libavcodec/jrevdct.c
de6d9b64
 /*
  * This file is part of the Independent JPEG Group's software.
73c42241
  *
  * The authors make NO WARRANTY or representation, either express or implied,
  * with respect to this software, its quality, accuracy, merchantability, or
  * fitness for a particular purpose.  This software is provided "AS IS", and
  * you, its user, assume the entire risk as to its quality and accuracy.
  *
  * This software is copyright (C) 1991, 1992, Thomas G. Lane.
  * All Rights Reserved except as specified below.
  *
  * Permission is hereby granted to use, copy, modify, and distribute this
  * software (or portions thereof) for any purpose, without fee, subject to
  * these conditions:
  * (1) If any part of the source code for this software is distributed, then
  * this README file must be included, with this copyright and no-warranty
  * notice unaltered; and any additions, deletions, or changes to the original
  * files must be clearly indicated in accompanying documentation.
  * (2) If only executable code is distributed, then the accompanying
  * documentation must state that "this software is based in part on the work
  * of the Independent JPEG Group".
  * (3) Permission for use of this software is granted only if the user accepts
  * full responsibility for any undesirable consequences; the authors accept
  * NO LIABILITY for damages of any kind.
  *
  * These conditions apply to any software derived from or based on the IJG
  * code, not just to the unmodified library.  If you use our work, you ought
  * to acknowledge us.
  *
  * Permission is NOT granted for the use of any IJG author's name or company
  * name in advertising or publicity relating to this software or products
  * derived from it.  This software may be referred to only as "the Independent
  * JPEG Group's software".
  *
  * We specifically permit and encourage the use of this software as the basis
  * of commercial products, provided that all warranty or liability claims are
  * assumed by the product vendor.
de6d9b64
  *
  * This file contains the basic inverse-DCT transformation subroutine.
  *
  * This implementation is based on an algorithm described in
  *   C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
  *   Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
  *   Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
  * The primary algorithm described there uses 11 multiplies and 29 adds.
  * We use their alternate method with 12 multiplies and 32 adds.
  * The advantage of this method is that no data path contains more than one
  * multiplication; this allows a very simple and accurate implementation in
  * scaled fixed-point arithmetic, with a minimal number of shifts.
115329f1
  *
de6d9b64
  * I've made lots of modifications to attempt to take advantage of the
  * sparse nature of the DCT matrices we're getting.  Although the logic
  * is cumbersome, it's straightforward and the resulting code is much
  * faster.
  *
  * A better way to do this would be to pass in the DCT block as a sparse
  * matrix, perhaps with the difference cases encoded.
  */
115329f1
 
983e3246
 /**
ba87f080
  * @file
983e3246
  * Independent JPEG Group's LLM idct.
  */
115329f1
 
245976da
 #include "libavutil/common.h"
de6d9b64
 #include "dsputil.h"
 
 #define EIGHT_BIT_SAMPLES
 
 #define DCTSIZE 8
 #define DCTSIZE2 64
 
 #define GLOBAL
 
 #define RIGHT_SHIFT(x, n) ((x) >> (n))
 
 typedef DCTELEM DCTBLOCK[DCTSIZE2];
 
 #define CONST_BITS 13
 
 /*
  * This routine is specialized to the case DCTSIZE = 8.
  */
 
 #if DCTSIZE != 8
   Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
 #endif
 
 
 /*
  * A 2-D IDCT can be done by 1-D IDCT on each row followed by 1-D IDCT
  * on each column.  Direct algorithms are also available, but they are
  * much more complex and seem not to be any faster when reduced to code.
  *
  * The poop on this scaling stuff is as follows:
  *
  * Each 1-D IDCT step produces outputs which are a factor of sqrt(N)
  * larger than the true IDCT outputs.  The final outputs are therefore
  * a factor of N larger than desired; since N=8 this can be cured by
  * a simple right shift at the end of the algorithm.  The advantage of
  * this arrangement is that we save two multiplications per 1-D IDCT,
  * because the y0 and y4 inputs need not be divided by sqrt(N).
  *
  * We have to do addition and subtraction of the integer inputs, which
  * is no problem, and multiplication by fractional constants, which is
  * a problem to do in integer arithmetic.  We multiply all the constants
  * by CONST_SCALE and convert them to integer constants (thus retaining
  * CONST_BITS bits of precision in the constants).  After doing a
  * multiplication we have to divide the product by CONST_SCALE, with proper
  * rounding, to produce the correct output.  This division can be done
  * cheaply as a right shift of CONST_BITS bits.  We postpone shifting
  * as long as possible so that partial sums can be added together with
  * full fractional precision.
  *
  * The outputs of the first pass are scaled up by PASS1_BITS bits so that
  * they are represented to better-than-integral precision.  These outputs
  * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
  * with the recommended scaling.  (To scale up 12-bit sample data further, an
  * intermediate int32 array would be needed.)
  *
  * To avoid overflow of the 32-bit intermediate results in pass 2, we must
  * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26.  Error analysis
  * shows that the values given below are the most effective.
  */
 
 #ifdef EIGHT_BIT_SAMPLES
 #define PASS1_BITS  2
 #else
bb270c08
 #define PASS1_BITS  1   /* lose a little precision to avoid overflow */
de6d9b64
 #endif
 
bb270c08
 #define ONE         ((int32_t) 1)
de6d9b64
 
 #define CONST_SCALE (ONE << CONST_BITS)
 
 /* Convert a positive real constant to an integer scaled by CONST_SCALE.
  * IMPORTANT: if your compiler doesn't do this arithmetic at compile time,
  * you will pay a significant penalty in run time.  In that case, figure
  * the correct integer constant values and insert them by hand.
  */
 
 /* Actually FIX is no longer used, we precomputed them all */
bb270c08
 #define FIX(x)  ((int32_t) ((x) * CONST_SCALE + 0.5))
de6d9b64
 
0c1a9eda
 /* Descale and correctly round an int32_t value that's scaled by N bits.
de6d9b64
  * We assume RIGHT_SHIFT rounds towards minus infinity, so adding
  * the fudge factor is correct for either sign of X.
  */
 
 #define DESCALE(x,n)  RIGHT_SHIFT((x) + (ONE << ((n)-1)), n)
 
