libavcodec/huffyuvenc.c
2ca5ca29
 /*
  * Copyright (c) 2002-2003 Michael Niedermayer <michaelni@gmx.at>
  *
  * see http://www.pcisys.net/~melanson/codecs/huffyuv.txt for a description of
  * the algorithm used
  *
def18e54
  * This file is part of FFmpeg.
2ca5ca29
  *
def18e54
  * FFmpeg is free software; you can redistribute it and/or
2ca5ca29
  * modify it under the terms of the GNU Lesser General Public
  * License as published by the Free Software Foundation; either
  * version 2.1 of the License, or (at your option) any later version.
  *
def18e54
  * FFmpeg is distributed in the hope that it will be useful,
2ca5ca29
  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  * Lesser General Public License for more details.
  *
  * You should have received a copy of the GNU Lesser General Public
def18e54
  * License along with FFmpeg; if not, write to the Free Software
2ca5ca29
  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  */
 
 /**
  * @file
  * huffyuv encoder
  */
 
 #include "avcodec.h"
 #include "huffyuv.h"
 #include "huffman.h"
def18e54
 #include "internal.h"
2ca5ca29
 #include "put_bits.h"
 
 static inline int sub_left_prediction(HYuvContext *s, uint8_t *dst,
def18e54
                                       const uint8_t *src, int w, int left)
2ca5ca29
 {
     int i;
     if (w < 32) {
         for (i = 0; i < w; i++) {
             const int temp = src[i];
             dst[i] = temp - left;
             left   = temp;
         }
         return left;
     } else {
         for (i = 0; i < 16; i++) {
             const int temp = src[i];
             dst[i] = temp - left;
             left   = temp;
         }
         s->dsp.diff_bytes(dst + 16, src + 16, src + 15, w - 16);
         return src[w-1];
     }
 }
 
 static inline void sub_left_prediction_bgr32(HYuvContext *s, uint8_t *dst,
def18e54
                                              const uint8_t *src, int w,
                                              int *red, int *green, int *blue, int *alpha)
2ca5ca29
 {
     int i;
def18e54
     int r,g,b,a;
2ca5ca29
     r = *red;
     g = *green;
     b = *blue;
def18e54
     a = *alpha;
2ca5ca29
     for (i = 0; i < FFMIN(w, 4); i++) {
         const int rt = src[i * 4 + R];
         const int gt = src[i * 4 + G];
         const int bt = src[i * 4 + B];
def18e54
         const int at = src[i * 4 + A];
2ca5ca29
         dst[i * 4 + R] = rt - r;
         dst[i * 4 + G] = gt - g;
         dst[i * 4 + B] = bt - b;
def18e54
         dst[i * 4 + A] = at - a;
2ca5ca29
         r = rt;
         g = gt;
         b = bt;
def18e54
         a = at;
2ca5ca29
     }
 
     s->dsp.diff_bytes(dst + 16, src + 16, src + 12, w * 4 - 16);
 
     *red   = src[(w - 1) * 4 + R];
     *green = src[(w - 1) * 4 + G];
     *blue  = src[(w - 1) * 4 + B];
def18e54
     *alpha = src[(w - 1) * 4 + A];
 }
 
 static inline void sub_left_prediction_rgb24(HYuvContext *s, uint8_t *dst, const uint8_t *src, int w, int *red, int *green, int *blue){
     int i;
     int r,g,b;
     r = *red;
     g = *green;
     b = *blue;
     for (i = 0; i < FFMIN(w,16); i++) {
         const int rt = src[i*3 + 0];
         const int gt = src[i*3 + 1];
         const int bt = src[i*3 + 2];
         dst[i*3 + 0] = rt - r;
         dst[i*3 + 1] = gt - g;
         dst[i*3 + 2] = bt - b;
         r = rt;
         g = gt;
         b = bt;
     }
 
     s->dsp.diff_bytes(dst + 48, src + 48, src + 48 - 3, w*3 - 48);
 
