libavcodec/mpegaudiodsp_template.c
c4f5c2d6
 /*
  * Copyright (c) 2001, 2002 Fabrice Bellard
  *
bed12e24
  * This file is part of FFmpeg.
c4f5c2d6
  *
bed12e24
  * FFmpeg is free software; you can redistribute it and/or
c4f5c2d6
  * modify it under the terms of the GNU Lesser General Public
  * License as published by the Free Software Foundation; either
  * version 2.1 of the License, or (at your option) any later version.
  *
bed12e24
  * FFmpeg is distributed in the hope that it will be useful,
c4f5c2d6
  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  * Lesser General Public License for more details.
  *
  * You should have received a copy of the GNU Lesser General Public
bed12e24
  * License along with FFmpeg; if not, write to the Free Software
c4f5c2d6
  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  */
 
 #include <stdint.h>
 
 #include "libavutil/mem.h"
 #include "dct32.h"
 #include "mathops.h"
 #include "mpegaudiodsp.h"
 #include "mpegaudio.h"
 
 #if CONFIG_FLOAT
 #define RENAME(n) n##_float
 
 static inline float round_sample(float *sum)
 {
     float sum1=*sum;
     *sum = 0;
     return sum1;
 }
 
 #define MACS(rt, ra, rb) rt+=(ra)*(rb)
 #define MULS(ra, rb) ((ra)*(rb))
e32aaba3
 #define MULH3(x, y, s) ((s)*(y)*(x))
c4f5c2d6
 #define MLSS(rt, ra, rb) rt-=(ra)*(rb)
e32aaba3
 #define MULLx(x, y, s) ((y)*(x))
 #define FIXHR(x)        ((float)(x))
 #define FIXR(x)        ((float)(x))
 #define SHR(a,b)       ((a)*(1.0f/(1<<(b))))
c4f5c2d6
 
 #else
 
 #define RENAME(n) n##_fixed
 #define OUT_SHIFT (WFRAC_BITS + FRAC_BITS - 15)
 
 static inline int round_sample(int64_t *sum)
 {
     int sum1;
     sum1 = (int)((*sum) >> OUT_SHIFT);
     *sum &= (1<<OUT_SHIFT)-1;
     return av_clip_int16(sum1);
 }
 
 #   define MULS(ra, rb) MUL64(ra, rb)
 #   define MACS(rt, ra, rb) MAC64(rt, ra, rb)
 #   define MLSS(rt, ra, rb) MLS64(rt, ra, rb)
e32aaba3
 #   define MULH3(x, y, s) MULH((s)*(x), y)
 #   define MULLx(x, y, s) MULL(x,y,s)
 #   define SHR(a,b)       ((a)>>(b))
 #   define FIXR(a)        ((int)((a) * FRAC_ONE + 0.5))
 #   define FIXHR(a)       ((int)((a) * (1LL<<32) + 0.5))
c4f5c2d6
 #endif
 
06677d0d
 /** Window for MDCT. Actually only the elements in [0,17] and
     [MDCT_BUF_SIZE/2, MDCT_BUF_SIZE/2 + 17] are actually used. The rest
     is just to preserve alignment for SIMD implementations.
 */
 DECLARE_ALIGNED(16, INTFLOAT, RENAME(ff_mdct_win))[8][MDCT_BUF_SIZE];
6dfcf530
 
c4f5c2d6
 DECLARE_ALIGNED(16, MPA_INT, RENAME(ff_mpa_synth_window))[512+256];
 
 #define SUM8(op, sum, w, p)               \
 {                                         \
     op(sum, (w)[0 * 64], (p)[0 * 64]);    \
     op(sum, (w)[1 * 64], (p)[1 * 64]);    \
     op(sum, (w)[2 * 64], (p)[2 * 64]);    \
     op(sum, (w)[3 * 64], (p)[3 * 64]);    \
     op(sum, (w)[4 * 64], (p)[4 * 64]);    \
     op(sum, (w)[5 * 64], (p)[5 * 64]);    \
     op(sum, (w)[6 * 64], (p)[6 * 64]);    \
     op(sum, (w)[7 * 64], (p)[7 * 64]);    \
 }
 
