libavcodec/g723_1.c
f990dc37
 /*
  * G.723.1 compatible decoder
  * Copyright (c) 2006 Benjamin Larsson
  * Copyright (c) 2010 Mohamed Naufal Basheer
  *
  * This file is part of FFmpeg.
  *
  * FFmpeg is free software; you can redistribute it and/or
  * modify it under the terms of the GNU Lesser General Public
  * License as published by the Free Software Foundation; either
  * version 2.1 of the License, or (at your option) any later version.
  *
  * FFmpeg is distributed in the hope that it will be useful,
  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  * Lesser General Public License for more details.
  *
  * You should have received a copy of the GNU Lesser General Public
  * License along with FFmpeg; if not, write to the Free Software
  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  */
 
 /**
  * @file
  * G.723.1 compatible decoder
  */
 
 #include "avcodec.h"
 #define ALT_BITSTREAM_READER_LE
 #include "get_bits.h"
 #include "acelp_vectors.h"
 #include "celp_filters.h"
 #include "celp_math.h"
 #include "lsp.h"
 #include "libavutil/lzo.h"
 #include "g723_1_data.h"
 
 typedef struct g723_1_context {
eac5987c
     AVFrame frame;
f990dc37
     G723_1_Subframe subframe[4];
     FrameType cur_frame_type;
     FrameType past_frame_type;
     Rate cur_rate;
     uint8_t lsp_index[LSP_BANDS];
     int pitch_lag[2];
     int erased_frames;
 
     int16_t prev_lsp[LPC_ORDER];
     int16_t prev_excitation[PITCH_MAX];
     int16_t excitation[PITCH_MAX + FRAME_LEN];
     int16_t synth_mem[LPC_ORDER];
     int16_t fir_mem[LPC_ORDER];
     int     iir_mem[LPC_ORDER];
 
     int random_seed;
     int interp_index;
     int interp_gain;
     int sid_gain;
     int cur_gain;
     int reflection_coef;
     int pf_gain;                 ///< formant postfilter
                                  ///< gain scaling unit memory
ef64c45c
 
     int16_t prev_data[HALF_FRAME_LEN];
     int16_t prev_weight_sig[PITCH_MAX];
 
 
     int16_t hpf_fir_mem;                   ///< highpass filter fir
     int     hpf_iir_mem;                   ///< and iir memories
     int16_t perf_fir_mem[LPC_ORDER];       ///< perceptual filter fir
     int16_t perf_iir_mem[LPC_ORDER];       ///< and iir memories
 
     int16_t harmonic_mem[PITCH_MAX];
f990dc37
 } G723_1_Context;
 
 static av_cold int g723_1_decode_init(AVCodecContext *avctx)
 {
     G723_1_Context *p  = avctx->priv_data;
 
     avctx->sample_fmt  = SAMPLE_FMT_S16;
     p->pf_gain         = 1 << 12;
     memcpy(p->prev_lsp, dc_lsp, LPC_ORDER * sizeof(int16_t));
 
eac5987c
     avcodec_get_frame_defaults(&p->frame);
     avctx->coded_frame = &p->frame;
 
f990dc37
     return 0;
 }
 
 /**
  * Unpack the frame into parameters.
  *
  * @param p           the context
  * @param buf         pointer to the input buffer
  * @param buf_size    size of the input buffer
  */
 static int unpack_bitstream(G723_1_Context *p, const uint8_t *buf,
                             int buf_size)
 {
     GetBitContext gb;
     int ad_cb_len;
     int temp, info_bits, i;
 
     init_get_bits(&gb, buf, buf_size * 8);
 
     /* Extract frame type and rate info */
     info_bits = get_bits(&gb, 2);
 
     if (info_bits == 3) {
         p->cur_frame_type = UntransmittedFrame;
         return 0;
     }
 
     /* Extract 24 bit lsp indices, 8 bit for each band */
     p->lsp_index[2] = get_bits(&gb, 8);
     p->lsp_index[1] = get_bits(&gb, 8);
     p->lsp_index[0] = get_bits(&gb, 8);
 
     if (info_bits == 2) {
         p->cur_frame_type = SIDFrame;
         p->subframe[0].amp_index = get_bits(&gb, 6);
         return 0;
     }
 
     /* Extract the info common to both rates */
     p->cur_rate       = info_bits ? Rate5k3 : Rate6k3;
     p->cur_frame_type = ActiveFrame;
 
     p->pitch_lag[0] = get_bits(&gb, 7);
     if (p->pitch_lag[0] > 123)       /* test if forbidden code */
         return -1;
     p->pitch_lag[0] += PITCH_MIN;
     p->subframe[1].ad_cb_lag = get_bits(&gb, 2);
 
     p->pitch_lag[1] = get_bits(&gb, 7);
     if (p->pitch_lag[1] > 123)
         return -1;
     p->pitch_lag[1] += PITCH_MIN;
     p->subframe[3].ad_cb_lag = get_bits(&gb, 2);
     p->subframe[0].ad_cb_lag = 1;
     p->subframe[2].ad_cb_lag = 1;
 
     for (i = 0; i < SUBFRAMES; i++) {
         /* Extract combined gain */
         temp = get_bits(&gb, 12);
         ad_cb_len = 170;
         p->subframe[i].dirac_train = 0;
         if (p->cur_rate == Rate6k3 && p->pitch_lag[i >> 1] < SUBFRAME_LEN - 2) {
             p->subframe[i].dirac_train = temp >> 11;
             temp &= 0x7ff;
             ad_cb_len = 85;
         }
         p->subframe[i].ad_cb_gain = FASTDIV(temp, GAIN_LEVELS);
         if (p->subframe[i].ad_cb_gain < ad_cb_len) {
             p->subframe[i].amp_index = temp - p->subframe[i].ad_cb_gain *
                                        GAIN_LEVELS;
         } else {
             return -1;
         }
     }
 
fac3ac39
     p->subframe[0].grid_index = get_bits1(&gb);
     p->subframe[1].grid_index = get_bits1(&gb);
     p->subframe[2].grid_index = get_bits1(&gb);
     p->subframe[3].grid_index = get_bits1(&gb);
f990dc37
 
     if (p->cur_rate == Rate6k3) {
c02c52f7
         skip_bits1(&gb);  /* skip reserved bit */
f990dc37
 
         /* Compute pulse_pos index using the 13-bit combined position index */
         temp = get_bits(&gb, 13);
         p->subframe[0].pulse_pos = temp / 810;
 
         temp -= p->subframe[0].pulse_pos * 810;
         p->subframe[1].pulse_pos = FASTDIV(temp, 90);
 
         temp -= p->subframe[1].pulse_pos * 90;
         p->subframe[2].pulse_pos = FASTDIV(temp, 9);
         p->subframe[3].pulse_pos = temp - p->subframe[2].pulse_pos * 9;
 
         p->subframe[0].pulse_pos = (p->subframe[0].pulse_pos << 16) +
                                    get_bits(&gb, 16);
         p->subframe[1].pulse_pos = (p->subframe[1].pulse_pos << 14) +
                                    get_bits(&gb, 14);
         p->subframe[2].pulse_pos = (p->subframe[2].pulse_pos << 16) +
                                    get_bits(&gb, 16);
         p->subframe[3].pulse_pos = (p->subframe[3].pulse_pos << 14) +
                                    get_bits(&gb, 14);
 
         p->subframe[0].pulse_sign = get_bits(&gb, 6);
         p->subframe[1].pulse_sign = get_bits(&gb, 5);
         p->subframe[2].pulse_sign = get_bits(&gb, 6);
         p->subframe[3].pulse_sign = get_bits(&gb, 5);
     } else { /* Rate5k3 */
         p->subframe[0].pulse_pos  = get_bits(&gb, 12);
         p->subframe[1].pulse_pos  = get_bits(&gb, 12);
         p->subframe[2].pulse_pos  = get_bits(&gb, 12);
         p->subframe[3].pulse_pos  = get_bits(&gb, 12);
 
         p->subframe[0].pulse_sign = get_bits(&gb, 4);
         p->subframe[1].pulse_sign = get_bits(&gb, 4);
         p->subframe[2].pulse_sign = get_bits(&gb, 4);
         p->subframe[3].pulse_sign = get_bits(&gb, 4);
     }
 
     return 0;
 }
 
 /**
  * Bitexact implementation of sqrt(val/2).
  */
 static int16_t square_root(int val)
 {
6e505547
     return (ff_sqrt(val << 1) >> 1) & (~1);
f990dc37
 }
 
 /**
  * Calculate the number of left-shifts required for normalizing the input.
  *
  * @param num   input number
  * @param width width of the input, 16 bits(0) / 32 bits(1)
  */
 static int normalize_bits(int num, int width)
 {
     int i = 0;
     int bits = (width) ? 31 : 15;
 
     if (num) {
         if (num == -1)
             return bits;
         if (num < 0)
             num = ~num;
431f8af8
         i= bits - av_log2(num) - 1;
         i= FFMAX(i, 0);
f990dc37
     }
     return i;
 }
 
ef64c45c
 #define normalize_bits_int16(num) normalize_bits(num, 0)
 #define normalize_bits_int32(num) normalize_bits(num, 1)
 #define dot_product(a,b,c,d) (ff_dot_product(a,b,c)<<(d))
 
f990dc37
 /**
  * Scale vector contents based on the largest of their absolutes.
  */
 static int scale_vector(int16_t *vector, int length)
 {
     int bits, scale, max = 0;
     int i;
 
     const int16_t shift_table[16] = {
         0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
         0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x7fff
     };
 
     for (i = 0; i < length; i++)
         max = FFMAX(max, FFABS(vector[i]));
 
     bits  = normalize_bits(max, 0);
     scale = shift_table[bits];
 
     for (i = 0; i < length; i++)
cb58adaa
         vector[i] = (vector[i] * scale) >> 3;
f990dc37
 
     return bits - 3;
 }
 
 /**
  * Perform inverse quantization of LSP frequencies.
  *
  * @param cur_lsp    the current LSP vector
  * @param prev_lsp   the previous LSP vector
  * @param lsp_index  VQ indices
  * @param bad_frame  bad frame flag
  */
 static void inverse_quant(int16_t *cur_lsp, int16_t *prev_lsp,
                           uint8_t *lsp_index, int bad_frame)
 {
     int min_dist, pred;
     int i, j, temp, stable;
 
     /* Check for frame erasure */
     if (!bad_frame) {
         min_dist     = 0x100;
         pred         = 12288;
     } else {
         min_dist     = 0x200;
         pred         = 23552;
         lsp_index[0] = lsp_index[1] = lsp_index[2] = 0;
     }
 
     /* Get the VQ table entry corresponding to the transmitted index */
     cur_lsp[0] = lsp_band0[lsp_index[0]][0];
     cur_lsp[1] = lsp_band0[lsp_index[0]][1];
     cur_lsp[2] = lsp_band0[lsp_index[0]][2];
     cur_lsp[3] = lsp_band1[lsp_index[1]][0];
     cur_lsp[4] = lsp_band1[lsp_index[1]][1];
     cur_lsp[5] = lsp_band1[lsp_index[1]][2];
     cur_lsp[6] = lsp_band2[lsp_index[2]][0];
     cur_lsp[7] = lsp_band2[lsp_index[2]][1];
     cur_lsp[8] = lsp_band2[lsp_index[2]][2];
     cur_lsp[9] = lsp_band2[lsp_index[2]][3];
 
