE_TNS, apply_dependent_coupling);
577d383b
                 if (che->ch[0].tns.present)
9ffd5c1c
                     apply_tns(che->ch[0].coeffs, &che->ch[0].tns, &che->ch[0].ics, 1);
577d383b
                 if (che->ch[1].tns.present)
9ffd5c1c
                     apply_tns(che->ch[1].coeffs, &che->ch[1].tns, &che->ch[1].ics, 1);
577d383b
                 if (type <= TYPE_CPE)
88de95c2
                     apply_channel_coupling(ac, che, type, i, BETWEEN_TNS_AND_IMDCT, apply_dependent_coupling);
ed492b61
                 if (type != TYPE_CCE || che->coup.coupling_point == AFTER_IMDCT) {
f8a93a20
                     imdct_and_windowing(ac, &che->ch[0], imdct_bias);
d0dedce7
                     if (type == TYPE_CPE) {
                         imdct_and_windowing(ac, &che->ch[1], imdct_bias);
                     }
ca6d3f23
                     if (ac->m4ac.sbr > 0) {
                         ff_sbr_apply(ac, &che->sbr, type, che->ch[0].ret, che->ch[1].ret);
                     }
ed492b61
                 }
577d383b
                 if (type <= TYPE_CCE)
88de95c2
                     apply_channel_coupling(ac, che, type, i, AFTER_IMDCT, apply_independent_coupling);
62a57fae
             }
         }
     }
 }
 
577d383b
 static int parse_adts_frame_header(AACContext *ac, GetBitContext *gb)
 {
158b3912
     int size;
     AACADTSHeaderInfo hdr_info;
 
     size = ff_aac_parse_header(gb, &hdr_info);
     if (size > 0) {
981b8fd7
         if (ac->output_configured != OC_LOCKED && hdr_info.chan_config) {
6308765c
             enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
             memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
158b3912
             ac->m4ac.chan_config = hdr_info.chan_config;
6308765c
             if (set_default_channel_config(ac, new_che_pos, hdr_info.chan_config))
                 return -7;
981b8fd7
             if (output_configure(ac, ac->che_pos, new_che_pos, hdr_info.chan_config, OC_TRIAL_FRAME))
6308765c
                 return -7;
981b8fd7
         } else if (ac->output_configured != OC_LOCKED) {
             ac->output_configured = OC_NONE;
6308765c
         }
ba90f938
         if (ac->output_configured != OC_LOCKED) {
38610d92
             ac->m4ac.sbr = -1;
ba90f938
             ac->m4ac.ps  = -1;
         }
158b3912
         ac->m4ac.sample_rate     = hdr_info.sample_rate;
         ac->m4ac.sampling_index  = hdr_info.sampling_index;
         ac->m4ac.object_type     = hdr_info.object_type;
ba90f938
         if (!ac->avctx->sample_rate)
             ac->avctx->sample_rate = hdr_info.sample_rate;
7d87e2ce
         if (hdr_info.num_aac_frames == 1) {
             if (!hdr_info.crc_absent)
                 skip_bits(gb, 16);
         } else {
ba90f938
             av_log_missing_feature(ac->avctx, "More than one AAC RDB per ADTS frame is", 0);
7d87e2ce
             return -1;
         }
51741a82
     }
158b3912
     return size;
 }
 
ba90f938
 static int aac_decode_frame(AVCodecContext *avctx, void *data,
577d383b
                             int *data_size, AVPacket *avpkt)
 {
7a00bbad
     const uint8_t *buf = avpkt->data;
     int buf_size = avpkt->size;
ba90f938
     AACContext *ac = avctx->priv_data;
ed492b61
     ChannelElement *che = NULL, *che_prev = NULL;
62a57fae
     GetBitContext gb;
ed492b61
     enum RawDataBlockType elem_type, elem_type_prev = TYPE_END;
62a57fae
     int err, elem_id, data_size_tmp;
b5e2bb8c
     int buf_consumed;
ba90f938
     int samples = 0, multiplier;
e6ef35bc
     int buf_offset;
62a57fae
 
577d383b
     init_get_bits(&gb, buf, buf_size * 8);
62a57fae
 
158b3912
     if (show_bits(&gb, 12) == 0xfff) {
5967e141
         if (parse_adts_frame_header(ac, &gb) < 0) {
ba90f938
             av_log(avctx, AV_LOG_ERROR, "Error decoding AAC frame header.\n");
158b3912
             return -1;
         }
30272450
         if (ac->m4ac.sampling_index > 12) {
ba90f938
             av_log(ac->avctx, AV_LOG_ERROR, "invalid sampling rate index %d\n", ac->m4ac.sampling_index);
f418b861
             return -1;
         }
158b3912
     }
 
ba90f938
     memset(ac->tags_seen_this_frame, 0, sizeof(ac->tags_seen_this_frame));
62a57fae
     // parse
     while ((elem_type = get_bits(&gb, 3)) != TYPE_END) {
         elem_id = get_bits(&gb, 4);
 
ba90f938
         if (elem_type < TYPE_DSE) {
             if (!(che=get_che(ac, elem_type, elem_id))) {
                 av_log(ac->avctx, AV_LOG_ERROR, "channel element %d.%d is not allocated\n",
                        elem_type, elem_id);
                 return -1;
             }
             samples = 1024;
62a57fae
         }
 
         switch (elem_type) {
 
         case TYPE_SCE:
bb5c0988
             err = decode_ics(ac, &che->ch[0], &gb, 0, 0);
62a57fae
             break;
 
         case TYPE_CPE:
bb5c0988
             err = decode_cpe(ac, &gb, che);
62a57fae
             break;
 
         case TYPE_CCE:
bb5c0988
             err = decode_cce(ac, &gb, che);
62a57fae
             break;
 
         case TYPE_LFE:
bb5c0988
             err = decode_ics(ac, &che->ch[0], &gb, 0, 0);
62a57fae
             break;
 
         case TYPE_DSE:
8d637124
             err = skip_data_stream_element(ac, &gb);
62a57fae
             break;
 