 #define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \
 {                                               \
     INTFLOAT tmp;\
     tmp = p[0 * 64];\
     op1(sum1, (w1)[0 * 64], tmp);\
     op2(sum2, (w2)[0 * 64], tmp);\
     tmp = p[1 * 64];\
     op1(sum1, (w1)[1 * 64], tmp);\
     op2(sum2, (w2)[1 * 64], tmp);\
     tmp = p[2 * 64];\
     op1(sum1, (w1)[2 * 64], tmp);\
     op2(sum2, (w2)[2 * 64], tmp);\
     tmp = p[3 * 64];\
     op1(sum1, (w1)[3 * 64], tmp);\
     op2(sum2, (w2)[3 * 64], tmp);\
     tmp = p[4 * 64];\
     op1(sum1, (w1)[4 * 64], tmp);\
     op2(sum2, (w2)[4 * 64], tmp);\
     tmp = p[5 * 64];\
     op1(sum1, (w1)[5 * 64], tmp);\
     op2(sum2, (w2)[5 * 64], tmp);\
     tmp = p[6 * 64];\
     op1(sum1, (w1)[6 * 64], tmp);\
     op2(sum2, (w2)[6 * 64], tmp);\
     tmp = p[7 * 64];\
     op1(sum1, (w1)[7 * 64], tmp);\
     op2(sum2, (w2)[7 * 64], tmp);\
 }
 
 void RENAME(ff_mpadsp_apply_window)(MPA_INT *synth_buf, MPA_INT *window,
                                   int *dither_state, OUT_INT *samples,
                                   int incr)
 {
     register const MPA_INT *w, *w2, *p;
     int j;
     OUT_INT *samples2;
 #if CONFIG_FLOAT
     float sum, sum2;
 #else
     int64_t sum, sum2;
 #endif
 
     /* copy to avoid wrap */
     memcpy(synth_buf + 512, synth_buf, 32 * sizeof(*synth_buf));
 
     samples2 = samples + 31 * incr;
     w = window;
     w2 = window + 31;
 
     sum = *dither_state;
     p = synth_buf + 16;
     SUM8(MACS, sum, w, p);
     p = synth_buf + 48;
     SUM8(MLSS, sum, w + 32, p);
     *samples = round_sample(&sum);
     samples += incr;
     w++;
 
     /* we calculate two samples at the same time to avoid one memory
        access per two sample */
     for(j=1;j<16;j++) {
         sum2 = 0;
         p = synth_buf + 16 + j;
         SUM8P2(sum, MACS, sum2, MLSS, w, w2, p);
         p = synth_buf + 48 - j;
         SUM8P2(sum, MLSS, sum2, MLSS, w + 32, w2 + 32, p);
 
         *samples = round_sample(&sum);
         samples += incr;
         sum += sum2;
         *samples2 = round_sample(&sum);
         samples2 -= incr;
         w++;
         w2--;
     }
 
     p = synth_buf + 32;
     SUM8(MLSS, sum, w + 32, p);
     *samples = round_sample(&sum);
     *dither_state= sum;
 }
 
 /* 32 sub band synthesis filter. Input: 32 sub band samples, Output:
    32 samples. */
 void RENAME(ff_mpa_synth_filter)(MPADSPContext *s, MPA_INT *synth_buf_ptr,
                                  int *synth_buf_offset,
                                  MPA_INT *window, int *dither_state,
                                  OUT_INT *samples, int incr,
                                  MPA_INT *sb_samples)
 {
     MPA_INT *synth_buf;
     int offset;
 
     offset = *synth_buf_offset;
     synth_buf = synth_buf_ptr + offset;
 
     s->RENAME(dct32)(synth_buf, sb_samples);
     s->RENAME(apply_window)(synth_buf, window, dither_state, samples, incr);
 
     offset = (offset - 32) & 511;
     *synth_buf_offset = offset;
 }
 
3dde147f
 av_cold void RENAME(ff_mpa_synth_init)(MPA_INT *window)
c4f5c2d6
 {
     int i, j;
 
     /* max = 18760, max sum over all 16 coefs : 44736 */
     for(i=0;i<257;i++) {
         INTFLOAT v;
         v = ff_mpa_enwindow[i];
 #if CONFIG_FLOAT
         v *= 1.0 / (1LL<<(16 + FRAC_BITS));
 #endif
         window[i] = v;
         if ((i & 63) != 0)
             v = -v;
         if (i != 0)
             window[512 - i] = v;
     }
 
6dfcf530
 
c4f5c2d6
     // Needed for avoiding shuffles in ASM implementations
     for(i=0; i < 8; i++)
         for(j=0; j < 16; j++)
             window[512+16*i+j] = window[64*i+32-j];
 
     for(i=0; i < 8; i++)
         for(j=0; j < 16; j++)
             window[512+128+16*i+j] = window[64*i+48-j];
 }
e32aaba3
 