     /* Add predicted vector & DC component to the previously quantized vector */
     for (i = 0; i < LPC_ORDER; i++) {
         temp        = ((prev_lsp[i] - dc_lsp[i]) * pred + (1 << 14)) >> 15;
         cur_lsp[i] += dc_lsp[i] + temp;
     }
 
     for (i = 0; i < LPC_ORDER; i++) {
         cur_lsp[0]             = FFMAX(cur_lsp[0],  0x180);
         cur_lsp[LPC_ORDER - 1] = FFMIN(cur_lsp[LPC_ORDER - 1], 0x7e00);
 
         /* Stability check */
         for (j = 1; j < LPC_ORDER; j++) {
             temp = min_dist + cur_lsp[j - 1] - cur_lsp[j];
             if (temp > 0) {
                 temp >>= 1;
                 cur_lsp[j - 1] -= temp;
                 cur_lsp[j]     += temp;
             }
         }
         stable = 1;
         for (j = 1; j < LPC_ORDER; j++) {
             temp = cur_lsp[j - 1] + min_dist - cur_lsp[j] - 4;
             if (temp > 0) {
                 stable = 0;
                 break;
             }
         }
         if (stable)
             break;
     }
     if (!stable)
         memcpy(cur_lsp, prev_lsp, LPC_ORDER * sizeof(int16_t));
 }
 
 /**
  * Bitexact implementation of 2ab scaled by 1/2^16.
  *
  * @param a 32 bit multiplicand
  * @param b 16 bit multiplier
  */
 #define MULL2(a, b) \
631eee6e
         MULL(a,b,15)
f990dc37
 
 /**
  * Convert LSP frequencies to LPC coefficients.
  *
  * @param lpc buffer for LPC coefficients
  */
 static void lsp2lpc(int16_t *lpc)
 {
     int f1[LPC_ORDER / 2 + 1];
     int f2[LPC_ORDER / 2 + 1];
     int i, j;
 
     /* Calculate negative cosine */
     for (j = 0; j < LPC_ORDER; j++) {
         int index     = lpc[j] >> 7;
         int offset    = lpc[j] & 0x7f;
         int64_t temp1 = cos_tab[index] << 16;
         int temp2     = (cos_tab[index + 1] - cos_tab[index]) *
                           ((offset << 8) + 0x80) << 1;
 
         lpc[j] = -(av_clipl_int32(((temp1 + temp2) << 1) + (1 << 15)) >> 16);
     }
 
     /*
      * Compute sum and difference polynomial coefficients
      * (bitexact alternative to lsp2poly() in lsp.c)
      */
     /* Initialize with values in Q28 */
     f1[0] = 1 << 28;
     f1[1] = (lpc[0] << 14) + (lpc[2] << 14);
     f1[2] = lpc[0] * lpc[2] + (2 << 28);
 
     f2[0] = 1 << 28;
     f2[1] = (lpc[1] << 14) + (lpc[3] << 14);
     f2[2] = lpc[1] * lpc[3] + (2 << 28);
 
     /*
      * Calculate and scale the coefficients by 1/2 in
      * each iteration for a final scaling factor of Q25
      */
     for (i = 2; i < LPC_ORDER / 2; i++) {
         f1[i + 1] = f1[i - 1] + MULL2(f1[i], lpc[2 * i]);
         f2[i + 1] = f2[i - 1] + MULL2(f2[i], lpc[2 * i + 1]);
 
         for (j = i; j >= 2; j--) {
             f1[j] = MULL2(f1[j - 1], lpc[2 * i]) +
                     (f1[j] >> 1) + (f1[j - 2] >> 1);
             f2[j] = MULL2(f2[j - 1], lpc[2 * i + 1]) +
                     (f2[j] >> 1) + (f2[j - 2] >> 1);
         }
 
         f1[0] >>= 1;
         f2[0] >>= 1;
         f1[1] = ((lpc[2 * i]     << 16 >> i) + f1[1]) >> 1;
         f2[1] = ((lpc[2 * i + 1] << 16 >> i) + f2[1]) >> 1;
     }
 
     /* Convert polynomial coefficients to LPC coefficients */
     for (i = 0; i < LPC_ORDER / 2; i++) {
         int64_t ff1 = f1[i + 1] + f1[i];
         int64_t ff2 = f2[i + 1] - f2[i];
 
         lpc[i] = av_clipl_int32(((ff1 + ff2) << 3) + (1 << 15)) >> 16;
         lpc[LPC_ORDER - i - 1] = av_clipl_int32(((ff1 - ff2) << 3) +
                                                 (1 << 15)) >> 16;
     }
 }
 
 /**
  * Quantize LSP frequencies by interpolation and convert them to
  * the corresponding LPC coefficients.
  *
  * @param lpc      buffer for LPC coefficients
  * @param cur_lsp  the current LSP vector
  * @param prev_lsp the previous LSP vector
  */
 static void lsp_interpolate(int16_t *lpc, int16_t *cur_lsp, int16_t *prev_lsp)
 {
     int i;
     int16_t *lpc_ptr = lpc;
 
     /* cur_lsp * 0.25 + prev_lsp * 0.75 */
     ff_acelp_weighted_vector_sum(lpc, cur_lsp, prev_lsp,
                                  4096, 12288, 1 << 13, 14, LPC_ORDER);
     ff_acelp_weighted_vector_sum(lpc + LPC_ORDER, cur_lsp, prev_lsp,
                                  8192, 8192, 1 << 13, 14, LPC_ORDER);
     ff_acelp_weighted_vector_sum(lpc + 2 * LPC_ORDER, cur_lsp, prev_lsp,
                                  12288, 4096, 1 << 13, 14, LPC_ORDER);
     memcpy(lpc + 3 * LPC_ORDER, cur_lsp, LPC_ORDER * sizeof(int16_t));
 
     for (i = 0; i < SUBFRAMES; i++) {
         lsp2lpc(lpc_ptr);
         lpc_ptr += LPC_ORDER;
     }
 }
 
 /**
  * Generate a train of dirac functions with period as pitch lag.
  */
 static void gen_dirac_train(int16_t *buf, int pitch_lag)
 {
     int16_t vector[SUBFRAME_LEN];
     int i, j;
 
     memcpy(vector, buf, SUBFRAME_LEN * sizeof(int16_t));
     for (i = pitch_lag; i < SUBFRAME_LEN; i += pitch_lag) {
         for (j = 0; j < SUBFRAME_LEN - i; j++)
             buf[i + j] += vector[j];
     }
 }
 
 /**
  * Generate fixed codebook excitation vector.
  *
  * @param vector    decoded excitation vector
  * @param subfrm    current subframe
  * @param cur_rate  current bitrate
  * @param pitch_lag closed loop pitch lag
  * @param index     current subframe index
  */
 static void gen_fcb_excitation(int16_t *vector, G723_1_Subframe subfrm,
                                Rate cur_rate, int pitch_lag, int index)
 {
     int temp, i, j;
 
     memset(vector, 0, SUBFRAME_LEN * sizeof(int16_t));
 
     if (cur_rate == Rate6k3) {
         if (subfrm.pulse_pos >= max_pos[index])
             return;
 
         /* Decode amplitudes and positions */
         j = PULSE_MAX - pulses[index];
         temp = subfrm.pulse_pos;
         for (i = 0; i < SUBFRAME_LEN / GRID_SIZE; i++) {
             temp -= combinatorial_table[j][i];
             if (temp >= 0)
                 continue;
             temp += combinatorial_table[j++][i];
             if (subfrm.pulse_sign & (1 << (PULSE_MAX - j))) {
                 vector[subfrm.grid_index + GRID_SIZE * i] =
                                         -fixed_cb_gain[subfrm.amp_index];
             } else {
                 vector[subfrm.grid_index + GRID_SIZE * i] =
                                          fixed_cb_gain[subfrm.amp_index];
             }
             if (j == PULSE_MAX)
                 break;
         }
         if (subfrm.dirac_train == 1)
             gen_dirac_train(vector, pitch_lag);
     } else { /* Rate5k3 */
         int cb_gain  = fixed_cb_gain[subfrm.amp_index];
         int cb_shift = subfrm.grid_index;
         int cb_sign  = subfrm.pulse_sign;
         int cb_pos   = subfrm.pulse_pos;
         int offset, beta, lag;
 
         for (i = 0; i < 8; i += 2) {
             offset         = ((cb_pos & 7) << 3) + cb_shift + i;
             vector[offset] = (cb_sign & 1) ? cb_gain : -cb_gain;
             cb_pos  >>= 3;
             cb_sign >>= 1;
         }
 
         /* Enhance harmonic components */
         lag  = pitch_contrib[subfrm.ad_cb_gain << 1] + pitch_lag +
                subfrm.ad_cb_lag - 1;
         beta = pitch_contrib[(subfrm.ad_cb_gain << 1) + 1];
 
         if (lag < SUBFRAME_LEN - 2) {
             for (i = lag; i < SUBFRAME_LEN; i++)
                 vector[i] += beta * vector[i - lag] >> 15;
         }
     }
 }
 
 /**
  * Get delayed contribution from the previous excitation vector.
  */
 static void get_residual(int16_t *residual, int16_t *prev_excitation, int lag)
 {
     int offset = PITCH_MAX - PITCH_ORDER / 2 - lag;
     int i;
 
     residual[0] = prev_excitation[offset];
     residual[1] = prev_excitation[offset + 1];
 
     offset += 2;
     for (i = 2; i < SUBFRAME_LEN + PITCH_ORDER - 1; i++)
         residual[i] = prev_excitation[offset + (i - 2) % lag];
 }
 
 /**
  * Generate adaptive codebook excitation.
  */
 static void gen_acb_excitation(int16_t *vector, int16_t *prev_excitation,
                                int pitch_lag, G723_1_Subframe subfrm,
                                Rate cur_rate)
 {
     int16_t residual[SUBFRAME_LEN + PITCH_ORDER - 1];
     const int16_t *cb_ptr;
     int lag = pitch_lag + subfrm.ad_cb_lag - 1;
 
     int i;
     int64_t sum;
 
     get_residual(residual, prev_excitation, lag);
 
     /* Select quantization table */
     if (cur_rate == Rate6k3 && pitch_lag < SUBFRAME_LEN - 2) {
         cb_ptr = adaptive_cb_gain85;
     } else
         cb_ptr = adaptive_cb_gain170;
 
     /* Calculate adaptive vector */
     cb_ptr += subfrm.ad_cb_gain * 20;
     for (i = 0; i < SUBFRAME_LEN; i++) {
04b4353f
         sum = ff_dot_product(residual + i, cb_ptr, PITCH_ORDER);
         vector[i] = av_clipl_int32((sum << 2) + (1 << 15)) >> 16;
f990dc37
     }
 }
 