     *red   = src[(w - 1)*3 + 0];
     *green = src[(w - 1)*3 + 1];
     *blue  = src[(w - 1)*3 + 2];
2ca5ca29
 }
 
 static int store_table(HYuvContext *s, const uint8_t *len, uint8_t *buf)
 {
     int i;
     int index = 0;
 
     for (i = 0; i < 256;) {
         int val = len[i];
         int repeat = 0;
 
         for (; i < 256 && len[i] == val && repeat < 255; i++)
             repeat++;
 
def18e54
         av_assert0(val < 32 && val >0 && repeat<256 && repeat>0);
         if (repeat > 7) {
2ca5ca29
             buf[index++] = val;
             buf[index++] = repeat;
         } else {
             buf[index++] = val | (repeat << 5);
         }
     }
 
     return index;
 }
 
 static av_cold int encode_init(AVCodecContext *avctx)
 {
     HYuvContext *s = avctx->priv_data;
     int i, j;
 
     ff_huffyuv_common_init(avctx);
 
     avctx->extradata = av_mallocz(1024*30); // 256*3+4 == 772
     avctx->stats_out = av_mallocz(1024*30); // 21*256*3(%llu ) + 3(\n) + 1(0) = 16132
def18e54
     if (!avctx->extradata || !avctx->stats_out) {
         av_freep(&avctx->stats_out);
         return AVERROR(ENOMEM);
     }
2ca5ca29
     s->version = 2;
 
     avctx->coded_frame = &s->picture;
 
     switch (avctx->pix_fmt) {
     case AV_PIX_FMT_YUV420P:
     case AV_PIX_FMT_YUV422P:
def18e54
         if (s->width & 1) {
             av_log(avctx, AV_LOG_ERROR, "width must be even for this colorspace\n");
             return AVERROR(EINVAL);
         }
         s->bitstream_bpp = avctx->pix_fmt == AV_PIX_FMT_YUV420P ? 12 : 16;
2ca5ca29
         break;
     case AV_PIX_FMT_RGB32:
def18e54
         s->bitstream_bpp = 32;
         break;
     case AV_PIX_FMT_RGB24:
2ca5ca29
         s->bitstream_bpp = 24;
         break;
     default:
         av_log(avctx, AV_LOG_ERROR, "format not supported\n");
def18e54
         return AVERROR(EINVAL);
2ca5ca29
     }
     avctx->bits_per_coded_sample = s->bitstream_bpp;
     s->decorrelate = s->bitstream_bpp >= 24;
     s->predictor = avctx->prediction_method;
     s->interlaced = avctx->flags&CODEC_FLAG_INTERLACED_ME ? 1 : 0;
     if (avctx->context_model == 1) {
         s->context = avctx->context_model;
         if (s->flags & (CODEC_FLAG_PASS1|CODEC_FLAG_PASS2)) {
             av_log(avctx, AV_LOG_ERROR,
                    "context=1 is not compatible with "
                    "2 pass huffyuv encoding\n");
def18e54
             return AVERROR(EINVAL);
2ca5ca29
         }
     }else s->context= 0;
 
     if (avctx->codec->id == AV_CODEC_ID_HUFFYUV) {
         if (avctx->pix_fmt == AV_PIX_FMT_YUV420P) {
             av_log(avctx, AV_LOG_ERROR,
                    "Error: YV12 is not supported by huffyuv; use "
                    "vcodec=ffvhuff or format=422p\n");
def18e54
             return AVERROR(EINVAL);
2ca5ca29
         }
         if (avctx->context_model) {
             av_log(avctx, AV_LOG_ERROR,
                    "Error: per-frame huffman tables are not supported "
                    "by huffyuv; use vcodec=ffvhuff\n");
def18e54
             return AVERROR(EINVAL);
2ca5ca29
         }
         if (s->interlaced != ( s->height > 288 ))
             av_log(avctx, AV_LOG_INFO,
                    "using huffyuv 2.2.0 or newer interlacing flag\n");
     }
 
     if (s->bitstream_bpp >= 24 && s->predictor == MEDIAN) {
         av_log(avctx, AV_LOG_ERROR,
                "Error: RGB is incompatible with median predictor\n");
def18e54
         return AVERROR(EINVAL);
2ca5ca29
     }
 