0c1a9eda
 /* Multiply an int32_t variable by an int32_t constant to yield an int32_t result.
de6d9b64
  * For 8-bit samples with the recommended scaling, all the variable
  * and constant values involved are no more than 16 bits wide, so a
  * 16x16->32 bit multiply can be used instead of a full 32x32 multiply;
  * this provides a useful speedup on many machines.
  * There is no way to specify a 16x16->32 multiply in portable C, but
  * some C compilers will do the right thing if you provide the correct
  * combination of casts.
  * NB: for 12-bit samples, a full 32-bit multiplication will be needed.
  */
 
 #ifdef EIGHT_BIT_SAMPLES
bb270c08
 #ifdef SHORTxSHORT_32           /* may work if 'int' is 32 bits */
0c1a9eda
 #define MULTIPLY(var,const)  (((int16_t) (var)) * ((int16_t) (const)))
de6d9b64
 #endif
bb270c08
 #ifdef SHORTxLCONST_32          /* known to work with Microsoft C 6.0 */
0c1a9eda
 #define MULTIPLY(var,const)  (((int16_t) (var)) * ((int32_t) (const)))
de6d9b64
 #endif
 #endif
 
bb270c08
 #ifndef MULTIPLY                /* default definition */
de6d9b64
 #define MULTIPLY(var,const)  ((var) * (const))
 #endif
 
 
115329f1
 /*
de6d9b64
   Unlike our decoder where we approximate the FIXes, we need to use exact
115329f1
 ones here or successive P-frames will drift too much with Reference frame coding
de6d9b64
 */
 #define FIX_0_211164243 1730
 #define FIX_0_275899380 2260
 #define FIX_0_298631336 2446
 #define FIX_0_390180644 3196
 #define FIX_0_509795579 4176
 #define FIX_0_541196100 4433
 #define FIX_0_601344887 4926
 #define FIX_0_765366865 6270
 #define FIX_0_785694958 6436
 #define FIX_0_899976223 7373
 #define FIX_1_061594337 8697
 #define FIX_1_111140466 9102
 #define FIX_1_175875602 9633
 #define FIX_1_306562965 10703
 #define FIX_1_387039845 11363
 #define FIX_1_451774981 11893
 #define FIX_1_501321110 12299
 #define FIX_1_662939225 13623
 #define FIX_1_847759065 15137
 #define FIX_1_961570560 16069
 #define FIX_2_053119869 16819
 #define FIX_2_172734803 17799
 #define FIX_2_562915447 20995
 #define FIX_3_072711026 25172
 
 /*
  * Perform the inverse DCT on one block of coefficients.
  */
 
 void j_rev_dct(DCTBLOCK data)
 {
0c1a9eda
   int32_t tmp0, tmp1, tmp2, tmp3;
   int32_t tmp10, tmp11, tmp12, tmp13;
   int32_t z1, z2, z3, z4, z5;
   int32_t d0, d1, d2, d3, d4, d5, d6, d7;
de6d9b64
   register DCTELEM *dataptr;
   int rowctr;
115329f1
 
de6d9b64
   /* Pass 1: process rows. */
   /* Note results are scaled up by sqrt(8) compared to a true IDCT; */
   /* furthermore, we scale the results by 2**PASS1_BITS. */
 
   dataptr = data;
 
   for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) {
     /* Due to quantization, we will usually find that many of the input
      * coefficients are zero, especially the AC terms.  We can exploit this
      * by short-circuiting the IDCT calculation for any row in which all
      * the AC terms are zero.  In that case each output is equal to the
      * DC coefficient (with scale factor as needed).
      * With typical images and quantization tables, half or more of the
      * row DCT calculations can be simplified this way.
      */
 
     register int *idataptr = (int*)dataptr;
 
13b54752
     /* WARNING: we do the same permutation as MMX idct to simplify the
        video core */
de6d9b64
     d0 = dataptr[0];
13b54752
     d2 = dataptr[1];
     d4 = dataptr[2];
     d6 = dataptr[3];
     d1 = dataptr[4];
     d3 = dataptr[5];
     d5 = dataptr[6];
de6d9b64
     d7 = dataptr[7];
 
13b54752
     if ((d1 | d2 | d3 | d4 | d5 | d6 | d7) == 0) {
de6d9b64
       /* AC terms all zero */
       if (d0) {
bb270c08
           /* Compute a 32 bit value to assign. */
           DCTELEM dcval = (DCTELEM) (d0 << PASS1_BITS);
           register int v = (dcval & 0xffff) | ((dcval << 16) & 0xffff0000);
 
           idataptr[0] = v;
           idataptr[1] = v;
           idataptr[2] = v;
           idataptr[3] = v;
de6d9b64
       }
115329f1
 
bb270c08
       dataptr += DCTSIZE;       /* advance pointer to next row */
de6d9b64
       continue;
     }
 
     /* Even part: reverse the even part of the forward DCT. */
     /* The rotator is sqrt(2)*c(-6). */
 {
     if (d6) {
bb270c08
             if (d2) {
                     /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */
                     z1 = MULTIPLY(d2 + d6, FIX_0_541196100);
                     tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065);
                     tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865);
 
                     tmp0 = (d0 + d4) << CONST_BITS;
                     tmp1 = (d0 - d4) << CONST_BITS;
 
                     tmp10 = tmp0 + tmp3;
                     tmp13 = tmp0 - tmp3;
                     tmp11 = tmp1 + tmp2;
                     tmp12 = tmp1 - tmp2;
             } else {
                     /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */
                     tmp2 = MULTIPLY(-d6, FIX_1_306562965);
                     tmp3 = MULTIPLY(d6, FIX_0_541196100);
 
                     tmp0 = (d0 + d4) << CONST_BITS;
                     tmp1 = (d0 - d4) << CONST_BITS;
 
                     tmp10 = tmp0 + tmp3;
                     tmp13 = tmp0 - tmp3;
                     tmp11 = tmp1 + tmp2;
                     tmp12 = tmp1 - tmp2;
             }
de6d9b64
     } else {
bb270c08
             if (d2) {
                     /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */
                     tmp2 = MULTIPLY(d2, FIX_0_541196100);
                     tmp3 = MULTIPLY(d2, FIX_1_306562965);
 
                     tmp0 = (d0 + d4) << CONST_BITS;
                     tmp1 = (d0 - d4) << CONST_BITS;
 
                     tmp10 = tmp0 + tmp3;
                     tmp13 = tmp0 - tmp3;
                     tmp11 = tmp1 + tmp2;
                     tmp12 = tmp1 - tmp2;
             } else {
                     /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */
                     tmp10 = tmp13 = (d0 + d4) << CONST_BITS;
                     tmp11 = tmp12 = (d0 - d4) << CONST_BITS;
             }
de6d9b64
       }
 