 /**
  * Estimate maximum auto-correlation around pitch lag.
  *
  * @param p         the context
  * @param offset    offset of the excitation vector
  * @param ccr_max   pointer to the maximum auto-correlation
  * @param pitch_lag decoded pitch lag
  * @param length    length of autocorrelation
  * @param dir       forward lag(1) / backward lag(-1)
  */
 static int autocorr_max(G723_1_Context *p, int offset, int *ccr_max,
                         int pitch_lag, int length, int dir)
 {
     int limit, ccr, lag = 0;
     int16_t *buf = p->excitation + offset;
     int i;
 
     pitch_lag = FFMIN(PITCH_MAX - 3, pitch_lag);
     limit     = FFMIN(FRAME_LEN + PITCH_MAX - offset - length, pitch_lag + 3);
 
     for (i = pitch_lag - 3; i <= limit; i++) {
11512367
         ccr = ff_dot_product(buf, buf + dir * i, length)<<1;
f990dc37
 
         if (ccr > *ccr_max) {
             *ccr_max = ccr;
             lag = i;
         }
     }
     return lag;
 }
 
 /**
  * Calculate pitch postfilter optimal and scaling gains.
  *
  * @param lag      pitch postfilter forward/backward lag
  * @param ppf      pitch postfilter parameters
  * @param cur_rate current bitrate
  * @param tgt_eng  target energy
  * @param ccr      cross-correlation
  * @param res_eng  residual energy
  */
 static void comp_ppf_gains(int lag, PPFParam *ppf, Rate cur_rate,
                            int tgt_eng, int ccr, int res_eng)
 {
     int pf_residual;     /* square of postfiltered residual */
     int64_t temp1, temp2;
 
     ppf->index = lag;
 
     temp1 = tgt_eng * res_eng >> 1;
     temp2 = ccr * ccr << 1;
 
     if (temp2 > temp1) {
         if (ccr >= res_eng) {
             ppf->opt_gain = ppf_gain_weight[cur_rate];
         } else {
             ppf->opt_gain = (ccr << 15) / res_eng *
                             ppf_gain_weight[cur_rate] >> 15;
         }
         /* pf_res^2 = tgt_eng + 2*ccr*gain + res_eng*gain^2 */
         temp1       = (tgt_eng << 15) + (ccr * ppf->opt_gain << 1);
         temp2       = (ppf->opt_gain * ppf->opt_gain >> 15) * res_eng;
         pf_residual = av_clipl_int32(temp1 + temp2 + (1 << 15)) >> 16;
 
         if (tgt_eng >= pf_residual << 1) {
             temp1 = 0x7fff;
         } else {
             temp1 = (tgt_eng << 14) / pf_residual;
         }
 
         /* scaling_gain = sqrt(tgt_eng/pf_res^2) */
         ppf->sc_gain = square_root(temp1 << 16);
     } else {
         ppf->opt_gain = 0;
         ppf->sc_gain  = 0x7fff;
     }
 
     ppf->opt_gain = av_clip_int16(ppf->opt_gain * ppf->sc_gain >> 15);
 }
 
 /**
  * Calculate pitch postfilter parameters.
  *
  * @param p         the context
  * @param offset    offset of the excitation vector
  * @param pitch_lag decoded pitch lag
  * @param ppf       pitch postfilter parameters
  * @param cur_rate  current bitrate
  */
 static void comp_ppf_coeff(G723_1_Context *p, int offset, int pitch_lag,
                            PPFParam *ppf, Rate cur_rate)
 {
 
     int16_t scale;
     int i;
     int64_t temp1, temp2;
 
     /*
      * 0 - target energy
      * 1 - forward cross-correlation
      * 2 - forward residual energy
      * 3 - backward cross-correlation
      * 4 - backward residual energy
      */
     int energy[5] = {0, 0, 0, 0, 0};
     int16_t *buf  = p->excitation + offset;
     int fwd_lag   = autocorr_max(p, offset, &energy[1], pitch_lag,
                                  SUBFRAME_LEN, 1);
     int back_lag  = autocorr_max(p, offset, &energy[3], pitch_lag,
                                  SUBFRAME_LEN, -1);
 
     ppf->index    = 0;
     ppf->opt_gain = 0;
     ppf->sc_gain  = 0x7fff;
 
     /* Case 0, Section 3.6 */
     if (!back_lag && !fwd_lag)
         return;
 
     /* Compute target energy */
11512367
     energy[0] = ff_dot_product(buf, buf, SUBFRAME_LEN)<<1;
f990dc37
 
     /* Compute forward residual energy */
     if (fwd_lag)
         energy[2] = ff_dot_product(buf + fwd_lag, buf + fwd_lag,
11512367
                                    SUBFRAME_LEN)<<1;
f990dc37
 
     /* Compute backward residual energy */
     if (back_lag)
         energy[4] = ff_dot_product(buf - back_lag, buf - back_lag,
11512367
                                    SUBFRAME_LEN)<<1;
f990dc37
 
     /* Normalize and shorten */
     temp1 = 0;
     for (i = 0; i < 5; i++)
         temp1 = FFMAX(energy[i], temp1);
 
     scale = normalize_bits(temp1, 1);
     for (i = 0; i < 5; i++)
         energy[i] = av_clipl_int32(energy[i] << scale) >> 16;
 
     if (fwd_lag && !back_lag) {  /* Case 1 */
         comp_ppf_gains(fwd_lag,  ppf, cur_rate, energy[0], energy[1],
                        energy[2]);
     } else if (!fwd_lag) {       /* Case 2 */
         comp_ppf_gains(-back_lag, ppf, cur_rate, energy[0], energy[3],
                        energy[4]);
     } else {                     /* Case 3 */
 
         /*
          * Select the largest of energy[1]^2/energy[2]
          * and energy[3]^2/energy[4]
          */
         temp1 = energy[4] * ((energy[1] * energy[1] + (1 << 14)) >> 15);
         temp2 = energy[2] * ((energy[3] * energy[3] + (1 << 14)) >> 15);
         if (temp1 >= temp2) {
             comp_ppf_gains(fwd_lag, ppf, cur_rate, energy[0], energy[1],
                            energy[2]);
         } else {
             comp_ppf_gains(-back_lag, ppf, cur_rate, energy[0], energy[3],
                            energy[4]);
         }
     }
 }
 
 /**
  * Classify frames as voiced/unvoiced.
  *
  * @param p         the context
  * @param pitch_lag decoded pitch_lag
  * @param exc_eng   excitation energy estimation
  * @param scale     scaling factor of exc_eng
  *
  * @return residual interpolation index if voiced, 0 otherwise
  */
 static int comp_interp_index(G723_1_Context *p, int pitch_lag,
                              int *exc_eng, int *scale)
 {
     int offset = PITCH_MAX + 2 * SUBFRAME_LEN;
     int16_t *buf = p->excitation + offset;
 
     int index, ccr, tgt_eng, best_eng, temp;
 
     *scale = scale_vector(p->excitation, FRAME_LEN + PITCH_MAX);
 
     /* Compute maximum backward cross-correlation */
     ccr   = 0;
     index = autocorr_max(p, offset, &ccr, pitch_lag, SUBFRAME_LEN * 2, -1);
     ccr   = av_clipl_int32((int64_t)ccr + (1 << 15)) >> 16;
 
     /* Compute target energy */
11512367
     tgt_eng  = ff_dot_product(buf, buf, SUBFRAME_LEN * 2)<<1;
f990dc37
     *exc_eng = av_clipl_int32(tgt_eng + (1 << 15)) >> 16;
 
     if (ccr <= 0)
         return 0;
 
     /* Compute best energy */
     best_eng = ff_dot_product(buf - index, buf - index,
11512367
                               SUBFRAME_LEN * 2)<<1;
f990dc37
     best_eng = av_clipl_int32((int64_t)best_eng + (1 << 15)) >> 16;
 
     temp = best_eng * *exc_eng >> 3;
 
     if (temp < ccr * ccr) {
         return index;
     } else
         return 0;
 }
 
 /**
  * Peform residual interpolation based on frame classification.
  *
  * @param buf   decoded excitation vector
  * @param out   output vector
  * @param lag   decoded pitch lag
  * @param gain  interpolated gain
  * @param rseed seed for random number generator
  */
 static void residual_interp(int16_t *buf, int16_t *out, int lag,
                             int gain, int *rseed)
 {
     int i;
     if (lag) { /* Voiced */
         int16_t *vector_ptr = buf + PITCH_MAX;
         /* Attenuate */
         for (i = 0; i < lag; i++)
             vector_ptr[i - lag] = vector_ptr[i - lag] * 3 >> 2;
         av_memcpy_backptr((uint8_t*)vector_ptr, lag * sizeof(int16_t),
                           FRAME_LEN * sizeof(int16_t));
         memcpy(out, vector_ptr, FRAME_LEN * sizeof(int16_t));
     } else {  /* Unvoiced */
         for (i = 0; i < FRAME_LEN; i++) {
             *rseed = *rseed * 521 + 259;
             out[i] = gain * *rseed >> 15;
         }
         memset(buf, 0, (FRAME_LEN + PITCH_MAX) * sizeof(int16_t));
     }
 }
 
 /**
  * Perform IIR filtering.
  *
  * @param fir_coef FIR coefficients
  * @param iir_coef IIR coefficients
  * @param src      source vector
  * @param dest     destination vector
  * @param width    width of the output, 16 bits(0) / 32 bits(1)
  */
 #define iir_filter(fir_coef, iir_coef, src, dest, width)\
 {\
     int m, n;\
     int res_shift = 16 & ~-(width);\
     int in_shift  = 16 - res_shift;\
 \
     for (m = 0; m < SUBFRAME_LEN; m++) {\
         int64_t filter = 0;\
         for (n = 1; n <= LPC_ORDER; n++) {\
             filter -= (fir_coef)[n - 1] * (src)[m - n] -\
                       (iir_coef)[n - 1] * ((dest)[m - n] >> in_shift);\
         }\
 \
         (dest)[m] = av_clipl_int32(((src)[m] << 16) + (filter << 3) +\
                                    (1 << 15)) >> res_shift;\
     }\
 }
 
 /**
  * Adjust gain of postfiltered signal.
  *
  * @param p      the context
  * @param buf    postfiltered output vector
  * @param energy input energy coefficient
  */
 static void gain_scale(G723_1_Context *p, int16_t * buf, int energy)
 {
     int num, denom, gain, bits1, bits2;
     int i;
 
     num   = energy;
     denom = 0;
     for (i = 0; i < SUBFRAME_LEN; i++) {
         int64_t temp = buf[i] >> 2;
         temp  = av_clipl_int32(MUL64(temp, temp) << 1);
         denom = av_clipl_int32(denom + temp);
     }
 
     if (num && denom) {
         bits1   = normalize_bits(num, 1);
         bits2   = normalize_bits(denom, 1);
         num     = num << bits1 >> 1;
         denom <<= bits2;
 
         bits2 = 5 + bits1 - bits2;
         bits2 = FFMAX(0, bits2);
 
         gain = (num >> 1) / (denom >> 16);
         gain = square_root(gain << 16 >> bits2);
     } else {
         gain = 1 << 12;
     }
 
     for (i = 0; i < SUBFRAME_LEN; i++) {
         p->pf_gain = ((p->pf_gain << 4) - p->pf_gain + gain + (1 << 3)) >> 4;
         buf[i]     = av_clip_int16((buf[i] * (p->pf_gain + (p->pf_gain >> 4)) +
                                    (1 << 10)) >> 11);
     }
 }
 