     ((uint8_t*)avctx->extradata)[0] = s->predictor | (s->decorrelate << 6);
     ((uint8_t*)avctx->extradata)[1] = s->bitstream_bpp;
     ((uint8_t*)avctx->extradata)[2] = s->interlaced ? 0x10 : 0x20;
     if (s->context)
         ((uint8_t*)avctx->extradata)[2] |= 0x40;
     ((uint8_t*)avctx->extradata)[3] = 0;
     s->avctx->extradata_size = 4;
 
     if (avctx->stats_in) {
         char *p = avctx->stats_in;
 
         for (i = 0; i < 3; i++)
             for (j = 0; j < 256; j++)
                 s->stats[i][j] = 1;
 
         for (;;) {
             for (i = 0; i < 3; i++) {
                 char *next;
 
                 for (j = 0; j < 256; j++) {
                     s->stats[i][j] += strtol(p, &next, 0);
                     if (next == p) return -1;
                     p = next;
                 }
             }
             if (p[0] == 0 || p[1] == 0 || p[2] == 0) break;
         }
     } else {
         for (i = 0; i < 3; i++)
             for (j = 0; j < 256; j++) {
                 int d = FFMIN(j, 256 - j);
 
                 s->stats[i][j] = 100000000 / (d + 1);
             }
     }
 
     for (i = 0; i < 3; i++) {
         ff_huff_gen_len_table(s->len[i], s->stats[i]);
 
         if (ff_huffyuv_generate_bits_table(s->bits[i], s->len[i]) < 0) {
             return -1;
         }
 
         s->avctx->extradata_size +=
             store_table(s, s->len[i], &((uint8_t*)s->avctx->extradata)[s->avctx->extradata_size]);
     }
 
     if (s->context) {
         for (i = 0; i < 3; i++) {
             int pels = s->width * s->height / (i ? 40 : 10);
             for (j = 0; j < 256; j++) {
                 int d = FFMIN(j, 256 - j);
                 s->stats[i][j] = pels/(d + 1);
             }
         }
     } else {
         for (i = 0; i < 3; i++)
             for (j = 0; j < 256; j++)
                 s->stats[i][j]= 0;
     }
 
def18e54
     if (ff_huffyuv_alloc_temp(s)) {
         ff_huffyuv_common_end(s);
         return AVERROR(ENOMEM);
     }
2ca5ca29
 
     s->picture_number=0;
 
     return 0;
 }
 static int encode_422_bitstream(HYuvContext *s, int offset, int count)
 {
     int i;
     const uint8_t *y = s->temp[0] + offset;
     const uint8_t *u = s->temp[1] + offset / 2;
     const uint8_t *v = s->temp[2] + offset / 2;
 
     if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) < 2 * 4 * count) {
         av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
         return -1;
     }
 
 #define LOAD4\
             int y0 = y[2 * i];\
             int y1 = y[2 * i + 1];\
             int u0 = u[i];\
             int v0 = v[i];
 
     count /= 2;
 
     if (s->flags & CODEC_FLAG_PASS1) {
         for(i = 0; i < count; i++) {
             LOAD4;
             s->stats[0][y0]++;
             s->stats[1][u0]++;
             s->stats[0][y1]++;
             s->stats[2][v0]++;
         }
     }
     if (s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)
         return 0;
     if (s->context) {
         for (i = 0; i < count; i++) {
             LOAD4;
             s->stats[0][y0]++;
             put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
             s->stats[1][u0]++;
             put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
             s->stats[0][y1]++;
             put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
             s->stats[2][v0]++;
             put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
         }
     } else {
         for(i = 0; i < count; i++) {
             LOAD4;
             put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
             put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
             put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
             put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
         }
     }
     return 0;
 }
 
 static int encode_gray_bitstream(HYuvContext *s, int count)
 {
     int i;
 
     if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) < 4 * count) {
         av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
         return -1;
     }
 