     /* Odd part per figure 8; the matrix is unitary and hence its
      * transpose is its inverse.  i0..i3 are y7,y5,y3,y1 respectively.
      */
 
     if (d7) {
bb270c08
         if (d5) {
             if (d3) {
                 if (d1) {
                     /* d1 != 0, d3 != 0, d5 != 0, d7 != 0 */
                     z1 = d7 + d1;
                     z2 = d5 + d3;
                     z3 = d7 + d3;
                     z4 = d5 + d1;
                     z5 = MULTIPLY(z3 + z4, FIX_1_175875602);
 
                     tmp0 = MULTIPLY(d7, FIX_0_298631336);
                     tmp1 = MULTIPLY(d5, FIX_2_053119869);
                     tmp2 = MULTIPLY(d3, FIX_3_072711026);
                     tmp3 = MULTIPLY(d1, FIX_1_501321110);
                     z1 = MULTIPLY(-z1, FIX_0_899976223);
                     z2 = MULTIPLY(-z2, FIX_2_562915447);
                     z3 = MULTIPLY(-z3, FIX_1_961570560);
                     z4 = MULTIPLY(-z4, FIX_0_390180644);
 
                     z3 += z5;
                     z4 += z5;
 
                     tmp0 += z1 + z3;
                     tmp1 += z2 + z4;
                     tmp2 += z2 + z3;
                     tmp3 += z1 + z4;
                 } else {
                     /* d1 == 0, d3 != 0, d5 != 0, d7 != 0 */
                     z2 = d5 + d3;
                     z3 = d7 + d3;
                     z5 = MULTIPLY(z3 + d5, FIX_1_175875602);
 
                     tmp0 = MULTIPLY(d7, FIX_0_298631336);
                     tmp1 = MULTIPLY(d5, FIX_2_053119869);
                     tmp2 = MULTIPLY(d3, FIX_3_072711026);
                     z1 = MULTIPLY(-d7, FIX_0_899976223);
                     z2 = MULTIPLY(-z2, FIX_2_562915447);
                     z3 = MULTIPLY(-z3, FIX_1_961570560);
                     z4 = MULTIPLY(-d5, FIX_0_390180644);
 
                     z3 += z5;
                     z4 += z5;
 
                     tmp0 += z1 + z3;
                     tmp1 += z2 + z4;
                     tmp2 += z2 + z3;
                     tmp3 = z1 + z4;
                 }
             } else {
                 if (d1) {
                     /* d1 != 0, d3 == 0, d5 != 0, d7 != 0 */
                     z1 = d7 + d1;
                     z4 = d5 + d1;
                     z5 = MULTIPLY(d7 + z4, FIX_1_175875602);
 
                     tmp0 = MULTIPLY(d7, FIX_0_298631336);
                     tmp1 = MULTIPLY(d5, FIX_2_053119869);
                     tmp3 = MULTIPLY(d1, FIX_1_501321110);
                     z1 = MULTIPLY(-z1, FIX_0_899976223);
                     z2 = MULTIPLY(-d5, FIX_2_562915447);
                     z3 = MULTIPLY(-d7, FIX_1_961570560);
                     z4 = MULTIPLY(-z4, FIX_0_390180644);
 
                     z3 += z5;
                     z4 += z5;
 
                     tmp0 += z1 + z3;
                     tmp1 += z2 + z4;
                     tmp2 = z2 + z3;
                     tmp3 += z1 + z4;
                 } else {
                     /* d1 == 0, d3 == 0, d5 != 0, d7 != 0 */
                     tmp0 = MULTIPLY(-d7, FIX_0_601344887);
                     z1 = MULTIPLY(-d7, FIX_0_899976223);
                     z3 = MULTIPLY(-d7, FIX_1_961570560);
                     tmp1 = MULTIPLY(-d5, FIX_0_509795579);
                     z2 = MULTIPLY(-d5, FIX_2_562915447);
                     z4 = MULTIPLY(-d5, FIX_0_390180644);
                     z5 = MULTIPLY(d5 + d7, FIX_1_175875602);
 
                     z3 += z5;
                     z4 += z5;
 
                     tmp0 += z3;
                     tmp1 += z4;
                     tmp2 = z2 + z3;
                     tmp3 = z1 + z4;
                 }
             }
         } else {
             if (d3) {
                 if (d1) {
                     /* d1 != 0, d3 != 0, d5 == 0, d7 != 0 */
                     z1 = d7 + d1;
                     z3 = d7 + d3;
                     z5 = MULTIPLY(z3 + d1, FIX_1_175875602);
 
                     tmp0 = MULTIPLY(d7, FIX_0_298631336);
                     tmp2 = MULTIPLY(d3, FIX_3_072711026);
                     tmp3 = MULTIPLY(d1, FIX_1_501321110);
                     z1 = MULTIPLY(-z1, FIX_0_899976223);
                     z2 = MULTIPLY(-d3, FIX_2_562915447);
                     z3 = MULTIPLY(-z3, FIX_1_961570560);
                     z4 = MULTIPLY(-d1, FIX_0_390180644);
 
                     z3 += z5;
                     z4 += z5;
 
                     tmp0 += z1 + z3;
                     tmp1 = z2 + z4;
                     tmp2 += z2 + z3;
                     tmp3 += z1 + z4;
                 } else {
                     /* d1 == 0, d3 != 0, d5 == 0, d7 != 0 */
                     z3 = d7 + d3;
 
                     tmp0 = MULTIPLY(-d7, FIX_0_601344887);
                     z1 = MULTIPLY(-d7, FIX_0_899976223);
                     tmp2 = MULTIPLY(d3, FIX_0_509795579);
                     z2 = MULTIPLY(-d3, FIX_2_562915447);
                     z5 = MULTIPLY(z3, FIX_1_175875602);
                     z3 = MULTIPLY(-z3, FIX_0_785694958);
 