 /**
  * Perform formant filtering.
  *
  * @param p   the context
  * @param lpc quantized lpc coefficients
  * @param buf output buffer
  */
 static void formant_postfilter(G723_1_Context *p, int16_t *lpc, int16_t *buf)
 {
     int16_t filter_coef[2][LPC_ORDER], *buf_ptr;
     int filter_signal[LPC_ORDER + FRAME_LEN], *signal_ptr;
     int i, j, k;
 
     memcpy(buf, p->fir_mem, LPC_ORDER * sizeof(int16_t));
     memcpy(filter_signal, p->iir_mem, LPC_ORDER * sizeof(int));
 
     for (i = LPC_ORDER, j = 0; j < SUBFRAMES; i += SUBFRAME_LEN, j++) {
         for (k = 0; k < LPC_ORDER; k++) {
             filter_coef[0][k] = (-lpc[k] * postfilter_tbl[0][k] +
                                  (1 << 14)) >> 15;
             filter_coef[1][k] = (-lpc[k] * postfilter_tbl[1][k] +
                                  (1 << 14)) >> 15;
         }
         iir_filter(filter_coef[0], filter_coef[1], buf + i,
                    filter_signal + i, 1);
     }
 
     memcpy(p->fir_mem, buf + FRAME_LEN, LPC_ORDER * sizeof(int16_t));
     memcpy(p->iir_mem, filter_signal + FRAME_LEN, LPC_ORDER * sizeof(int));
 
     buf_ptr    = buf + LPC_ORDER;
     signal_ptr = filter_signal + LPC_ORDER;
     for (i = 0; i < SUBFRAMES; i++) {
         int16_t temp_vector[SUBFRAME_LEN];
         int16_t temp;
         int auto_corr[2];
         int scale, energy;
 
         /* Normalize */
         memcpy(temp_vector, buf_ptr, SUBFRAME_LEN * sizeof(int16_t));
         scale = scale_vector(temp_vector, SUBFRAME_LEN);
 
         /* Compute auto correlation coefficients */
         auto_corr[0] = ff_dot_product(temp_vector, temp_vector + 1,
11512367
                                       SUBFRAME_LEN - 1)<<1;
f990dc37
         auto_corr[1] = ff_dot_product(temp_vector, temp_vector,
11512367
                                       SUBFRAME_LEN)<<1;
f990dc37
 
         /* Compute reflection coefficient */
         temp = auto_corr[1] >> 16;
         if (temp) {
             temp = (auto_corr[0] >> 2) / temp;
         }
         p->reflection_coef = ((p->reflection_coef << 2) - p->reflection_coef +
                               temp + 2) >> 2;
         temp = (p->reflection_coef * 0xffffc >> 3) & 0xfffc;
 
         /* Compensation filter */
         for (j = 0; j < SUBFRAME_LEN; j++) {
             buf_ptr[j] = av_clipl_int32(signal_ptr[j] +
                                         ((signal_ptr[j - 1] >> 16) *
                                          temp << 1)) >> 16;
         }
 
         /* Compute normalized signal energy */
         temp = 2 * scale + 4;
         if (temp < 0) {
             energy = av_clipl_int32((int64_t)auto_corr[1] << -temp);
         } else
             energy = auto_corr[1] >> temp;
 
         gain_scale(p, buf_ptr, energy);
 
         buf_ptr    += SUBFRAME_LEN;
         signal_ptr += SUBFRAME_LEN;
     }
 }
 
 static int g723_1_decode_frame(AVCodecContext *avctx, void *data,
eac5987c
                                int *got_frame_ptr, AVPacket *avpkt)
f990dc37
 {
     G723_1_Context *p  = avctx->priv_data;
     const uint8_t *buf = avpkt->data;
     int buf_size       = avpkt->size;
eac5987c
     int16_t *out;
f990dc37
     int dec_mode       = buf[0] & 3;
 
     PPFParam ppf[SUBFRAMES];
     int16_t cur_lsp[LPC_ORDER];
     int16_t lpc[SUBFRAMES * LPC_ORDER];
     int16_t acb_vector[SUBFRAME_LEN];
     int16_t *vector_ptr;
eac5987c
     int bad_frame = 0, i, j, ret;
f990dc37
 
     if (!buf_size || buf_size < frame_size[dec_mode]) {
eac5987c
         *got_frame_ptr = 0;
f990dc37
         return buf_size;
     }
 
     if (unpack_bitstream(p, buf, buf_size) < 0) {
         bad_frame         = 1;
         p->cur_frame_type = p->past_frame_type == ActiveFrame ?
                             ActiveFrame : UntransmittedFrame;
     }
 
eac5987c
     p->frame.nb_samples = FRAME_LEN + LPC_ORDER;
     if ((ret = avctx->get_buffer(avctx, &p->frame)) < 0) {
         av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
         return ret;
     }
     out= p->frame.data[0];
 
 
f990dc37
     if(p->cur_frame_type == ActiveFrame) {
         if (!bad_frame) {
             p->erased_frames = 0;
         } else if(p->erased_frames != 3)
             p->erased_frames++;
 
         inverse_quant(cur_lsp, p->prev_lsp, p->lsp_index, bad_frame);
         lsp_interpolate(lpc, cur_lsp, p->prev_lsp);
 
         /* Save the lsp_vector for the next frame */
         memcpy(p->prev_lsp, cur_lsp, LPC_ORDER * sizeof(int16_t));
 
         /* Generate the excitation for the frame */
         memcpy(p->excitation, p->prev_excitation, PITCH_MAX * sizeof(int16_t));
         vector_ptr = p->excitation + PITCH_MAX;
         if (!p->erased_frames) {
             /* Update interpolation gain memory */
             p->interp_gain = fixed_cb_gain[(p->subframe[2].amp_index +
                                             p->subframe[3].amp_index) >> 1];
             for (i = 0; i < SUBFRAMES; i++) {
                 gen_fcb_excitation(vector_ptr, p->subframe[i], p->cur_rate,
                                    p->pitch_lag[i >> 1], i);
                 gen_acb_excitation(acb_vector, &p->excitation[SUBFRAME_LEN * i],
                                    p->pitch_lag[i >> 1], p->subframe[i],
                                    p->cur_rate);
                 /* Get the total excitation */
                 for (j = 0; j < SUBFRAME_LEN; j++) {
                     vector_ptr[j] = av_clip_int16(vector_ptr[j] << 1);
                     vector_ptr[j] = av_clip_int16(vector_ptr[j] +
                                                   acb_vector[j]);
                 }
                 vector_ptr += SUBFRAME_LEN;
             }
 
             vector_ptr = p->excitation + PITCH_MAX;
 
             /* Save the excitation */
             memcpy(out, vector_ptr, FRAME_LEN * sizeof(int16_t));
 
             p->interp_index = comp_interp_index(p, p->pitch_lag[1],
                                                 &p->sid_gain, &p->cur_gain);
 
             for (i = PITCH_MAX, j = 0; j < SUBFRAMES; i += SUBFRAME_LEN, j++)
                 comp_ppf_coeff(p, i, p->pitch_lag[j >> 1],
                                ppf + j, p->cur_rate);
 
             /* Restore the original excitation */
             memcpy(p->excitation, p->prev_excitation,
                    PITCH_MAX * sizeof(int16_t));
             memcpy(vector_ptr, out, FRAME_LEN * sizeof(int16_t));
 
             /* Peform pitch postfiltering */
             for (i = 0, j = 0; j < SUBFRAMES; i += SUBFRAME_LEN, j++)
                 ff_acelp_weighted_vector_sum(out + LPC_ORDER + i, vector_ptr + i,
                                              vector_ptr + i + ppf[j].index,
                                              ppf[j].sc_gain, ppf[j].opt_gain,
                                              1 << 14, 15, SUBFRAME_LEN);
         } else {
             p->interp_gain = (p->interp_gain * 3 + 2) >> 2;
             if (p->erased_frames == 3) {
                 /* Mute output */
                 memset(p->excitation, 0,
                        (FRAME_LEN + PITCH_MAX) * sizeof(int16_t));
                 memset(out, 0, (FRAME_LEN + LPC_ORDER) * sizeof(int16_t));
             } else {
                 /* Regenerate frame */
                 residual_interp(p->excitation, out + LPC_ORDER, p->interp_index,
                                 p->interp_gain, &p->random_seed);
             }
         }
         /* Save the excitation for the next frame */
         memcpy(p->prev_excitation, p->excitation + FRAME_LEN,
                PITCH_MAX * sizeof(int16_t));
     } else {
eac5987c
         memset(out, 0, sizeof(int16_t)*FRAME_LEN);
f990dc37
         av_log(avctx, AV_LOG_WARNING,
                "G.723.1: Comfort noise generation not supported yet\n");
         return frame_size[dec_mode];
     }
 
     p->past_frame_type = p->cur_frame_type;
 
     memcpy(out, p->synth_mem, LPC_ORDER * sizeof(int16_t));
     for (i = LPC_ORDER, j = 0; j < SUBFRAMES; i += SUBFRAME_LEN, j++)
         ff_celp_lp_synthesis_filter(out + i, &lpc[j * LPC_ORDER],
                                     out + i, SUBFRAME_LEN, LPC_ORDER,
                                     0, 1, 1 << 12);
     memcpy(p->synth_mem, out + FRAME_LEN, LPC_ORDER * sizeof(int16_t));
 
     formant_postfilter(p, lpc, out);
 
eac5987c
     memmove(out, out + LPC_ORDER, sizeof(int16_t)*FRAME_LEN);
     p->frame.nb_samples = FRAME_LEN;
     *(AVFrame*)data = p->frame;
     *got_frame_ptr = 1;
f990dc37
 
     return frame_size[dec_mode];
 }
 
 AVCodec ff_g723_1_decoder = {
     .name           = "g723_1",
     .type           = AVMEDIA_TYPE_AUDIO,
     .id             = CODEC_ID_G723_1,
     .priv_data_size = sizeof(G723_1_Context),
     .init           = g723_1_decode_init,
     .decode         = g723_1_decode_frame,
     .long_name      = NULL_IF_CONFIG_SMALL("G.723.1"),
     .capabilities   = CODEC_CAP_SUBFRAMES,
 };
ef64c45c
 