6dfcf530
 void RENAME(ff_init_mpadsp_tabs)(void)
 {
     int i, j;
     /* compute mdct windows */
     for (i = 0; i < 36; i++) {
         for (j = 0; j < 4; j++) {
             double d;
 
             if (j == 2 && i % 3 != 1)
                 continue;
 
             d = sin(M_PI * (i + 0.5) / 36.0);
             if (j == 1) {
                 if      (i >= 30) d = 0;
                 else if (i >= 24) d = sin(M_PI * (i - 18 + 0.5) / 12.0);
                 else if (i >= 18) d = 1;
             } else if (j == 3) {
                 if      (i <   6) d = 0;
                 else if (i <  12) d = sin(M_PI * (i -  6 + 0.5) / 12.0);
                 else if (i <  18) d = 1;
             }
             //merge last stage of imdct into the window coefficients
571572fc
             d *= 0.5 * IMDCT_SCALAR / cos(M_PI * (2 * i + 19) / 72);
6dfcf530
 
             if (j == 2)
                 RENAME(ff_mdct_win)[j][i/3] = FIXHR((d / (1<<5)));
06677d0d
             else {
                 int idx = i < 18 ? i : i + (MDCT_BUF_SIZE/2 - 18);
                 RENAME(ff_mdct_win)[j][idx] = FIXHR((d / (1<<5)));
             }
6dfcf530
         }
     }
 
     /* NOTE: we do frequency inversion adter the MDCT by changing
         the sign of the right window coefs */
     for (j = 0; j < 4; j++) {
06677d0d
         for (i = 0; i < MDCT_BUF_SIZE; i += 2) {
6dfcf530
             RENAME(ff_mdct_win)[j + 4][i    ] =  RENAME(ff_mdct_win)[j][i    ];
             RENAME(ff_mdct_win)[j + 4][i + 1] = -RENAME(ff_mdct_win)[j][i + 1];
         }
     }
 }
e32aaba3
 /* cos(pi*i/18) */
 #define C1 FIXHR(0.98480775301220805936/2)
 #define C2 FIXHR(0.93969262078590838405/2)
 #define C3 FIXHR(0.86602540378443864676/2)
 #define C4 FIXHR(0.76604444311897803520/2)
 #define C5 FIXHR(0.64278760968653932632/2)
 #define C6 FIXHR(0.5/2)
 #define C7 FIXHR(0.34202014332566873304/2)
 #define C8 FIXHR(0.17364817766693034885/2)
 
 /* 0.5 / cos(pi*(2*i+1)/36) */
 static const INTFLOAT icos36[9] = {
     FIXR(0.50190991877167369479),
6dfcf530
     FIXR(0.51763809020504152469), //0
e32aaba3
     FIXR(0.55168895948124587824),
     FIXR(0.61038729438072803416),
6dfcf530
     FIXR(0.70710678118654752439), //1
e32aaba3
     FIXR(0.87172339781054900991),
     FIXR(1.18310079157624925896),
6dfcf530
     FIXR(1.93185165257813657349), //2
e32aaba3
     FIXR(5.73685662283492756461),
 };
 
 /* 0.5 / cos(pi*(2*i+1)/36) */
 static const INTFLOAT icos36h[9] = {
     FIXHR(0.50190991877167369479/2),
6dfcf530
     FIXHR(0.51763809020504152469/2), //0
e32aaba3
     FIXHR(0.55168895948124587824/2),
     FIXHR(0.61038729438072803416/2),
6dfcf530
     FIXHR(0.70710678118654752439/2), //1
e32aaba3
     FIXHR(0.87172339781054900991/2),
     FIXHR(1.18310079157624925896/4),
6dfcf530
     FIXHR(1.93185165257813657349/4), //2
 //    FIXHR(5.73685662283492756461),
e32aaba3
 };
 
 /* using Lee like decomposition followed by hand coded 9 points DCT */
6dfcf530
 static void imdct36(INTFLOAT *out, INTFLOAT *buf, INTFLOAT *in, INTFLOAT *win)
e32aaba3
 {
     int i, j;
     INTFLOAT t0, t1, t2, t3, s0, s1, s2, s3;
     INTFLOAT tmp[18], *tmp1, *in1;
 
6dfcf530
     for (i = 17; i >= 1; i--)
e32aaba3
         in[i] += in[i-1];
6dfcf530
     for (i = 17; i >= 3; i -= 2)
e32aaba3
         in[i] += in[i-2];
 