                     tmp0 += z3;
                     tmp1 = z2 + z5;
                     tmp2 += z3;
                     tmp3 = z1 + z5;
                 }
             } else {
                 if (d1) {
                     /* d1 != 0, d3 == 0, d5 == 0, d7 != 0 */
                     z1 = d7 + d1;
                     z5 = MULTIPLY(z1, FIX_1_175875602);
 
                     z1 = MULTIPLY(z1, FIX_0_275899380);
                     z3 = MULTIPLY(-d7, FIX_1_961570560);
                     tmp0 = MULTIPLY(-d7, FIX_1_662939225);
                     z4 = MULTIPLY(-d1, FIX_0_390180644);
                     tmp3 = MULTIPLY(d1, FIX_1_111140466);
 
                     tmp0 += z1;
                     tmp1 = z4 + z5;
                     tmp2 = z3 + z5;
                     tmp3 += z1;
                 } else {
                     /* d1 == 0, d3 == 0, d5 == 0, d7 != 0 */
                     tmp0 = MULTIPLY(-d7, FIX_1_387039845);
                     tmp1 = MULTIPLY(d7, FIX_1_175875602);
                     tmp2 = MULTIPLY(-d7, FIX_0_785694958);
                     tmp3 = MULTIPLY(d7, FIX_0_275899380);
                 }
             }
         }
de6d9b64
     } else {
bb270c08
         if (d5) {
             if (d3) {
                 if (d1) {
                     /* d1 != 0, d3 != 0, d5 != 0, d7 == 0 */
                     z2 = d5 + d3;
                     z4 = d5 + d1;
                     z5 = MULTIPLY(d3 + z4, FIX_1_175875602);
 
                     tmp1 = MULTIPLY(d5, FIX_2_053119869);
                     tmp2 = MULTIPLY(d3, FIX_3_072711026);
                     tmp3 = MULTIPLY(d1, FIX_1_501321110);
                     z1 = MULTIPLY(-d1, FIX_0_899976223);
                     z2 = MULTIPLY(-z2, FIX_2_562915447);
                     z3 = MULTIPLY(-d3, FIX_1_961570560);
                     z4 = MULTIPLY(-z4, FIX_0_390180644);
 
                     z3 += z5;
                     z4 += z5;
 
                     tmp0 = z1 + z3;
                     tmp1 += z2 + z4;
                     tmp2 += z2 + z3;
                     tmp3 += z1 + z4;
                 } else {
                     /* d1 == 0, d3 != 0, d5 != 0, d7 == 0 */
                     z2 = d5 + d3;
 
                     z5 = MULTIPLY(z2, FIX_1_175875602);
                     tmp1 = MULTIPLY(d5, FIX_1_662939225);
                     z4 = MULTIPLY(-d5, FIX_0_390180644);
                     z2 = MULTIPLY(-z2, FIX_1_387039845);
                     tmp2 = MULTIPLY(d3, FIX_1_111140466);
                     z3 = MULTIPLY(-d3, FIX_1_961570560);
 
                     tmp0 = z3 + z5;
                     tmp1 += z2;
                     tmp2 += z2;
                     tmp3 = z4 + z5;
                 }
             } else {
                 if (d1) {
                     /* d1 != 0, d3 == 0, d5 != 0, d7 == 0 */
                     z4 = d5 + d1;
 
                     z5 = MULTIPLY(z4, FIX_1_175875602);
                     z1 = MULTIPLY(-d1, FIX_0_899976223);
                     tmp3 = MULTIPLY(d1, FIX_0_601344887);
                     tmp1 = MULTIPLY(-d5, FIX_0_509795579);
                     z2 = MULTIPLY(-d5, FIX_2_562915447);
                     z4 = MULTIPLY(z4, FIX_0_785694958);
 
                     tmp0 = z1 + z5;
                     tmp1 += z4;
                     tmp2 = z2 + z5;
                     tmp3 += z4;
                 } else {
                     /* d1 == 0, d3 == 0, d5 != 0, d7 == 0 */
                     tmp0 = MULTIPLY(d5, FIX_1_175875602);
                     tmp1 = MULTIPLY(d5, FIX_0_275899380);
                     tmp2 = MULTIPLY(-d5, FIX_1_387039845);
                     tmp3 = MULTIPLY(d5, FIX_0_785694958);
                 }
             }
         } else {
             if (d3) {
                 if (d1) {
                     /* d1 != 0, d3 != 0, d5 == 0, d7 == 0 */
                     z5 = d1 + d3;
                     tmp3 = MULTIPLY(d1, FIX_0_211164243);
                     tmp2 = MULTIPLY(-d3, FIX_1_451774981);
                     z1 = MULTIPLY(d1, FIX_1_061594337);
                     z2 = MULTIPLY(-d3, FIX_2_172734803);
                     z4 = MULTIPLY(z5, FIX_0_785694958);
                     z5 = MULTIPLY(z5, FIX_1_175875602);
 
                     tmp0 = z1 - z4;
                     tmp1 = z2 + z4;
                     tmp2 += z5;
                     tmp3 += z5;
                 } else {
                     /* d1 == 0, d3 != 0, d5 == 0, d7 == 0 */
                     tmp0 = MULTIPLY(-d3, FIX_0_785694958);
                     tmp1 = MULTIPLY(-d3, FIX_1_387039845);
                     tmp2 = MULTIPLY(-d3, FIX_0_275899380);
                     tmp3 = MULTIPLY(d3, FIX_1_175875602);
                 }
             } else {
                 if (d1) {
                     /* d1 != 0, d3 == 0, d5 == 0, d7 == 0 */
                     tmp0 = MULTIPLY(d1, FIX_0_275899380);
                     tmp1 = MULTIPLY(d1, FIX_0_785694958);
                     tmp2 = MULTIPLY(d1, FIX_1_175875602);
                     tmp3 = MULTIPLY(d1, FIX_1_387039845);
                 } else {
                     /* d1 == 0, d3 == 0, d5 == 0, d7 == 0 */
                     tmp0 = tmp1 = tmp2 = tmp3 = 0;
                 }
             }
         }
de6d9b64
     }
 }
     /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
 
     dataptr[0] = (DCTELEM) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS);
     dataptr[7] = (DCTELEM) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS);
     dataptr[1] = (DCTELEM) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS);
     dataptr[6] = (DCTELEM) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS);
     dataptr[2] = (DCTELEM) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS);
     dataptr[5] = (DCTELEM) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS);
     dataptr[3] = (DCTELEM) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS);
     dataptr[4] = (DCTELEM) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS);
 
bb270c08
     dataptr += DCTSIZE;         /* advance pointer to next row */
de6d9b64
   }
 