 #if CONFIG_G723_1_ENCODER
 #define BITSTREAM_WRITER_LE
 #include "put_bits.h"
 
 static av_cold int g723_1_encode_init(AVCodecContext *avctx)
 {
     G723_1_Context *p = avctx->priv_data;
 
     if (avctx->sample_rate != 8000) {
         av_log(avctx, AV_LOG_ERROR, "Only 8000Hz sample rate supported\n");
         return -1;
     }
 
     if (avctx->channels != 1) {
         av_log(avctx, AV_LOG_ERROR, "Only mono supported\n");
         return AVERROR(EINVAL);
     }
 
     if (avctx->bit_rate == 6300) {
         p->cur_rate = Rate6k3;
     } else if (avctx->bit_rate == 5300) {
         av_log(avctx, AV_LOG_ERROR, "Bitrate not supported yet, use 6.3k\n");
         return AVERROR_PATCHWELCOME;
     } else {
         av_log(avctx, AV_LOG_ERROR,
                "Bitrate not supported, use 6.3k\n");
         return AVERROR(EINVAL);
     }
     avctx->frame_size = 240;
     memcpy(p->prev_lsp, dc_lsp, LPC_ORDER * sizeof(int16_t));
 
     return 0;
 }
 
 /**
  * Remove DC component from the input signal.
  *
  * @param buf input signal
  * @param fir zero memory
  * @param iir pole memory
  */
 static void highpass_filter(int16_t *buf, int16_t *fir, int *iir)
 {
     int i;
     for (i = 0; i < FRAME_LEN; i++) {
         *iir   = (buf[i] << 15) + ((-*fir) << 15) + MULL2(*iir, 0x7f00);
         *fir   = buf[i];
         buf[i] = av_clipl_int32((int64_t)*iir + (1 << 15)) >> 16;
     }
 }
 
 /**
  * Estimate autocorrelation of the input vector.
  *
  * @param buf      input buffer
  * @param autocorr autocorrelation coefficients vector
  */
 static void comp_autocorr(int16_t *buf, int16_t *autocorr)
 {
     int i, scale, temp;
     int16_t vector[LPC_FRAME];
 
     memcpy(vector, buf, LPC_FRAME * sizeof(int16_t));
     scale_vector(vector, LPC_FRAME);
 
     /* Apply the Hamming window */
     for (i = 0; i < LPC_FRAME; i++)
         vector[i] = (vector[i] * hamming_window[i] + (1 << 14)) >> 15;
 
     /* Compute the first autocorrelation coefficient */
     temp = dot_product(vector, vector, LPC_FRAME, 0);
 
     /* Apply a white noise correlation factor of (1025/1024) */
     temp += temp >> 10;
 
     /* Normalize */
     scale = normalize_bits_int32(temp);
     autocorr[0] = av_clipl_int32((int64_t)(temp << scale) +
                                  (1 << 15)) >> 16;
 
     /* Compute the remaining coefficients */
     if (!autocorr[0]) {
         memset(autocorr + 1, 0, LPC_ORDER * sizeof(int16_t));
     } else {
         for (i = 1; i <= LPC_ORDER; i++) {
            temp = dot_product(vector, vector + i, LPC_FRAME - i, 0);
            temp = MULL2((temp << scale), binomial_window[i - 1]);
            autocorr[i] = av_clipl_int32((int64_t)temp + (1 << 15)) >> 16;
         }
     }
 }
 
 /**
  * Use Levinson-Durbin recursion to compute LPC coefficients from
  * autocorrelation values.
  *
  * @param lpc      LPC coefficients vector
  * @param autocorr autocorrelation coefficients vector
  * @param error    prediction error
  */
 static void levinson_durbin(int16_t *lpc, int16_t *autocorr, int16_t error)
 {
     int16_t vector[LPC_ORDER];
     int16_t partial_corr;
     int i, j, temp;
 
     memset(lpc, 0, LPC_ORDER * sizeof(int16_t));
 
     for (i = 0; i < LPC_ORDER; i++) {
         /* Compute the partial correlation coefficient */
         temp = 0;
         for (j = 0; j < i; j++)
             temp -= lpc[j] * autocorr[i - j - 1];
         temp = ((autocorr[i] << 13) + temp) << 3;
 
         if (FFABS(temp) >= (error << 16))
             break;
 
         partial_corr = temp / (error << 1);
 
         lpc[i] = av_clipl_int32((int64_t)(partial_corr << 14) +
                                 (1 << 15)) >> 16;
 
         /* Update the prediction error */
         temp  = MULL2(temp, partial_corr);
         error = av_clipl_int32((int64_t)(error << 16) - temp +
                                 (1 << 15)) >> 16;
 
         memcpy(vector, lpc, i * sizeof(int16_t));
         for (j = 0; j < i; j++) {
             temp = partial_corr * vector[i - j - 1] << 1;
             lpc[j] = av_clipl_int32((int64_t)(lpc[j] << 16) - temp +
                                     (1 << 15)) >> 16;
         }
     }
 }
 
 /**
  * Calculate LPC coefficients for the current frame.
  *
  * @param buf       current frame
  * @param prev_data 2 trailing subframes of the previous frame
  * @param lpc       LPC coefficients vector
  */
 static void comp_lpc_coeff(int16_t *buf, int16_t *lpc)
 {
     int16_t autocorr[(LPC_ORDER + 1) * SUBFRAMES];
     int16_t *autocorr_ptr = autocorr;
     int16_t *lpc_ptr      = lpc;
     int i, j;
 
     for (i = 0, j = 0; j < SUBFRAMES; i += SUBFRAME_LEN, j++) {
         comp_autocorr(buf + i, autocorr_ptr);
         levinson_durbin(lpc_ptr, autocorr_ptr + 1, autocorr_ptr[0]);
 
         lpc_ptr += LPC_ORDER;
         autocorr_ptr += LPC_ORDER + 1;
     }
 }
 
 static void lpc2lsp(int16_t *lpc, int16_t *prev_lsp, int16_t *lsp)
 {
     int f[LPC_ORDER + 2]; ///< coefficients of the sum and difference
                           ///< polynomials (F1, F2) ordered as
                           ///< f1[0], f2[0], ...., f1[5], f2[5]
 
     int max, shift, cur_val, prev_val, count, p;
     int i, j;
     int64_t temp;
 
     /* Initialize f1[0] and f2[0] to 1 in Q25 */
     for (i = 0; i < LPC_ORDER; i++)
         lsp[i] = (lpc[i] * bandwidth_expand[i] + (1 << 14)) >> 15;
 
     /* Apply bandwidth expansion on the LPC coefficients */
     f[0] = f[1] = 1 << 25;
 
     /* Compute the remaining coefficients */
     for (i = 0; i < LPC_ORDER / 2; i++) {
         /* f1 */
         f[2 * i + 2] = -f[2 * i] - ((lsp[i] + lsp[LPC_ORDER - 1 - i]) << 12);
         /* f2 */
         f[2 * i + 3] = f[2 * i + 1] - ((lsp[i] - lsp[LPC_ORDER - 1 - i]) << 12);
     }
 
     /* Divide f1[5] and f2[5] by 2 for use in polynomial evaluation */
     f[LPC_ORDER] >>= 1;
     f[LPC_ORDER + 1] >>= 1;
 
     /* Normalize and shorten */
     max = FFABS(f[0]);
     for (i = 1; i < LPC_ORDER + 2; i++)
         max = FFMAX(max, FFABS(f[i]));
 
     shift = normalize_bits_int32(max);
 
     for (i = 0; i < LPC_ORDER + 2; i++)
         f[i] = av_clipl_int32((int64_t)(f[i] << shift) + (1 << 15)) >> 16;
 
     /**
      * Evaluate F1 and F2 at uniform intervals of pi/256 along the
      * unit circle and check for zero crossings.
      */
     p    = 0;
     temp = 0;
     for (i = 0; i <= LPC_ORDER / 2; i++)
         temp += f[2 * i] * cos_tab[0];
     prev_val = av_clipl_int32(temp << 1);
     count    = 0;
     for ( i = 1; i < COS_TBL_SIZE / 2; i++) {
         /* Evaluate */
         temp = 0;
         for (j = 0; j <= LPC_ORDER / 2; j++)
             temp += f[LPC_ORDER - 2 * j + p] * cos_tab[i * j % COS_TBL_SIZE];
         cur_val = av_clipl_int32(temp << 1);
 
         /* Check for sign change, indicating a zero crossing */
         if ((cur_val ^ prev_val) < 0) {
             int abs_cur  = FFABS(cur_val);
             int abs_prev = FFABS(prev_val);
             int sum      = abs_cur + abs_prev;
 
             shift        = normalize_bits_int32(sum);
             sum          <<= shift;
             abs_prev     = abs_prev << shift >> 8;
             lsp[count++] = ((i - 1) << 7) + (abs_prev >> 1) / (sum >> 16);
 
             if (count == LPC_ORDER)
                 break;
 
             /* Switch between sum and difference polynomials */
             p ^= 1;
 
             /* Evaluate */
             temp = 0;
             for (j = 0; j <= LPC_ORDER / 2; j++){
                 temp += f[LPC_ORDER - 2 * j + p] *
                         cos_tab[i * j % COS_TBL_SIZE];
             }
             cur_val = av_clipl_int32(temp<<1);
         }
         prev_val = cur_val;
     }
 
     if (count != LPC_ORDER)
         memcpy(lsp, prev_lsp, LPC_ORDER * sizeof(int16_t));
 }
 
 /**
  * Quantize the current LSP subvector.
  *
  * @param num    band number
  * @param offset offset of the current subvector in an LPC_ORDER vector
  * @param size   size of the current subvector
  */
 #define get_index(num, offset, size) \
 {\
     int error, max = -1;\
     int16_t temp[4];\
     int i, j;\
     for (i = 0; i < LSP_CB_SIZE; i++) {\
         for (j = 0; j < size; j++){\
             temp[j] = (weight[j + (offset)] * lsp_band##num[i][j] +\
                       (1 << 14)) >> 15;\
         }\
         error =  dot_product(lsp + (offset), temp, size, 1) << 1;\
         error -= dot_product(lsp_band##num[i], temp, size, 1);\
         if (error > max) {\
             max = error;\
             lsp_index[num] = i;\
         }\
     }\
 }
 
 /**
  * Vector quantize the LSP frequencies.
  *
  * @param lsp      the current lsp vector
  * @param prev_lsp the previous lsp vector
  */
 static void lsp_quantize(uint8_t *lsp_index, int16_t *lsp, int16_t *prev_lsp)
 {
     int16_t weight[LPC_ORDER];
     int16_t min, max;
     int shift, i;
 
     /* Calculate the VQ weighting vector */
     weight[0] = (1 << 20) / (lsp[1] - lsp[0]);
     weight[LPC_ORDER - 1] = (1 << 20) /
                             (lsp[LPC_ORDER - 1] - lsp[LPC_ORDER - 2]);
 
     for (i = 1; i < LPC_ORDER - 1; i++) {
         min  = FFMIN(lsp[i] - lsp[i - 1], lsp[i + 1] - lsp[i]);
         if (min > 0x20)
             weight[i] = (1 << 20) / min;
         else
             weight[i] = INT16_MAX;
     }
 
     /* Normalize */
     max = 0;
     for (i = 0; i < LPC_ORDER; i++)
         max = FFMAX(weight[i], max);
 
     shift = normalize_bits_int16(max);
     for (i = 0; i < LPC_ORDER; i++) {
         weight[i] <<= shift;
     }
 