 #define LOAD2\
             int y0 = s->temp[0][2 * i];\
             int y1 = s->temp[0][2 * i + 1];
 #define STAT2\
             s->stats[0][y0]++;\
             s->stats[0][y1]++;
 #define WRITE2\
             put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);\
             put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
 
     count /= 2;
 
     if (s->flags & CODEC_FLAG_PASS1) {
         for (i = 0; i < count; i++) {
             LOAD2;
             STAT2;
         }
     }
     if (s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)
         return 0;
 
     if (s->context) {
         for (i = 0; i < count; i++) {
             LOAD2;
             STAT2;
             WRITE2;
         }
     } else {
         for (i = 0; i < count; i++) {
             LOAD2;
             WRITE2;
         }
     }
     return 0;
 }
 
def18e54
 static inline int encode_bgra_bitstream(HYuvContext *s, int count, int planes)
2ca5ca29
 {
     int i;
 
def18e54
     if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 4*planes*count) {
2ca5ca29
         av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
         return -1;
     }
 
 #define LOAD3\
def18e54
             int g =  s->temp[0][planes==3 ? 3*i + 1 : 4*i + G];\
             int b = (s->temp[0][planes==3 ? 3*i + 2 : 4*i + B] - g) & 0xff;\
             int r = (s->temp[0][planes==3 ? 3*i + 0 : 4*i + R] - g) & 0xff;\
             int a =  s->temp[0][planes*i + A];
2ca5ca29
 #define STAT3\
             s->stats[0][b]++;\
             s->stats[1][g]++;\
def18e54
             s->stats[2][r]++;\
             if(planes==4) s->stats[2][a]++;
2ca5ca29
 #define WRITE3\
             put_bits(&s->pb, s->len[1][g], s->bits[1][g]);\
             put_bits(&s->pb, s->len[0][b], s->bits[0][b]);\
def18e54
             put_bits(&s->pb, s->len[2][r], s->bits[2][r]);\
             if(planes==4) put_bits(&s->pb, s->len[2][a], s->bits[2][a]);
2ca5ca29
 
     if ((s->flags & CODEC_FLAG_PASS1) &&
         (s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)) {
         for (i = 0; i < count; i++) {
             LOAD3;
             STAT3;
         }
     } else if (s->context || (s->flags & CODEC_FLAG_PASS1)) {
         for (i = 0; i < count; i++) {
             LOAD3;
             STAT3;
             WRITE3;
         }
     } else {
         for (i = 0; i < count; i++) {
             LOAD3;
             WRITE3;
         }
     }
     return 0;
 }
 
 static int encode_frame(AVCodecContext *avctx, AVPacket *pkt,
                         const AVFrame *pict, int *got_packet)
 {
     HYuvContext *s = avctx->priv_data;
     const int width = s->width;
     const int width2 = s->width>>1;
     const int height = s->height;
     const int fake_ystride = s->interlaced ? pict->linesize[0]*2  : pict->linesize[0];
     const int fake_ustride = s->interlaced ? pict->linesize[1]*2  : pict->linesize[1];
     const int fake_vstride = s->interlaced ? pict->linesize[2]*2  : pict->linesize[2];
     AVFrame * const p = &s->picture;
     int i, j, size = 0, ret;
 
def18e54
     if ((ret = ff_alloc_packet2(avctx, pkt, width * height * 3 * 4 + FF_MIN_BUFFER_SIZE)) < 0)
2ca5ca29
         return ret;
 
