libavcodec/evrcdec.c
098d3891
 /*
  * Enhanced Variable Rate Codec, Service Option 3 decoder
  * Copyright (c) 2013 Paul B Mahol
  *
  * This file is part of FFmpeg.
  *
  * FFmpeg is free software; you can redistribute it and/or
  * modify it under the terms of the GNU Lesser General Public
  * License as published by the Free Software Foundation; either
  * version 2.1 of the License, or (at your option) any later version.
  *
  * FFmpeg is distributed in the hope that it will be useful,
  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  * Lesser General Public License for more details.
  *
  * You should have received a copy of the GNU Lesser General Public
  * License along with FFmpeg; if not, write to the Free Software
  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  */
 
 /**
  * @file
  * Enhanced Variable Rate Codec, Service Option 3 decoder
  * @author Paul B Mahol
  */
 
 #include "libavutil/mathematics.h"
 #include "avcodec.h"
 #include "internal.h"
 #include "get_bits.h"
 #include "evrcdata.h"
 #include "acelp_vectors.h"
 #include "lsp.h"
 
 #define MIN_LSP_SEP (0.05 / (2.0 * M_PI))
 #define MIN_DELAY      20
 #define MAX_DELAY     120
 #define NB_SUBFRAMES    3
 #define SUBFRAME_SIZE  54
 #define FILTER_ORDER   10
 #define ACB_SIZE      128
 
 typedef enum {
     RATE_ERRS = -1,
     SILENCE,
     RATE_QUANT,
     RATE_QUARTER,
     RATE_HALF,
     RATE_FULL,
 } evrc_packet_rate;
 
 /**
  * EVRC-A unpacked data frame
  */
 typedef struct EVRCAFrame {
     uint8_t  lpc_flag;        ///< spectral change indicator
     uint16_t lsp[4];          ///< index into LSP codebook
     uint8_t  pitch_delay;     ///< pitch delay for entire frame
     uint8_t  delay_diff;      ///< delay difference for entire frame
     uint8_t  acb_gain[3];     ///< adaptive codebook gain
     uint16_t fcb_shape[3][4]; ///< fixed codebook shape
     uint8_t  fcb_gain[3];     ///< fixed codebook gain index
     uint8_t  energy_gain;     ///< frame energy gain index
     uint8_t  tty;             ///< tty baud rate bit
 } EVRCAFrame;
 
 typedef struct EVRCContext {
     GetBitContext    gb;
     evrc_packet_rate bitrate;
     evrc_packet_rate last_valid_bitrate;
     EVRCAFrame       frame;
 
     float            lspf[FILTER_ORDER];
     float            prev_lspf[FILTER_ORDER];
     float            synthesis[FILTER_ORDER];
     float            postfilter_fir[FILTER_ORDER];
     float            postfilter_iir[FILTER_ORDER];
     float            postfilter_residual[ACB_SIZE + SUBFRAME_SIZE];
     float            pitch_delay;
     float            prev_pitch_delay;
     float            avg_acb_gain;  ///< average adaptive codebook gain
     float            avg_fcb_gain;  ///< average fixed codebook gain
     float            pitch[ACB_SIZE + FILTER_ORDER + SUBFRAME_SIZE];
     float            pitch_back[ACB_SIZE];
     float            interpolation_coeffs[136];
     float            energy_vector[NB_SUBFRAMES];
     float            fade_scale;
     float            last;
 
     uint8_t          prev_energy_gain;
     uint8_t          prev_error_flag;
     uint8_t          warned_buf_mismatch_bitrate;
 } EVRCContext;
 