     /* Compute the VQ target vector */
     for (i = 0; i < LPC_ORDER; i++) {
         lsp[i] -= dc_lsp[i] +
                   (((prev_lsp[i] - dc_lsp[i]) * 12288 + (1 << 14)) >> 15);
     }
 
     get_index(0, 0, 3);
     get_index(1, 3, 3);
     get_index(2, 6, 4);
 }
 
 /**
  * Apply the formant perceptual weighting filter.
  *
  * @param flt_coef filter coefficients
  * @param unq_lpc  unquantized lpc vector
  */
 static void perceptual_filter(G723_1_Context *p, int16_t *flt_coef,
                               int16_t *unq_lpc, int16_t *buf)
 {
     int16_t vector[FRAME_LEN + LPC_ORDER];
     int i, j, k, l = 0;
 
     memcpy(buf, p->iir_mem, sizeof(int16_t) * LPC_ORDER);
     memcpy(vector, p->fir_mem, sizeof(int16_t) * LPC_ORDER);
     memcpy(vector + LPC_ORDER, buf + LPC_ORDER, sizeof(int16_t) * FRAME_LEN);
 
     for (i = LPC_ORDER, j = 0; j < SUBFRAMES; i += SUBFRAME_LEN, j++) {
         for (k = 0; k < LPC_ORDER; k++) {
             flt_coef[k + 2 * l] = (unq_lpc[k + l] * percept_flt_tbl[0][k] +
                                   (1 << 14)) >> 15;
             flt_coef[k + 2 * l + LPC_ORDER] = (unq_lpc[k + l] *
                                              percept_flt_tbl[1][k] +
                                              (1 << 14)) >> 15;
         }
         iir_filter(flt_coef + 2 * l, flt_coef + 2 * l + LPC_ORDER, vector + i,
                    buf + i, 0);
         l += LPC_ORDER;
     }
     memcpy(p->iir_mem, buf + FRAME_LEN, sizeof(int16_t) * LPC_ORDER);
     memcpy(p->fir_mem, vector + FRAME_LEN, sizeof(int16_t) * LPC_ORDER);
 }
 
 /**
  * Estimate the open loop pitch period.
  *
  * @param buf   perceptually weighted speech
  * @param start estimation is carried out from this position
  */
 static int estimate_pitch(int16_t *buf, int start)
 {
     int max_exp = 32;
     int max_ccr = 0x4000;
     int max_eng = 0x7fff;
     int index   = PITCH_MIN;
     int offset  = start - PITCH_MIN + 1;
 
     int ccr, eng, orig_eng, ccr_eng, exp;
     int diff, temp;
 
     int i;
 
     orig_eng = dot_product(buf + offset, buf + offset, HALF_FRAME_LEN, 0);
 
     for (i = PITCH_MIN; i <= PITCH_MAX - 3; i++) {
         offset--;
 
         /* Update energy and compute correlation */
         orig_eng += buf[offset] * buf[offset] -
                     buf[offset + HALF_FRAME_LEN] * buf[offset + HALF_FRAME_LEN];
         ccr      =  dot_product(buf + start, buf + offset, HALF_FRAME_LEN, 0);
         if (ccr <= 0)
             continue;
 
         /* Split into mantissa and exponent to maintain precision */
         exp  =   normalize_bits_int32(ccr);
         ccr  =   av_clipl_int32((int64_t)(ccr << exp) + (1 << 15)) >> 16;
         exp  <<= 1;
         ccr  *=  ccr;
         temp =   normalize_bits_int32(ccr);
         ccr  =   ccr << temp >> 16;
         exp  +=  temp;
 
         temp =   normalize_bits_int32(orig_eng);
         eng  =   av_clipl_int32((int64_t)(orig_eng << temp) + (1 << 15)) >> 16;
         exp  -=  temp;
 
         if (ccr >= eng) {
             exp--;
             ccr >>= 1;
         }
         if (exp > max_exp)
             continue;
 
         if (exp + 1 < max_exp)
             goto update;
 
         /* Equalize exponents before comparison */
         if (exp + 1 == max_exp)
             temp = max_ccr >> 1;
         else
             temp = max_ccr;
         ccr_eng = ccr * max_eng;
         diff    = ccr_eng - eng * temp;
         if (diff > 0 && (i - index < PITCH_MIN || diff > ccr_eng >> 2)) {
 update:
             index   = i;
             max_exp = exp;
             max_ccr = ccr;
             max_eng = eng;
         }
     }
     return index;
 }
 
 /**
  * Compute harmonic noise filter parameters.
  *
  * @param buf       perceptually weighted speech
  * @param pitch_lag open loop pitch period
  * @param hf        harmonic filter parameters
  */
 static void comp_harmonic_coeff(int16_t *buf, int16_t pitch_lag, HFParam *hf)
 {
     int ccr, eng, max_ccr, max_eng;
     int exp, max, diff;
     int energy[15];
     int i, j;
 
     for (i = 0, j = pitch_lag - 3; j <= pitch_lag + 3; i++, j++) {
         /* Compute residual energy */
         energy[i << 1] = dot_product(buf - j, buf - j, SUBFRAME_LEN, 0);
         /* Compute correlation */
         energy[(i << 1) + 1] = dot_product(buf, buf - j, SUBFRAME_LEN, 0);
     }
 
     /* Compute target energy */
     energy[14] = dot_product(buf, buf, SUBFRAME_LEN, 0);
 
     /* Normalize */
     max = 0;
     for (i = 0; i < 15; i++)
         max = FFMAX(max, FFABS(energy[i]));
 
     exp = normalize_bits_int32(max);
     for (i = 0; i < 15; i++) {
         energy[i] = av_clipl_int32((int64_t)(energy[i] << exp) +
                                    (1 << 15)) >> 16;
     }
 
     hf->index = -1;
     hf->gain  =  0;
     max_ccr   =  1;
     max_eng   =  0x7fff;
 
     for (i = 0; i <= 6; i++) {
         eng = energy[i << 1];
         ccr = energy[(i << 1) + 1];
 
         if (ccr <= 0)
             continue;
 
         ccr  = (ccr * ccr + (1 << 14)) >> 15;
         diff = ccr * max_eng - eng * max_ccr;
         if (diff > 0) {
             max_ccr   = ccr;
             max_eng   = eng;
             hf->index = i;
         }
     }
 
     if (hf->index == -1) {
         hf->index = pitch_lag;
         return;
     }
 
     eng = energy[14] * max_eng;
     eng = (eng >> 2) + (eng >> 3);
     ccr = energy[(hf->index << 1) + 1] * energy[(hf->index << 1) + 1];
     if (eng < ccr) {
         eng = energy[(hf->index << 1) + 1];
 
         if (eng >= max_eng)
             hf->gain = 0x2800;
         else
             hf->gain = ((eng << 15) / max_eng * 0x2800 + (1 << 14)) >> 15;
     }
     hf->index += pitch_lag - 3;
 }
 
 /**
  * Apply the harmonic noise shaping filter.
  *
  * @param hf filter parameters
  */
 static void harmonic_filter(HFParam *hf, int16_t *src, int16_t *dest)
 {
     int i;
 
     for (i = 0; i < SUBFRAME_LEN; i++) {
         int64_t temp = hf->gain * src[i - hf->index] << 1;
         dest[i] = av_clipl_int32((src[i] << 16) - temp + (1 << 15)) >> 16;
     }
 }
 
 static void harmonic_noise_sub(HFParam *hf, int16_t *src, int16_t *dest)
 {
     int i;
     for (i = 0; i < SUBFRAME_LEN; i++) {
         int64_t temp = hf->gain * src[i - hf->index] << 1;
         dest[i] = av_clipl_int32(((dest[i] - src[i]) << 16) + temp +
                                  (1 << 15)) >> 16;
 
     }
 }
 
 /**
  * Combined synthesis and formant perceptual weighting filer.
  *
  * @param qnt_lpc  quantized lpc coefficients
  * @param perf_lpc perceptual filter coefficients
  * @param perf_fir perceptual filter fir memory
  * @param perf_iir perceptual filter iir memory
  * @param scale    the filter output will be scaled by 2^scale
  */
 static void synth_percept_filter(int16_t *qnt_lpc, int16_t *perf_lpc,
                                  int16_t *perf_fir, int16_t *perf_iir,
                                  int16_t *src, int16_t *dest, int scale)
 {
     int i, j;
     int16_t buf_16[SUBFRAME_LEN + LPC_ORDER];
     int64_t buf[SUBFRAME_LEN];
 
     int16_t *bptr_16 = buf_16 + LPC_ORDER;
 
     memcpy(buf_16, perf_fir, sizeof(int16_t) * LPC_ORDER);
     memcpy(dest - LPC_ORDER, perf_iir, sizeof(int16_t) * LPC_ORDER);
 
     for (i = 0; i < SUBFRAME_LEN; i++) {
         int64_t temp = 0;
         for (j = 1; j <= LPC_ORDER; j++)
             temp -= qnt_lpc[j - 1] * bptr_16[i - j];
 
         buf[i]     = (src[i] << 15) + (temp << 3);
         bptr_16[i] = av_clipl_int32(buf[i] + (1 << 15)) >> 16;
     }
 
     for (i = 0; i < SUBFRAME_LEN; i++) {
         int64_t fir = 0, iir = 0;
         for (j = 1; j <= LPC_ORDER; j++) {
             fir -= perf_lpc[j - 1] * bptr_16[i - j];
             iir += perf_lpc[j + LPC_ORDER - 1] * dest[i - j];
         }
         dest[i] = av_clipl_int32(((buf[i] + (fir << 3)) << scale) + (iir << 3) +
                                  (1 << 15)) >> 16;
     }
     memcpy(perf_fir, buf_16 + SUBFRAME_LEN, sizeof(int16_t) * LPC_ORDER);
     memcpy(perf_iir, dest + SUBFRAME_LEN - LPC_ORDER,
            sizeof(int16_t) * LPC_ORDER);
 }
 
 /**
  * Compute the adaptive codebook contribution.
  *
  * @param buf   input signal
  * @param index the current subframe index
  */
 static void acb_search(G723_1_Context *p, int16_t *residual,
                        int16_t *impulse_resp, int16_t *buf,
                        int index)
 {
 
     int16_t flt_buf[PITCH_ORDER][SUBFRAME_LEN];
 
     const int16_t *cb_tbl = adaptive_cb_gain85;
 
     int ccr_buf[PITCH_ORDER * SUBFRAMES << 2];
 
     int pitch_lag = p->pitch_lag[index >> 1];
     int acb_lag   = 1;
     int acb_gain  = 0;
     int odd_frame = index & 1;
     int iter      = 3 + odd_frame;
     int count     = 0;
     int tbl_size  = 85;
 
     int i, j, k, l, max;
     int64_t temp;
 
     if (!odd_frame) {
         if (pitch_lag == PITCH_MIN)
             pitch_lag++;
         else
             pitch_lag = FFMIN(pitch_lag, PITCH_MAX - 5);
     }
 
     for (i = 0; i < iter; i++) {
         get_residual(residual, p->prev_excitation, pitch_lag + i - 1);
 
         for (j = 0; j < SUBFRAME_LEN; j++) {
             temp = 0;
             for (k = 0; k <= j; k++)
                 temp += residual[PITCH_ORDER - 1 + k] * impulse_resp[j - k];
             flt_buf[PITCH_ORDER - 1][j] = av_clipl_int32((temp << 1) +
                                                          (1 << 15)) >> 16;
         }
 
         for (j = PITCH_ORDER - 2; j >= 0; j--) {
             flt_buf[j][0] = ((residual[j] << 13) + (1 << 14)) >> 15;
             for (k = 1; k < SUBFRAME_LEN; k++) {
                 temp = (flt_buf[j + 1][k - 1] << 15) +
                        residual[j] * impulse_resp[k];
                 flt_buf[j][k] = av_clipl_int32((temp << 1) + (1 << 15)) >> 16;
             }
         }
 