   /* Pass 2: process columns. */
   /* Note that we must descale the results by a factor of 8 == 2**3, */
   /* and also undo the PASS1_BITS scaling. */
 
   dataptr = data;
   for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) {
     /* Columns of zeroes can be exploited in the same way as we did with rows.
      * However, the row calculation has created many nonzero AC terms, so the
      * simplification applies less often (typically 5% to 10% of the time).
      * On machines with very fast multiplication, it's possible that the
      * test takes more time than it's worth.  In that case this section
      * may be commented out.
      */
 
     d0 = dataptr[DCTSIZE*0];
     d1 = dataptr[DCTSIZE*1];
     d2 = dataptr[DCTSIZE*2];
     d3 = dataptr[DCTSIZE*3];
     d4 = dataptr[DCTSIZE*4];
     d5 = dataptr[DCTSIZE*5];
     d6 = dataptr[DCTSIZE*6];
     d7 = dataptr[DCTSIZE*7];
 
     /* Even part: reverse the even part of the forward DCT. */
     /* The rotator is sqrt(2)*c(-6). */
     if (d6) {
bb270c08
             if (d2) {
                     /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */
                     z1 = MULTIPLY(d2 + d6, FIX_0_541196100);
                     tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065);
                     tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865);
 
                     tmp0 = (d0 + d4) << CONST_BITS;
                     tmp1 = (d0 - d4) << CONST_BITS;
 
                     tmp10 = tmp0 + tmp3;
                     tmp13 = tmp0 - tmp3;
                     tmp11 = tmp1 + tmp2;
                     tmp12 = tmp1 - tmp2;
             } else {
                     /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */
                     tmp2 = MULTIPLY(-d6, FIX_1_306562965);
                     tmp3 = MULTIPLY(d6, FIX_0_541196100);
 
                     tmp0 = (d0 + d4) << CONST_BITS;
                     tmp1 = (d0 - d4) << CONST_BITS;
 
                     tmp10 = tmp0 + tmp3;
                     tmp13 = tmp0 - tmp3;
                     tmp11 = tmp1 + tmp2;
                     tmp12 = tmp1 - tmp2;
             }
de6d9b64
     } else {
bb270c08
             if (d2) {
                     /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */
                     tmp2 = MULTIPLY(d2, FIX_0_541196100);
                     tmp3 = MULTIPLY(d2, FIX_1_306562965);
 
                     tmp0 = (d0 + d4) << CONST_BITS;
                     tmp1 = (d0 - d4) << CONST_BITS;
 
                     tmp10 = tmp0 + tmp3;
                     tmp13 = tmp0 - tmp3;
                     tmp11 = tmp1 + tmp2;
                     tmp12 = tmp1 - tmp2;
             } else {
                     /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */
                     tmp10 = tmp13 = (d0 + d4) << CONST_BITS;
                     tmp11 = tmp12 = (d0 - d4) << CONST_BITS;
             }
de6d9b64
     }
 
     /* Odd part per figure 8; the matrix is unitary and hence its
      * transpose is its inverse.  i0..i3 are y7,y5,y3,y1 respectively.
      */
     if (d7) {
bb270c08
         if (d5) {
             if (d3) {
                 if (d1) {
                     /* d1 != 0, d3 != 0, d5 != 0, d7 != 0 */
                     z1 = d7 + d1;
                     z2 = d5 + d3;
                     z3 = d7 + d3;
                     z4 = d5 + d1;
                     z5 = MULTIPLY(z3 + z4, FIX_1_175875602);
 
                     tmp0 = MULTIPLY(d7, FIX_0_298631336);
                     tmp1 = MULTIPLY(d5, FIX_2_053119869);
                     tmp2 = MULTIPLY(d3, FIX_3_072711026);
                     tmp3 = MULTIPLY(d1, FIX_1_501321110);
                     z1 = MULTIPLY(-z1, FIX_0_899976223);
                     z2 = MULTIPLY(-z2, FIX_2_562915447);
                     z3 = MULTIPLY(-z3, FIX_1_961570560);
                     z4 = MULTIPLY(-z4, FIX_0_390180644);
 
                     z3 += z5;
                     z4 += z5;
 
                     tmp0 += z1 + z3;
                     tmp1 += z2 + z4;
                     tmp2 += z2 + z3;
                     tmp3 += z1 + z4;
                 } else {
                     /* d1 == 0, d3 != 0, d5 != 0, d7 != 0 */
                     z2 = d5 + d3;
                     z3 = d7 + d3;
                     z5 = MULTIPLY(z3 + d5, FIX_1_175875602);
 
                     tmp0 = MULTIPLY(d7, FIX_0_298631336);
                     tmp1 = MULTIPLY(d5, FIX_2_053119869);
                     tmp2 = MULTIPLY(d3, FIX_3_072711026);
                     z1 = MULTIPLY(-d7, FIX_0_899976223);
                     z2 = MULTIPLY(-z2, FIX_2_562915447);
                     z3 = MULTIPLY(-z3, FIX_1_961570560);
                     z4 = MULTIPLY(-d5, FIX_0_390180644);
 
                     z3 += z5;
                     z4 += z5;
 
                     tmp0 += z1 + z3;
                     tmp1 += z2 + z4;
                     tmp2 += z2 + z3;
                     tmp3 = z1 + z4;
                 }
             } else {
                 if (d1) {
                     /* d1 != 0, d3 == 0, d5 != 0, d7 != 0 */
                     z1 = d7 + d1;
                     z3 = d7;
                     z4 = d5 + d1;
                     z5 = MULTIPLY(z3 + z4, FIX_1_175875602);
 
                     tmp0 = MULTIPLY(d7, FIX_0_298631336);
                     tmp1 = MULTIPLY(d5, FIX_2_053119869);
                     tmp3 = MULTIPLY(d1, FIX_1_501321110);
                     z1 = MULTIPLY(-z1, FIX_0_899976223);
                     z2 = MULTIPLY(-d5, FIX_2_562915447);
                     z3 = MULTIPLY(-d7, FIX_1_961570560);
                     z4 = MULTIPLY(-z4, FIX_0_390180644);
 