     *p = *pict;
     p->pict_type = AV_PICTURE_TYPE_I;
     p->key_frame = 1;
 
     if (s->context) {
         for (i = 0; i < 3; i++) {
             ff_huff_gen_len_table(s->len[i], s->stats[i]);
             if (ff_huffyuv_generate_bits_table(s->bits[i], s->len[i]) < 0)
                 return -1;
             size += store_table(s, s->len[i], &pkt->data[size]);
         }
 
         for (i = 0; i < 3; i++)
             for (j = 0; j < 256; j++)
                 s->stats[i][j] >>= 1;
     }
 
     init_put_bits(&s->pb, pkt->data + size, pkt->size - size);
 
     if (avctx->pix_fmt == AV_PIX_FMT_YUV422P ||
         avctx->pix_fmt == AV_PIX_FMT_YUV420P) {
         int lefty, leftu, leftv, y, cy;
 
         put_bits(&s->pb, 8, leftv = p->data[2][0]);
         put_bits(&s->pb, 8, lefty = p->data[0][1]);
         put_bits(&s->pb, 8, leftu = p->data[1][0]);
         put_bits(&s->pb, 8,         p->data[0][0]);
 
         lefty = sub_left_prediction(s, s->temp[0], p->data[0], width , 0);
         leftu = sub_left_prediction(s, s->temp[1], p->data[1], width2, 0);
         leftv = sub_left_prediction(s, s->temp[2], p->data[2], width2, 0);
 
         encode_422_bitstream(s, 2, width-2);
 
         if (s->predictor==MEDIAN) {
             int lefttopy, lefttopu, lefttopv;
             cy = y = 1;
             if (s->interlaced) {
                 lefty = sub_left_prediction(s, s->temp[0], p->data[0] + p->linesize[0], width , lefty);
                 leftu = sub_left_prediction(s, s->temp[1], p->data[1] + p->linesize[1], width2, leftu);
                 leftv = sub_left_prediction(s, s->temp[2], p->data[2] + p->linesize[2], width2, leftv);
 
                 encode_422_bitstream(s, 0, width);
                 y++; cy++;
             }
 
             lefty = sub_left_prediction(s, s->temp[0], p->data[0] + fake_ystride, 4, lefty);
             leftu = sub_left_prediction(s, s->temp[1], p->data[1] + fake_ustride, 2, leftu);
             leftv = sub_left_prediction(s, s->temp[2], p->data[2] + fake_vstride, 2, leftv);
 
             encode_422_bitstream(s, 0, 4);
 
             lefttopy = p->data[0][3];
             lefttopu = p->data[1][1];
             lefttopv = p->data[2][1];
             s->dsp.sub_hfyu_median_prediction(s->temp[0], p->data[0]+4, p->data[0] + fake_ystride + 4, width - 4 , &lefty, &lefttopy);
             s->dsp.sub_hfyu_median_prediction(s->temp[1], p->data[1]+2, p->data[1] + fake_ustride + 2, width2 - 2, &leftu, &lefttopu);
             s->dsp.sub_hfyu_median_prediction(s->temp[2], p->data[2]+2, p->data[2] + fake_vstride + 2, width2 - 2, &leftv, &lefttopv);
             encode_422_bitstream(s, 0, width - 4);
             y++; cy++;
 
             for (; y < height; y++,cy++) {
                 uint8_t *ydst, *udst, *vdst;
 
                 if (s->bitstream_bpp == 12) {
                     while (2 * cy > y) {
                         ydst = p->data[0] + p->linesize[0] * y;
                         s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
                         encode_gray_bitstream(s, width);
                         y++;
                     }
                     if (y >= height) break;
                 }
                 ydst = p->data[0] + p->linesize[0] * y;
                 udst = p->data[1] + p->linesize[1] * cy;
                 vdst = p->data[2] + p->linesize[2] * cy;
 
                 s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
                 s->dsp.sub_hfyu_median_prediction(s->temp[1], udst - fake_ustride, udst, width2, &leftu, &lefttopu);
                 s->dsp.sub_hfyu_median_prediction(s->temp[2], vdst - fake_vstride, vdst, width2, &leftv, &lefttopv);
 
                 encode_422_bitstream(s, 0, width);
             }
         } else {
             for (cy = y = 1; y < height; y++, cy++) {
                 uint8_t *ydst, *udst, *vdst;
 