         /* Compute crosscorrelation with the signal */
         for (j = 0; j < PITCH_ORDER; j++) {
             temp = dot_product(buf, flt_buf[j], SUBFRAME_LEN, 0);
             ccr_buf[count++] = av_clipl_int32(temp << 1);
         }
 
         /* Compute energies */
         for (j = 0; j < PITCH_ORDER; j++) {
             ccr_buf[count++] = dot_product(flt_buf[j], flt_buf[j],
                                            SUBFRAME_LEN, 1);
         }
 
         for (j = 1; j < PITCH_ORDER; j++) {
             for (k = 0; k < j; k++) {
                 temp = dot_product(flt_buf[j], flt_buf[k], SUBFRAME_LEN, 0);
                 ccr_buf[count++] = av_clipl_int32(temp<<2);
             }
         }
     }
 
     /* Normalize and shorten */
     max = 0;
     for (i = 0; i < 20 * iter; i++)
         max = FFMAX(max, FFABS(ccr_buf[i]));
 
     temp = normalize_bits_int32(max);
 
     for (i = 0; i < 20 * iter; i++){
         ccr_buf[i] = av_clipl_int32((int64_t)(ccr_buf[i] << temp) +
                                     (1 << 15)) >> 16;
     }
 
     max = 0;
     for (i = 0; i < iter; i++) {
         /* Select quantization table */
         if (!odd_frame && pitch_lag + i - 1 >= SUBFRAME_LEN - 2 ||
             odd_frame && pitch_lag >= SUBFRAME_LEN - 2) {
             cb_tbl = adaptive_cb_gain170;
             tbl_size = 170;
         }
 
         for (j = 0, k = 0; j < tbl_size; j++, k += 20) {
             temp = 0;
             for (l = 0; l < 20; l++)
                 temp += ccr_buf[20 * i + l] * cb_tbl[k + l];
             temp =  av_clipl_int32(temp);
 
             if (temp > max) {
                 max      = temp;
                 acb_gain = j;
                 acb_lag  = i;
             }
         }
     }
 
     if (!odd_frame) {
         pitch_lag += acb_lag - 1;
         acb_lag   =  1;
     }
 
     p->pitch_lag[index >> 1]      = pitch_lag;
     p->subframe[index].ad_cb_lag  = acb_lag;
     p->subframe[index].ad_cb_gain = acb_gain;
 }
 
 /**
  * Subtract the adaptive codebook contribution from the input
  * to obtain the residual.
  *
  * @param buf target vector
  */
 static void sub_acb_contrib(int16_t *residual, int16_t *impulse_resp,
                             int16_t *buf)
 {
     int i, j;
     /* Subtract adaptive CB contribution to obtain the residual */
     for (i = 0; i < SUBFRAME_LEN; i++) {
         int64_t temp = buf[i] << 14;
         for (j = 0; j <= i; j++)
             temp -= residual[j] * impulse_resp[i - j];
 
         buf[i] = av_clipl_int32((temp << 2) + (1 << 15)) >> 16;
     }
 }
 
 /**
  * Quantize the residual signal using the fixed codebook (MP-MLQ).
  *
  * @param optim optimized fixed codebook parameters
  * @param buf   excitation vector
  */
 static void get_fcb_param(FCBParam *optim, int16_t *impulse_resp,
                           int16_t *buf, int pulse_cnt, int pitch_lag)
 {
     FCBParam param;
     int16_t impulse_r[SUBFRAME_LEN];
     int16_t temp_corr[SUBFRAME_LEN];
     int16_t impulse_corr[SUBFRAME_LEN];
 
     int ccr1[SUBFRAME_LEN];
     int ccr2[SUBFRAME_LEN];
     int amp, err, max, max_amp_index, min, scale, i, j, k, l;
 
     int64_t temp;
 
     /* Update impulse response */
     memcpy(impulse_r, impulse_resp, sizeof(int16_t) * SUBFRAME_LEN);
     param.dirac_train = 0;
     if (pitch_lag < SUBFRAME_LEN - 2) {
         param.dirac_train = 1;
         gen_dirac_train(impulse_r, pitch_lag);
     }
 
     for (i = 0; i < SUBFRAME_LEN; i++)
         temp_corr[i] = impulse_r[i] >> 1;
 
     /* Compute impulse response autocorrelation */
     temp = dot_product(temp_corr, temp_corr, SUBFRAME_LEN, 1);
 
     scale = normalize_bits_int32(temp);
     impulse_corr[0] = av_clipl_int32((temp << scale) + (1 << 15)) >> 16;
 
     for (i = 1; i < SUBFRAME_LEN; i++) {
         temp = dot_product(temp_corr + i, temp_corr, SUBFRAME_LEN - i, 1);
         impulse_corr[i] = av_clipl_int32((temp << scale) + (1 << 15)) >> 16;
     }
 
     /* Compute crosscorrelation of impulse response with residual signal */
     scale -= 4;
     for (i = 0; i < SUBFRAME_LEN; i++){
         temp = dot_product(buf + i, impulse_r, SUBFRAME_LEN - i, 1);
         if (scale < 0)
             ccr1[i] = temp >> -scale;
         else
             ccr1[i] = av_clipl_int32(temp << scale);
     }
 
     /* Search loop */
     for (i = 0; i < GRID_SIZE; i++) {
         /* Maximize the crosscorrelation */
         max = 0;
         for (j = i; j < SUBFRAME_LEN; j += GRID_SIZE) {
             temp = FFABS(ccr1[j]);
             if (temp >= max) {
                 max = temp;
                 param.pulse_pos[0] = j;
             }
         }
 
         /* Quantize the gain (max crosscorrelation/impulse_corr[0]) */
         amp = max;
         min = 1 << 30;
         max_amp_index = GAIN_LEVELS - 2;
         for (j = max_amp_index; j >= 2; j--) {
             temp = av_clipl_int32((int64_t)fixed_cb_gain[j] *
                                   impulse_corr[0] << 1);
             temp = FFABS(temp - amp);
             if (temp < min) {
                 min = temp;
                 max_amp_index = j;
             }
         }
 
         max_amp_index--;
         /* Select additional gain values */
         for (j = 1; j < 5; j++) {
             for (k = i; k < SUBFRAME_LEN; k += GRID_SIZE) {
                 temp_corr[k] = 0;
                 ccr2[k]      = ccr1[k];
             }
             param.amp_index = max_amp_index + j - 2;
             amp = fixed_cb_gain[param.amp_index];
 
             param.pulse_sign[0] = (ccr2[param.pulse_pos[0]] < 0) ? -amp : amp;
             temp_corr[param.pulse_pos[0]] = 1;
 
             for (k = 1; k < pulse_cnt; k++) {
                 max = -1 << 30;
                 for (l = i; l < SUBFRAME_LEN; l += GRID_SIZE) {
                     if (temp_corr[l])
                         continue;
                     temp = impulse_corr[FFABS(l - param.pulse_pos[k - 1])];
                     temp = av_clipl_int32((int64_t)temp *
                                           param.pulse_sign[k - 1] << 1);
                     ccr2[l] -= temp;
                     temp = FFABS(ccr2[l]);
                     if (temp > max) {
                         max = temp;
                         param.pulse_pos[k] = l;
                     }
                 }
 
                 param.pulse_sign[k] = (ccr2[param.pulse_pos[k]] < 0) ?
                                       -amp : amp;
                 temp_corr[param.pulse_pos[k]] = 1;
             }
 
             /* Create the error vector */
             memset(temp_corr, 0, sizeof(int16_t) * SUBFRAME_LEN);
 
             for (k = 0; k < pulse_cnt; k++)
                 temp_corr[param.pulse_pos[k]] = param.pulse_sign[k];
 
             for (k = SUBFRAME_LEN - 1; k >= 0; k--) {
                 temp = 0;
                 for (l = 0; l <= k; l++) {
                     int prod = av_clipl_int32((int64_t)temp_corr[l] *
                                               impulse_r[k - l] << 1);
                     temp     = av_clipl_int32(temp + prod);
                 }
                 temp_corr[k] = temp << 2 >> 16;
             }
 
             /* Compute square of error */
             err = 0;
             for (k = 0; k < SUBFRAME_LEN; k++) {
                 int64_t prod;
                 prod = av_clipl_int32((int64_t)buf[k] * temp_corr[k] << 1);
                 err  = av_clipl_int32(err - prod);
                 prod = av_clipl_int32((int64_t)temp_corr[k] * temp_corr[k]);
                 err  = av_clipl_int32(err + prod);
             }
 
             /* Minimize */
             if (err < optim->min_err) {
                 optim->min_err     = err;
                 optim->grid_index  = i;
                 optim->amp_index   = param.amp_index;
                 optim->dirac_train = param.dirac_train;
 
                 for (k = 0; k < pulse_cnt; k++) {
                     optim->pulse_sign[k] = param.pulse_sign[k];
                     optim->pulse_pos[k]  = param.pulse_pos[k];
                 }
             }
         }
     }
 }
 
 /**
  * Encode the pulse position and gain of the current subframe.
  *
  * @param optim optimized fixed CB parameters
  * @param buf   excitation vector
  */
 static void pack_fcb_param(G723_1_Subframe *subfrm, FCBParam *optim,
                            int16_t *buf, int pulse_cnt)
 {
     int i, j;
 
     j = PULSE_MAX - pulse_cnt;
 
     subfrm->pulse_sign = 0;
     subfrm->pulse_pos  = 0;
 
     for (i = 0; i < SUBFRAME_LEN >> 1; i++) {
         int val = buf[optim->grid_index + (i << 1)];
         if (!val) {
             subfrm->pulse_pos += combinatorial_table[j][i];
         } else {
             subfrm->pulse_sign <<= 1;
             if (val < 0) subfrm->pulse_sign++;
             j++;
 
             if (j == PULSE_MAX) break;
         }
     }
     subfrm->amp_index   = optim->amp_index;
     subfrm->grid_index  = optim->grid_index;
     subfrm->dirac_train = optim->dirac_train;
 }
 
 /**
  * Compute the fixed codebook excitation.
  *
  * @param buf          target vector
  * @param impulse_resp impulse response of the combined filter
  */
 static void fcb_search(G723_1_Context *p, int16_t *impulse_resp,
                        int16_t *buf, int index)
 {
     FCBParam optim;
     int pulse_cnt = pulses[index];
     int i;
 
     optim.min_err = 1 << 30;
     get_fcb_param(&optim, impulse_resp, buf, pulse_cnt, SUBFRAME_LEN);
 
     if (p->pitch_lag[index >> 1] < SUBFRAME_LEN - 2) {
         get_fcb_param(&optim, impulse_resp, buf, pulse_cnt,
                       p->pitch_lag[index >> 1]);
     }
 