                     z3 += z5;
                     z4 += z5;
 
                     tmp0 += z1 + z3;
                     tmp1 += z2 + z4;
                     tmp2 = z2 + z3;
                     tmp3 += z1 + z4;
                 } else {
                     /* d1 == 0, d3 == 0, d5 != 0, d7 != 0 */
                     tmp0 = MULTIPLY(-d7, FIX_0_601344887);
                     z1 = MULTIPLY(-d7, FIX_0_899976223);
                     z3 = MULTIPLY(-d7, FIX_1_961570560);
                     tmp1 = MULTIPLY(-d5, FIX_0_509795579);
                     z2 = MULTIPLY(-d5, FIX_2_562915447);
                     z4 = MULTIPLY(-d5, FIX_0_390180644);
                     z5 = MULTIPLY(d5 + d7, FIX_1_175875602);
 
                     z3 += z5;
                     z4 += z5;
 
                     tmp0 += z3;
                     tmp1 += z4;
                     tmp2 = z2 + z3;
                     tmp3 = z1 + z4;
                 }
             }
         } else {
             if (d3) {
                 if (d1) {
                     /* d1 != 0, d3 != 0, d5 == 0, d7 != 0 */
                     z1 = d7 + d1;
                     z3 = d7 + d3;
                     z5 = MULTIPLY(z3 + d1, FIX_1_175875602);
 
                     tmp0 = MULTIPLY(d7, FIX_0_298631336);
                     tmp2 = MULTIPLY(d3, FIX_3_072711026);
                     tmp3 = MULTIPLY(d1, FIX_1_501321110);
                     z1 = MULTIPLY(-z1, FIX_0_899976223);
                     z2 = MULTIPLY(-d3, FIX_2_562915447);
                     z3 = MULTIPLY(-z3, FIX_1_961570560);
                     z4 = MULTIPLY(-d1, FIX_0_390180644);
 
                     z3 += z5;
                     z4 += z5;
 
                     tmp0 += z1 + z3;
                     tmp1 = z2 + z4;
                     tmp2 += z2 + z3;
                     tmp3 += z1 + z4;
                 } else {
                     /* d1 == 0, d3 != 0, d5 == 0, d7 != 0 */
                     z3 = d7 + d3;
 
                     tmp0 = MULTIPLY(-d7, FIX_0_601344887);
                     z1 = MULTIPLY(-d7, FIX_0_899976223);
                     tmp2 = MULTIPLY(d3, FIX_0_509795579);
                     z2 = MULTIPLY(-d3, FIX_2_562915447);
                     z5 = MULTIPLY(z3, FIX_1_175875602);
                     z3 = MULTIPLY(-z3, FIX_0_785694958);
 
                     tmp0 += z3;
                     tmp1 = z2 + z5;
                     tmp2 += z3;
                     tmp3 = z1 + z5;
                 }
             } else {
                 if (d1) {
                     /* d1 != 0, d3 == 0, d5 == 0, d7 != 0 */
                     z1 = d7 + d1;
                     z5 = MULTIPLY(z1, FIX_1_175875602);
 
                     z1 = MULTIPLY(z1, FIX_0_275899380);
                     z3 = MULTIPLY(-d7, FIX_1_961570560);
                     tmp0 = MULTIPLY(-d7, FIX_1_662939225);
                     z4 = MULTIPLY(-d1, FIX_0_390180644);
                     tmp3 = MULTIPLY(d1, FIX_1_111140466);
 
                     tmp0 += z1;
                     tmp1 = z4 + z5;
                     tmp2 = z3 + z5;
                     tmp3 += z1;
                 } else {
                     /* d1 == 0, d3 == 0, d5 == 0, d7 != 0 */
                     tmp0 = MULTIPLY(-d7, FIX_1_387039845);
                     tmp1 = MULTIPLY(d7, FIX_1_175875602);
                     tmp2 = MULTIPLY(-d7, FIX_0_785694958);
                     tmp3 = MULTIPLY(d7, FIX_0_275899380);
                 }
             }
         }
de6d9b64
     } else {
bb270c08
         if (d5) {
             if (d3) {
                 if (d1) {
                     /* d1 != 0, d3 != 0, d5 != 0, d7 == 0 */
                     z2 = d5 + d3;
                     z4 = d5 + d1;
                     z5 = MULTIPLY(d3 + z4, FIX_1_175875602);
 
                     tmp1 = MULTIPLY(d5, FIX_2_053119869);
                     tmp2 = MULTIPLY(d3, FIX_3_072711026);
                     tmp3 = MULTIPLY(d1, FIX_1_501321110);
                     z1 = MULTIPLY(-d1, FIX_0_899976223);
                     z2 = MULTIPLY(-z2, FIX_2_562915447);
                     z3 = MULTIPLY(-d3, FIX_1_961570560);
                     z4 = MULTIPLY(-z4, FIX_0_390180644);
 
                     z3 += z5;
                     z4 += z5;
 
                     tmp0 = z1 + z3;
                     tmp1 += z2 + z4;
                     tmp2 += z2 + z3;
                     tmp3 += z1 + z4;
                 } else {
                     /* d1 == 0, d3 != 0, d5 != 0, d7 == 0 */
                     z2 = d5 + d3;
 
                     z5 = MULTIPLY(z2, FIX_1_175875602);
                     tmp1 = MULTIPLY(d5, FIX_1_662939225);
                     z4 = MULTIPLY(-d5, FIX_0_390180644);
                     z2 = MULTIPLY(-z2, FIX_1_387039845);
                     tmp2 = MULTIPLY(d3, FIX_1_111140466);
                     z3 = MULTIPLY(-d3, FIX_1_961570560);
 
                     tmp0 = z3 + z5;
                     tmp1 += z2;
                     tmp2 += z2;
                     tmp3 = z4 + z5;
                 }
             } else {
                 if (d1) {
                     /* d1 != 0, d3 == 0, d5 != 0, d7 == 0 */
                     z4 = d5 + d1;
 
                     z5 = MULTIPLY(z4, FIX_1_175875602);
                     z1 = MULTIPLY(-d1, FIX_0_899976223);
                     tmp3 = MULTIPLY(d1, FIX_0_601344887);
                     tmp1 = MULTIPLY(-d5, FIX_0_509795579);
                     z2 = MULTIPLY(-d5, FIX_2_562915447);
                     z4 = MULTIPLY(z4, FIX_0_785694958);
 