                 /* encode a luma only line & y++ */
                 if (s->bitstream_bpp == 12) {
                     ydst = p->data[0] + p->linesize[0] * y;
 
                     if (s->predictor == PLANE && s->interlaced < y) {
                         s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
 
                         lefty = sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
                     } else {
                         lefty = sub_left_prediction(s, s->temp[0], ydst, width , lefty);
                     }
                     encode_gray_bitstream(s, width);
                     y++;
                     if (y >= height) break;
                 }
 
                 ydst = p->data[0] + p->linesize[0] * y;
                 udst = p->data[1] + p->linesize[1] * cy;
                 vdst = p->data[2] + p->linesize[2] * cy;
 
                 if (s->predictor == PLANE && s->interlaced < cy) {
                     s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
                     s->dsp.diff_bytes(s->temp[2], udst, udst - fake_ustride, width2);
                     s->dsp.diff_bytes(s->temp[2] + width2, vdst, vdst - fake_vstride, width2);
 
                     lefty = sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
                     leftu = sub_left_prediction(s, s->temp[1], s->temp[2], width2, leftu);
                     leftv = sub_left_prediction(s, s->temp[2], s->temp[2] + width2, width2, leftv);
                 } else {
                     lefty = sub_left_prediction(s, s->temp[0], ydst, width , lefty);
                     leftu = sub_left_prediction(s, s->temp[1], udst, width2, leftu);
                     leftv = sub_left_prediction(s, s->temp[2], vdst, width2, leftv);
                 }
 
                 encode_422_bitstream(s, 0, width);
             }
         }
     } else if(avctx->pix_fmt == AV_PIX_FMT_RGB32) {
         uint8_t *data = p->data[0] + (height - 1) * p->linesize[0];
         const int stride = -p->linesize[0];
         const int fake_stride = -fake_ystride;
         int y;
def18e54
         int leftr, leftg, leftb, lefta;
2ca5ca29
 
def18e54
         put_bits(&s->pb, 8, lefta = data[A]);
2ca5ca29
         put_bits(&s->pb, 8, leftr = data[R]);
         put_bits(&s->pb, 8, leftg = data[G]);
         put_bits(&s->pb, 8, leftb = data[B]);
 
def18e54
         sub_left_prediction_bgr32(s, s->temp[0], data + 4, width - 1, &leftr, &leftg, &leftb, &lefta);
         encode_bgra_bitstream(s, width - 1, 4);
2ca5ca29
 
         for (y = 1; y < s->height; y++) {
             uint8_t *dst = data + y*stride;
             if (s->predictor == PLANE && s->interlaced < y) {
                 s->dsp.diff_bytes(s->temp[1], dst, dst - fake_stride, width * 4);
def18e54
                 sub_left_prediction_bgr32(s, s->temp[0], s->temp[1], width, &leftr, &leftg, &leftb, &lefta);
2ca5ca29
             } else {
def18e54
                 sub_left_prediction_bgr32(s, s->temp[0], dst, width, &leftr, &leftg, &leftb, &lefta);
             }
             encode_bgra_bitstream(s, width, 4);
         }
     }else if(avctx->pix_fmt == AV_PIX_FMT_RGB24){
         uint8_t *data = p->data[0] + (height-1)*p->linesize[0];
         const int stride = -p->linesize[0];
         const int fake_stride = -fake_ystride;
         int y;
         int leftr, leftg, leftb;
 
         put_bits(&s->pb, 8, leftr= data[0]);
         put_bits(&s->pb, 8, leftg= data[1]);
         put_bits(&s->pb, 8, leftb= data[2]);
         put_bits(&s->pb, 8, 0);
 