     /* Reconstruct the excitation */
     memset(buf, 0, sizeof(int16_t) * SUBFRAME_LEN);
     for (i = 0; i < pulse_cnt; i++)
         buf[optim.pulse_pos[i]] = optim.pulse_sign[i];
 
     pack_fcb_param(&p->subframe[index], &optim, buf, pulse_cnt);
 
     if (optim.dirac_train)
         gen_dirac_train(buf, p->pitch_lag[index >> 1]);
 }
 
 /**
  * Pack the frame parameters into output bitstream.
  *
  * @param frame output buffer
  * @param size  size of the buffer
  */
 static int pack_bitstream(G723_1_Context *p, unsigned char *frame, int size)
 {
     PutBitContext pb;
     int info_bits, i, temp;
 
     init_put_bits(&pb, frame, size);
 
     if (p->cur_rate == Rate6k3) {
         info_bits = 0;
         put_bits(&pb, 2, info_bits);
     }
 
     put_bits(&pb, 8, p->lsp_index[2]);
     put_bits(&pb, 8, p->lsp_index[1]);
     put_bits(&pb, 8, p->lsp_index[0]);
 
     put_bits(&pb, 7, p->pitch_lag[0] - PITCH_MIN);
     put_bits(&pb, 2, p->subframe[1].ad_cb_lag);
     put_bits(&pb, 7, p->pitch_lag[1] - PITCH_MIN);
     put_bits(&pb, 2, p->subframe[3].ad_cb_lag);
 
     /* Write 12 bit combined gain */
     for (i = 0; i < SUBFRAMES; i++) {
         temp = p->subframe[i].ad_cb_gain * GAIN_LEVELS +
                p->subframe[i].amp_index;
         if (p->cur_rate ==  Rate6k3)
             temp += p->subframe[i].dirac_train << 11;
         put_bits(&pb, 12, temp);
     }
 
     put_bits(&pb, 1, p->subframe[0].grid_index);
     put_bits(&pb, 1, p->subframe[1].grid_index);
     put_bits(&pb, 1, p->subframe[2].grid_index);
     put_bits(&pb, 1, p->subframe[3].grid_index);
 
     if (p->cur_rate == Rate6k3) {
         skip_put_bits(&pb, 1); /* reserved bit */
 
         /* Write 13 bit combined position index */
         temp = (p->subframe[0].pulse_pos >> 16) * 810 +
                (p->subframe[1].pulse_pos >> 14) *  90 +
                (p->subframe[2].pulse_pos >> 16) *   9 +
                (p->subframe[3].pulse_pos >> 14);
         put_bits(&pb, 13, temp);
 
         put_bits(&pb, 16, p->subframe[0].pulse_pos & 0xffff);
         put_bits(&pb, 14, p->subframe[1].pulse_pos & 0x3fff);
         put_bits(&pb, 16, p->subframe[2].pulse_pos & 0xffff);
         put_bits(&pb, 14, p->subframe[3].pulse_pos & 0x3fff);
 
         put_bits(&pb, 6, p->subframe[0].pulse_sign);
         put_bits(&pb, 5, p->subframe[1].pulse_sign);
         put_bits(&pb, 6, p->subframe[2].pulse_sign);
         put_bits(&pb, 5, p->subframe[3].pulse_sign);
     }
 
     flush_put_bits(&pb);
     return frame_size[info_bits];
 }
 
 static int g723_1_encode_frame(AVCodecContext *avctx, unsigned char *buf,
                                int buf_size, void *data)
 {
     G723_1_Context *p = avctx->priv_data;
     int16_t unq_lpc[LPC_ORDER * SUBFRAMES];
     int16_t qnt_lpc[LPC_ORDER * SUBFRAMES];
     int16_t cur_lsp[LPC_ORDER];
     int16_t weighted_lpc[LPC_ORDER * SUBFRAMES << 1];
     int16_t vector[FRAME_LEN + PITCH_MAX];
     int offset;
     int16_t *in = data;
 
     HFParam hf[4];
     int i, j;
 
     highpass_filter(in, &p->hpf_fir_mem, &p->hpf_iir_mem);
 
     memcpy(vector, p->prev_data, HALF_FRAME_LEN * sizeof(int16_t));
     memcpy(vector + HALF_FRAME_LEN, in, FRAME_LEN * sizeof(int16_t));
 
     comp_lpc_coeff(vector, unq_lpc);
     lpc2lsp(&unq_lpc[LPC_ORDER * 3], p->prev_lsp, cur_lsp);
     lsp_quantize(p->lsp_index, cur_lsp, p->prev_lsp);
 
     /* Update memory */
     memcpy(vector + LPC_ORDER, p->prev_data + SUBFRAME_LEN,
            sizeof(int16_t) * SUBFRAME_LEN);
     memcpy(vector + LPC_ORDER + SUBFRAME_LEN, in,
            sizeof(int16_t) * (HALF_FRAME_LEN + SUBFRAME_LEN));
     memcpy(p->prev_data, in + HALF_FRAME_LEN,
            sizeof(int16_t) * HALF_FRAME_LEN);
     memcpy(in, vector + LPC_ORDER, sizeof(int16_t) * FRAME_LEN);
 
     perceptual_filter(p, weighted_lpc, unq_lpc, vector);
 
     memcpy(in, vector + LPC_ORDER, sizeof(int16_t) * FRAME_LEN);
     memcpy(vector, p->prev_weight_sig, sizeof(int16_t) * PITCH_MAX);
     memcpy(vector + PITCH_MAX, in, sizeof(int16_t) * FRAME_LEN);
 
     scale_vector(vector, FRAME_LEN + PITCH_MAX);
 
     p->pitch_lag[0] = estimate_pitch(vector, PITCH_MAX);
     p->pitch_lag[1] = estimate_pitch(vector, PITCH_MAX + HALF_FRAME_LEN);
 
     for (i = PITCH_MAX, j = 0; j < SUBFRAMES; i += SUBFRAME_LEN, j++)
         comp_harmonic_coeff(vector + i, p->pitch_lag[j >> 1], hf + j);
 
     memcpy(vector, p->prev_weight_sig, sizeof(int16_t) * PITCH_MAX);
     memcpy(vector + PITCH_MAX, in, sizeof(int16_t) * FRAME_LEN);
     memcpy(p->prev_weight_sig, vector + FRAME_LEN, sizeof(int16_t) * PITCH_MAX);
 
     for (i = 0, j = 0; j < SUBFRAMES; i += SUBFRAME_LEN, j++)
         harmonic_filter(hf + j, vector + PITCH_MAX + i, in + i);
 
     inverse_quant(cur_lsp, p->prev_lsp, p->lsp_index, 0);
     lsp_interpolate(qnt_lpc, cur_lsp, p->prev_lsp);
 
     memcpy(p->prev_lsp, cur_lsp, sizeof(int16_t) * LPC_ORDER);
 
     offset = 0;
     for (i = 0; i < SUBFRAMES; i++) {
         int16_t impulse_resp[SUBFRAME_LEN];
         int16_t residual[SUBFRAME_LEN + PITCH_ORDER - 1];
         int16_t flt_in[SUBFRAME_LEN];
         int16_t zero[LPC_ORDER], fir[LPC_ORDER], iir[LPC_ORDER];
 
         /**
          * Compute the combined impulse response of the synthesis filter,
          * formant perceptual weighting filter and harmonic noise shaping filter
          */
         memset(zero, 0, sizeof(int16_t) * LPC_ORDER);
         memset(vector, 0, sizeof(int16_t) * PITCH_MAX);
         memset(flt_in, 0, sizeof(int16_t) * SUBFRAME_LEN);
 
         flt_in[0] = 1 << 13; /* Unit impulse */
         synth_percept_filter(qnt_lpc + offset, weighted_lpc + (offset << 1),
                              zero, zero, flt_in, vector + PITCH_MAX, 1);
         harmonic_filter(hf + i, vector + PITCH_MAX, impulse_resp);
 
          /* Compute the combined zero input response */
         flt_in[0] = 0;
         memcpy(fir, p->perf_fir_mem, sizeof(int16_t) * LPC_ORDER);
         memcpy(iir, p->perf_iir_mem, sizeof(int16_t) * LPC_ORDER);
 
         synth_percept_filter(qnt_lpc + offset, weighted_lpc + (offset << 1),
                              fir, iir, flt_in, vector + PITCH_MAX, 0);
         memcpy(vector, p->harmonic_mem, sizeof(int16_t) * PITCH_MAX);
         harmonic_noise_sub(hf + i, vector + PITCH_MAX, in);
 
         acb_search(p, residual, impulse_resp, in, i);
         gen_acb_excitation(residual, p->prev_excitation,p->pitch_lag[i >> 1],
                            p->subframe[i], p->cur_rate);
         sub_acb_contrib(residual, impulse_resp, in);
 
         fcb_search(p, impulse_resp, in, i);
 
         /* Reconstruct the excitation */
         gen_acb_excitation(impulse_resp, p->prev_excitation, p->pitch_lag[i >> 1],
                            p->subframe[i], Rate6k3);
 
51740329
         memmove(p->prev_excitation, p->prev_excitation + SUBFRAME_LEN,
ef64c45c
                sizeof(int16_t) * (PITCH_MAX - SUBFRAME_LEN));
         for (j = 0; j < SUBFRAME_LEN; j++)
             in[j] = av_clip_int16((in[j] << 1) + impulse_resp[j]);
         memcpy(p->prev_excitation + PITCH_MAX - SUBFRAME_LEN, in,
                sizeof(int16_t) * SUBFRAME_LEN);
 
         /* Update filter memories */
         synth_percept_filter(qnt_lpc + offset, weighted_lpc + (offset << 1),
                              p->perf_fir_mem, p->perf_iir_mem,
                              in, vector + PITCH_MAX, 0);
         memmove(p->harmonic_mem, p->harmonic_mem + SUBFRAME_LEN,
                 sizeof(int16_t) * (PITCH_MAX - SUBFRAME_LEN));
         memcpy(p->harmonic_mem + PITCH_MAX - SUBFRAME_LEN, vector + PITCH_MAX,
                sizeof(int16_t) * SUBFRAME_LEN);
 
         in += SUBFRAME_LEN;
         offset += LPC_ORDER;
     }
 
     return pack_bitstream(p, buf, buf_size);
 }
 
 AVCodec ff_g723_1_encoder = {
     .name           = "g723_1",
     .type           = AVMEDIA_TYPE_AUDIO,
     .id             = CODEC_ID_G723_1,
     .priv_data_size = sizeof(G723_1_Context),
     .init           = g723_1_encode_init,
     .encode         = g723_1_encode_frame,
     .long_name      = NULL_IF_CONFIG_SMALL("G.723.1"),
     .sample_fmts    = (const enum SampleFormat[]){SAMPLE_FMT_S16,
                                                   SAMPLE_FMT_NONE},
 };
 #endif