                     tmp0 = z1 + z5;
                     tmp1 += z4;
                     tmp2 = z2 + z5;
                     tmp3 += z4;
                 } else {
                     /* d1 == 0, d3 == 0, d5 != 0, d7 == 0 */
                     tmp0 = MULTIPLY(d5, FIX_1_175875602);
                     tmp1 = MULTIPLY(d5, FIX_0_275899380);
                     tmp2 = MULTIPLY(-d5, FIX_1_387039845);
                     tmp3 = MULTIPLY(d5, FIX_0_785694958);
                 }
             }
         } else {
             if (d3) {
                 if (d1) {
                     /* d1 != 0, d3 != 0, d5 == 0, d7 == 0 */
                     z5 = d1 + d3;
                     tmp3 = MULTIPLY(d1, FIX_0_211164243);
                     tmp2 = MULTIPLY(-d3, FIX_1_451774981);
                     z1 = MULTIPLY(d1, FIX_1_061594337);
                     z2 = MULTIPLY(-d3, FIX_2_172734803);
                     z4 = MULTIPLY(z5, FIX_0_785694958);
                     z5 = MULTIPLY(z5, FIX_1_175875602);
 
                     tmp0 = z1 - z4;
                     tmp1 = z2 + z4;
                     tmp2 += z5;
                     tmp3 += z5;
                 } else {
                     /* d1 == 0, d3 != 0, d5 == 0, d7 == 0 */
                     tmp0 = MULTIPLY(-d3, FIX_0_785694958);
                     tmp1 = MULTIPLY(-d3, FIX_1_387039845);
                     tmp2 = MULTIPLY(-d3, FIX_0_275899380);
                     tmp3 = MULTIPLY(d3, FIX_1_175875602);
                 }
             } else {
                 if (d1) {
                     /* d1 != 0, d3 == 0, d5 == 0, d7 == 0 */
                     tmp0 = MULTIPLY(d1, FIX_0_275899380);
                     tmp1 = MULTIPLY(d1, FIX_0_785694958);
                     tmp2 = MULTIPLY(d1, FIX_1_175875602);
                     tmp3 = MULTIPLY(d1, FIX_1_387039845);
                 } else {
                     /* d1 == 0, d3 == 0, d5 == 0, d7 == 0 */
                     tmp0 = tmp1 = tmp2 = tmp3 = 0;
                 }
             }
         }
de6d9b64
     }
 
     /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
 
     dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp3,
bb270c08
                                            CONST_BITS+PASS1_BITS+3);
de6d9b64
     dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp10 - tmp3,
bb270c08
                                            CONST_BITS+PASS1_BITS+3);
de6d9b64
     dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp11 + tmp2,
bb270c08
                                            CONST_BITS+PASS1_BITS+3);
de6d9b64
     dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(tmp11 - tmp2,
bb270c08
                                            CONST_BITS+PASS1_BITS+3);
de6d9b64
     dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(tmp12 + tmp1,
bb270c08
                                            CONST_BITS+PASS1_BITS+3);
de6d9b64
     dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12 - tmp1,
bb270c08
                                            CONST_BITS+PASS1_BITS+3);
de6d9b64
     dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp13 + tmp0,
bb270c08
                                            CONST_BITS+PASS1_BITS+3);
de6d9b64
     dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp13 - tmp0,
bb270c08
                                            CONST_BITS+PASS1_BITS+3);
115329f1
 
bb270c08
     dataptr++;                  /* advance pointer to next column */
de6d9b64
   }
 }
 
178fcca8
 #undef DCTSIZE
 #define DCTSIZE 4
 #define DCTSTRIDE 8
 
 void j_rev_dct4(DCTBLOCK data)
 {
   int32_t tmp0, tmp1, tmp2, tmp3;
   int32_t tmp10, tmp11, tmp12, tmp13;
   int32_t z1;
   int32_t d0, d2, d4, d6;
   register DCTELEM *dataptr;
   int rowctr;
affbf043
 
178fcca8
   /* Pass 1: process rows. */
   /* Note results are scaled up by sqrt(8) compared to a true IDCT; */
   /* furthermore, we scale the results by 2**PASS1_BITS. */
 
affbf043
   data[0] += 4;
115329f1
 
178fcca8
   dataptr = data;
 
   for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) {
     /* Due to quantization, we will usually find that many of the input
      * coefficients are zero, especially the AC terms.  We can exploit this
      * by short-circuiting the IDCT calculation for any row in which all
      * the AC terms are zero.  In that case each output is equal to the
      * DC coefficient (with scale factor as needed).
      * With typical images and quantization tables, half or more of the
      * row DCT calculations can be simplified this way.
      */
 
     register int *idataptr = (int*)dataptr;
 
     d0 = dataptr[0];
     d2 = dataptr[1];
     d4 = dataptr[2];
     d6 = dataptr[3];
 
     if ((d2 | d4 | d6) == 0) {
       /* AC terms all zero */
       if (d0) {
bb270c08
           /* Compute a 32 bit value to assign. */
           DCTELEM dcval = (DCTELEM) (d0 << PASS1_BITS);
           register int v = (dcval & 0xffff) | ((dcval << 16) & 0xffff0000);
115329f1
 
bb270c08
           idataptr[0] = v;
           idataptr[1] = v;
178fcca8
       }
115329f1
 
bb270c08
       dataptr += DCTSTRIDE;     /* advance pointer to next row */
178fcca8
       continue;
     }
115329f1
 