         sub_left_prediction_rgb24(s, s->temp[0], data+3, width-1, &leftr, &leftg, &leftb);
         encode_bgra_bitstream(s, width-1, 3);
 
         for(y=1; y<s->height; y++){
             uint8_t *dst = data + y*stride;
             if(s->predictor == PLANE && s->interlaced < y){
                 s->dsp.diff_bytes(s->temp[1], dst, dst - fake_stride, width*3);
                 sub_left_prediction_rgb24(s, s->temp[0], s->temp[1], width, &leftr, &leftg, &leftb);
             }else{
                 sub_left_prediction_rgb24(s, s->temp[0], dst, width, &leftr, &leftg, &leftb);
2ca5ca29
             }
def18e54
             encode_bgra_bitstream(s, width, 3);
2ca5ca29
         }
     } else {
         av_log(avctx, AV_LOG_ERROR, "Format not supported!\n");
     }
     emms_c();
 
     size += (put_bits_count(&s->pb) + 31) / 8;
     put_bits(&s->pb, 16, 0);
     put_bits(&s->pb, 15, 0);
     size /= 4;
 
     if ((s->flags&CODEC_FLAG_PASS1) && (s->picture_number & 31) == 0) {
         int j;
         char *p = avctx->stats_out;
         char *end = p + 1024*30;
         for (i = 0; i < 3; i++) {
             for (j = 0; j < 256; j++) {
                 snprintf(p, end-p, "%"PRIu64" ", s->stats[i][j]);
                 p += strlen(p);
                 s->stats[i][j]= 0;
             }
             snprintf(p, end-p, "\n");
             p++;
         }
     } else
         avctx->stats_out[0] = '\0';
     if (!(s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)) {
         flush_put_bits(&s->pb);
         s->dsp.bswap_buf((uint32_t*)pkt->data, (uint32_t*)pkt->data, size);
     }
 
     s->picture_number++;
 
     pkt->size   = size * 4;
     pkt->flags |= AV_PKT_FLAG_KEY;
     *got_packet = 1;
 
     return 0;
 }
 
 static av_cold int encode_end(AVCodecContext *avctx)
 {
     HYuvContext *s = avctx->priv_data;
 
     ff_huffyuv_common_end(s);
 
     av_freep(&avctx->extradata);
     av_freep(&avctx->stats_out);
 
     return 0;
 }
 
 #if CONFIG_HUFFYUV_ENCODER
 AVCodec ff_huffyuv_encoder = {
     .name           = "huffyuv",
     .type           = AVMEDIA_TYPE_VIDEO,
     .id             = AV_CODEC_ID_HUFFYUV,
     .priv_data_size = sizeof(HYuvContext),
     .init           = encode_init,
     .encode2        = encode_frame,
     .close          = encode_end,
     .pix_fmts       = (const enum AVPixelFormat[]){
def18e54
         AV_PIX_FMT_YUV422P, AV_PIX_FMT_RGB24, AV_PIX_FMT_RGB32, AV_PIX_FMT_NONE
2ca5ca29
     },
     .long_name      = NULL_IF_CONFIG_SMALL("Huffyuv / HuffYUV"),
 };
 #endif
 
 #if CONFIG_FFVHUFF_ENCODER
 AVCodec ff_ffvhuff_encoder = {
     .name           = "ffvhuff",
     .type           = AVMEDIA_TYPE_VIDEO,
     .id             = AV_CODEC_ID_FFVHUFF,
     .priv_data_size = sizeof(HYuvContext),
     .init           = encode_init,
     .encode2        = encode_frame,
     .close          = encode_end,
     .pix_fmts       = (const enum AVPixelFormat[]){
def18e54
         AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_RGB24, AV_PIX_FMT_RGB32, AV_PIX_FMT_NONE
2ca5ca29
     },
     .long_name      = NULL_IF_CONFIG_SMALL("Huffyuv FFmpeg variant"),
 };
 #endif