577d383b
         case TYPE_PCE: {
62a57fae
             enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
             memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
577d383b
             if ((err = decode_pce(ac, new_che_pos, &gb)))
62a57fae
                 break;
4e878a18
             if (ac->output_configured > OC_TRIAL_PCE)
ba90f938
                 av_log(avctx, AV_LOG_ERROR,
6308765c
                        "Not evaluating a further program_config_element as this construct is dubious at best.\n");
             else
981b8fd7
                 err = output_configure(ac, ac->che_pos, new_che_pos, 0, OC_TRIAL_PCE);
62a57fae
             break;
         }
 
         case TYPE_FIL:
             if (elem_id == 15)
                 elem_id += get_bits(&gb, 8) - 1;
8d637124
             if (get_bits_left(&gb) < 8 * elem_id) {
ba90f938
                     av_log(avctx, AV_LOG_ERROR, overread_err);
8d637124
                     return -1;
             }
62a57fae
             while (elem_id > 0)
ed492b61
                 elem_id -= decode_extension_payload(ac, &gb, elem_id, che_prev, elem_type_prev);
62a57fae
             err = 0; /* FIXME */
             break;
 
         default:
             err = -1; /* should not happen, but keeps compiler happy */
             break;
         }
 
ed492b61
         che_prev       = che;
         elem_type_prev = elem_type;
 
577d383b
         if (err)
62a57fae
             return err;
8d637124
 
         if (get_bits_left(&gb) < 3) {
ba90f938
             av_log(avctx, AV_LOG_ERROR, overread_err);
8d637124
             return -1;
         }
62a57fae
     }
 
     spectral_to_sample(ac);
 
ed492b61
     multiplier = (ac->m4ac.sbr == 1) ? ac->m4ac.ext_sample_rate > ac->m4ac.sample_rate : 0;
54f158bd
     samples <<= multiplier;
     if (ac->output_configured < OC_LOCKED) {
ba90f938
         avctx->sample_rate = ac->m4ac.sample_rate << multiplier;
         avctx->frame_size = samples;
54f158bd
     }
 
ba90f938
     data_size_tmp = samples * avctx->channels * sizeof(int16_t);
577d383b
     if (*data_size < data_size_tmp) {
ba90f938
         av_log(avctx, AV_LOG_ERROR,
9cc04edf
                "Output buffer too small (%d) or trying to output too many samples (%d) for this frame.\n",
                *data_size, data_size_tmp);
         return -1;
     }
     *data_size = data_size_tmp;
 
ba90f938
     if (samples)
         ac->dsp.float_to_int16_interleave(data, (const float **)ac->output_data, samples, avctx->channels);
9cc04edf
 
981b8fd7
     if (ac->output_configured)
         ac->output_configured = OC_LOCKED;
 
b5e2bb8c
     buf_consumed = (get_bits_count(&gb) + 7) >> 3;
e6ef35bc
     for (buf_offset = buf_consumed; buf_offset < buf_size; buf_offset++)
         if (buf[buf_offset])
             break;
 
     return buf_size > buf_offset ? buf_consumed : buf_size;
9cc04edf
 }
 
ba90f938
 static av_cold int aac_decode_close(AVCodecContext *avctx)
577d383b
 {
ba90f938
     AACContext *ac = avctx->priv_data;
9edae4ad
     int i, type;
71e9a1b8
 
cc0591da
     for (i = 0; i < MAX_ELEM_ID; i++) {
ed492b61
         for (type = 0; type < 4; type++) {
             if (ac->che[type][i])
                 ff_aac_sbr_ctx_close(&ac->che[type][i]->sbr);
9edae4ad
             av_freep(&ac->che[type][i]);
ed492b61
         }
71e9a1b8
     }
 
     ff_mdct_end(&ac->mdct);
     ff_mdct_end(&ac->mdct_small);
577d383b
     return 0;
71e9a1b8
 }
 
 AVCodec aac_decoder = {
     "aac",
72415b2a
     AVMEDIA_TYPE_AUDIO,
71e9a1b8
     CODEC_ID_AAC,
     sizeof(AACContext),
     aac_decode_init,
     NULL,
     aac_decode_close,
     aac_decode_frame,
     .long_name = NULL_IF_CONFIG_SMALL("Advanced Audio Coding"),
b5f09d31
     .sample_fmts = (const enum SampleFormat[]) {
577d383b
         SAMPLE_FMT_S16,SAMPLE_FMT_NONE
     },
e22da6b6
     .channel_layouts = aac_channel_layout,
71e9a1b8
 };