178fcca8
     /* Even part: reverse the even part of the forward DCT. */
     /* The rotator is sqrt(2)*c(-6). */
     if (d6) {
bb270c08
             if (d2) {
                     /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */
                     z1 = MULTIPLY(d2 + d6, FIX_0_541196100);
                     tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065);
                     tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865);
 
                     tmp0 = (d0 + d4) << CONST_BITS;
                     tmp1 = (d0 - d4) << CONST_BITS;
 
                     tmp10 = tmp0 + tmp3;
                     tmp13 = tmp0 - tmp3;
                     tmp11 = tmp1 + tmp2;
                     tmp12 = tmp1 - tmp2;
             } else {
                     /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */
                     tmp2 = MULTIPLY(-d6, FIX_1_306562965);
                     tmp3 = MULTIPLY(d6, FIX_0_541196100);
 
                     tmp0 = (d0 + d4) << CONST_BITS;
                     tmp1 = (d0 - d4) << CONST_BITS;
 
                     tmp10 = tmp0 + tmp3;
                     tmp13 = tmp0 - tmp3;
                     tmp11 = tmp1 + tmp2;
                     tmp12 = tmp1 - tmp2;
             }
178fcca8
     } else {
bb270c08
             if (d2) {
                     /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */
                     tmp2 = MULTIPLY(d2, FIX_0_541196100);
                     tmp3 = MULTIPLY(d2, FIX_1_306562965);
 
                     tmp0 = (d0 + d4) << CONST_BITS;
                     tmp1 = (d0 - d4) << CONST_BITS;
 
                     tmp10 = tmp0 + tmp3;
                     tmp13 = tmp0 - tmp3;
                     tmp11 = tmp1 + tmp2;
                     tmp12 = tmp1 - tmp2;
             } else {
                     /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */
                     tmp10 = tmp13 = (d0 + d4) << CONST_BITS;
                     tmp11 = tmp12 = (d0 - d4) << CONST_BITS;
             }
178fcca8
       }
 
     /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
 
     dataptr[0] = (DCTELEM) DESCALE(tmp10, CONST_BITS-PASS1_BITS);
     dataptr[1] = (DCTELEM) DESCALE(tmp11, CONST_BITS-PASS1_BITS);
     dataptr[2] = (DCTELEM) DESCALE(tmp12, CONST_BITS-PASS1_BITS);
     dataptr[3] = (DCTELEM) DESCALE(tmp13, CONST_BITS-PASS1_BITS);
 
bb270c08
     dataptr += DCTSTRIDE;       /* advance pointer to next row */
178fcca8
   }
 
   /* Pass 2: process columns. */
   /* Note that we must descale the results by a factor of 8 == 2**3, */
   /* and also undo the PASS1_BITS scaling. */
 
   dataptr = data;
   for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) {
     /* Columns of zeroes can be exploited in the same way as we did with rows.
      * However, the row calculation has created many nonzero AC terms, so the
      * simplification applies less often (typically 5% to 10% of the time).
      * On machines with very fast multiplication, it's possible that the
      * test takes more time than it's worth.  In that case this section
      * may be commented out.
      */
 
     d0 = dataptr[DCTSTRIDE*0];
     d2 = dataptr[DCTSTRIDE*1];
     d4 = dataptr[DCTSTRIDE*2];
     d6 = dataptr[DCTSTRIDE*3];
 
     /* Even part: reverse the even part of the forward DCT. */
     /* The rotator is sqrt(2)*c(-6). */
     if (d6) {
bb270c08
             if (d2) {
                     /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */
                     z1 = MULTIPLY(d2 + d6, FIX_0_541196100);
                     tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065);
                     tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865);
 
                     tmp0 = (d0 + d4) << CONST_BITS;
                     tmp1 = (d0 - d4) << CONST_BITS;
 
                     tmp10 = tmp0 + tmp3;
                     tmp13 = tmp0 - tmp3;
                     tmp11 = tmp1 + tmp2;
                     tmp12 = tmp1 - tmp2;
             } else {
                     /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */
                     tmp2 = MULTIPLY(-d6, FIX_1_306562965);
                     tmp3 = MULTIPLY(d6, FIX_0_541196100);
 
                     tmp0 = (d0 + d4) << CONST_BITS;
                     tmp1 = (d0 - d4) << CONST_BITS;
 
                     tmp10 = tmp0 + tmp3;
                     tmp13 = tmp0 - tmp3;
                     tmp11 = tmp1 + tmp2;
                     tmp12 = tmp1 - tmp2;
             }
178fcca8
     } else {
bb270c08
             if (d2) {
                     /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */
                     tmp2 = MULTIPLY(d2, FIX_0_541196100);
                     tmp3 = MULTIPLY(d2, FIX_1_306562965);
 
                     tmp0 = (d0 + d4) << CONST_BITS;
                     tmp1 = (d0 - d4) << CONST_BITS;
 
                     tmp10 = tmp0 + tmp3;
                     tmp13 = tmp0 - tmp3;
                     tmp11 = tmp1 + tmp2;
                     tmp12 = tmp1 - tmp2;
             } else {
                     /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */
                     tmp10 = tmp13 = (d0 + d4) << CONST_BITS;
                     tmp11 = tmp12 = (d0 - d4) << CONST_BITS;
             }
178fcca8
     }
 
     /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
 
affbf043
     dataptr[DCTSTRIDE*0] = tmp10 >> (CONST_BITS+PASS1_BITS+3);
     dataptr[DCTSTRIDE*1] = tmp11 >> (CONST_BITS+PASS1_BITS+3);
     dataptr[DCTSTRIDE*2] = tmp12 >> (CONST_BITS+PASS1_BITS+3);
     dataptr[DCTSTRIDE*3] = tmp13 >> (CONST_BITS+PASS1_BITS+3);
115329f1
 
bb270c08
     dataptr++;                  /* advance pointer to next column */
178fcca8
   }
 }
 
9ca358b9
 void j_rev_dct2(DCTBLOCK data){
   int d00, d01, d10, d11;
 
   data[0] += 4;
   d00 = data[0+0*DCTSTRIDE] + data[1+0*DCTSTRIDE];
   d01 = data[0+0*DCTSTRIDE] - data[1+0*DCTSTRIDE];
   d10 = data[0+1*DCTSTRIDE] + data[1+1*DCTSTRIDE];
   d11 = data[0+1*DCTSTRIDE] - data[1+1*DCTSTRIDE];
115329f1
 
9ca358b9
   data[0+0*DCTSTRIDE]= (d00 + d10)>>3;
   data[1+0*DCTSTRIDE]= (d01 + d11)>>3;
   data[0+1*DCTSTRIDE]= (d00 - d10)>>3;
   data[1+1*DCTSTRIDE]= (d01 - d11)>>3;
 }
178fcca8
 
1aa8c57b
 void j_rev_dct1(DCTBLOCK data){
   data[0] = (data[0] + 4)>>3;
 }
 
cd4af68a
 #undef FIX
 #undef CONST_BITS