6dfcf530
     for (j = 0; j < 2; j++) {
e32aaba3
         tmp1 = tmp + j;
         in1 = in + j;
 
         t2 = in1[2*4] + in1[2*8] - in1[2*2];
 
         t3 = in1[2*0] + SHR(in1[2*6],1);
         t1 = in1[2*0] - in1[2*6];
         tmp1[ 6] = t1 - SHR(t2,1);
         tmp1[16] = t1 + t2;
 
         t0 = MULH3(in1[2*2] + in1[2*4] ,    C2, 2);
         t1 = MULH3(in1[2*4] - in1[2*8] , -2*C8, 1);
         t2 = MULH3(in1[2*2] + in1[2*8] ,   -C4, 2);
 
         tmp1[10] = t3 - t0 - t2;
         tmp1[ 2] = t3 + t0 + t1;
         tmp1[14] = t3 + t2 - t1;
 
         tmp1[ 4] = MULH3(in1[2*5] + in1[2*7] - in1[2*1], -C3, 2);
         t2 = MULH3(in1[2*1] + in1[2*5],    C1, 2);
         t3 = MULH3(in1[2*5] - in1[2*7], -2*C7, 1);
         t0 = MULH3(in1[2*3], C3, 2);
 
         t1 = MULH3(in1[2*1] + in1[2*7],   -C5, 2);
 
         tmp1[ 0] = t2 + t3 + t0;
         tmp1[12] = t2 + t1 - t0;
         tmp1[ 8] = t3 - t1 - t0;
     }
 
     i = 0;
6dfcf530
     for (j = 0; j < 4; j++) {
e32aaba3
         t0 = tmp[i];
         t1 = tmp[i + 2];
         s0 = t1 + t0;
         s2 = t1 - t0;
 
         t2 = tmp[i + 1];
         t3 = tmp[i + 3];
6dfcf530
         s1 = MULH3(t3 + t2, icos36h[    j], 2);
         s3 = MULLx(t3 - t2, icos36 [8 - j], FRAC_BITS);
e32aaba3
 
         t0 = s0 + s1;
         t1 = s0 - s1;
6dfcf530
         out[(9 + j) * SBLIMIT] = MULH3(t1, win[     9 + j], 1) + buf[4*(9 + j)];
         out[(8 - j) * SBLIMIT] = MULH3(t1, win[     8 - j], 1) + buf[4*(8 - j)];
06677d0d
         buf[4 * ( 9 + j     )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + 9 + j], 1);
         buf[4 * ( 8 - j     )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + 8 - j], 1);
e32aaba3
 
         t0 = s2 + s3;
         t1 = s2 - s3;
6dfcf530
         out[(9 + 8 - j) * SBLIMIT] = MULH3(t1, win[     9 + 8 - j], 1) + buf[4*(9 + 8 - j)];
         out[         j  * SBLIMIT] = MULH3(t1, win[             j], 1) + buf[4*(        j)];
06677d0d
         buf[4 * ( 9 + 8 - j     )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + 9 + 8 - j], 1);
         buf[4 * (         j     )] = MULH3(t0, win[MDCT_BUF_SIZE/2         + j], 1);
e32aaba3
         i += 4;
     }
 
     s0 = tmp[16];
     s1 = MULH3(tmp[17], icos36h[4], 2);
     t0 = s0 + s1;
     t1 = s0 - s1;
6dfcf530
     out[(9 + 4) * SBLIMIT] = MULH3(t1, win[     9 + 4], 1) + buf[4*(9 + 4)];
     out[(8 - 4) * SBLIMIT] = MULH3(t1, win[     8 - 4], 1) + buf[4*(8 - 4)];
06677d0d
     buf[4 * ( 9 + 4     )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + 9 + 4], 1);
     buf[4 * ( 8 - 4     )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + 8 - 4], 1);
6dfcf530
 }
 
 void RENAME(ff_imdct36_blocks)(INTFLOAT *out, INTFLOAT *buf, INTFLOAT *in,
                                int count, int switch_point, int block_type)
 {
     int j;
     for (j=0 ; j < count; j++) {
         /* apply window & overlap with previous buffer */
 
         /* select window */
         int win_idx = (switch_point && j < 2) ? 0 : block_type;
         INTFLOAT *win = RENAME(ff_mdct_win)[win_idx + (4 & -(j & 1))];
 
         imdct36(out, buf, in, win);
 
         in  += 18;
         buf += ((j&3) != 3 ? 1 : (72-3));
         out++;
     }
e32aaba3
 }