 /**
  * Frame unpacking for RATE_FULL, RATE_HALF and RATE_QUANT
  *
  * @param e the context
  *
  * TIA/IS-127 Table 4.21-1
  */
 static void unpack_frame(EVRCContext *e)
 {
     EVRCAFrame *frame = &e->frame;
     GetBitContext *gb = &e->gb;
 
     switch (e->bitrate) {
     case RATE_FULL:
         frame->lpc_flag        = get_bits1(gb);
         frame->lsp[0]          = get_bits(gb,  6);
         frame->lsp[1]          = get_bits(gb,  6);
         frame->lsp[2]          = get_bits(gb,  9);
         frame->lsp[3]          = get_bits(gb,  7);
         frame->pitch_delay     = get_bits(gb,  7);
         frame->delay_diff      = get_bits(gb,  5);
         frame->acb_gain[0]     = get_bits(gb,  3);
         frame->fcb_shape[0][0] = get_bits(gb,  8);
         frame->fcb_shape[0][1] = get_bits(gb,  8);
         frame->fcb_shape[0][2] = get_bits(gb,  8);
         frame->fcb_shape[0][3] = get_bits(gb, 11);
         frame->fcb_gain[0]     = get_bits(gb,  5);
         frame->acb_gain[1]     = get_bits(gb,  3);
         frame->fcb_shape[1][0] = get_bits(gb,  8);
         frame->fcb_shape[1][1] = get_bits(gb,  8);
         frame->fcb_shape[1][2] = get_bits(gb,  8);
         frame->fcb_shape[1][3] = get_bits(gb, 11);
         frame->fcb_gain    [1] = get_bits(gb,  5);
         frame->acb_gain    [2] = get_bits(gb,  3);
         frame->fcb_shape[2][0] = get_bits(gb,  8);
         frame->fcb_shape[2][1] = get_bits(gb,  8);
         frame->fcb_shape[2][2] = get_bits(gb,  8);
         frame->fcb_shape[2][3] = get_bits(gb, 11);
         frame->fcb_gain    [2] = get_bits(gb,  5);
         frame->tty             = get_bits1(gb);
         break;
     case RATE_HALF:
         frame->lsp         [0] = get_bits(gb,  7);
         frame->lsp         [1] = get_bits(gb,  7);
         frame->lsp         [2] = get_bits(gb,  8);
         frame->pitch_delay     = get_bits(gb,  7);
         frame->acb_gain    [0] = get_bits(gb,  3);
         frame->fcb_shape[0][0] = get_bits(gb, 10);
         frame->fcb_gain    [0] = get_bits(gb,  4);
         frame->acb_gain    [1] = get_bits(gb,  3);
         frame->fcb_shape[1][0] = get_bits(gb, 10);
         frame->fcb_gain    [1] = get_bits(gb,  4);
         frame->acb_gain    [2] = get_bits(gb,  3);
         frame->fcb_shape[2][0] = get_bits(gb, 10);
         frame->fcb_gain    [2] = get_bits(gb,  4);
         break;
     case RATE_QUANT:
         frame->lsp         [0] = get_bits(gb, 4);
         frame->lsp         [1] = get_bits(gb, 4);
         frame->energy_gain     = get_bits(gb, 8);
         break;
     }
 }
 
 static evrc_packet_rate buf_size2bitrate(const int buf_size)
 {
     switch (buf_size) {
     case 23: return RATE_FULL;
     case 11: return RATE_HALF;
     case  6: return RATE_QUARTER;
     case  3: return RATE_QUANT;
     case  1: return SILENCE;
     }
 
     return RATE_ERRS;
 }
 
 /**
  * Determine the bitrate from the frame size and/or the first byte of the frame.
  *
  * @param avctx the AV codec context
  * @param buf_size length of the buffer
  * @param buf the bufffer
  *
  * @return the bitrate on success,
  *         RATE_ERRS  if the bitrate cannot be satisfactorily determined
  */
 static evrc_packet_rate determine_bitrate(AVCodecContext *avctx,
                                           int *buf_size,
                                           const uint8_t **buf)
 {
     evrc_packet_rate bitrate;
 
     if ((bitrate = buf_size2bitrate(*buf_size)) >= 0) {
         if (bitrate > **buf) {
             EVRCContext *e = avctx->priv_data;
             if (!e->warned_buf_mismatch_bitrate) {
                 av_log(avctx, AV_LOG_WARNING,
                        "Claimed bitrate and buffer size mismatch.\n");
                 e->warned_buf_mismatch_bitrate = 1;
             }
             bitrate = **buf;
         } else if (bitrate < **buf) {
             av_log(avctx, AV_LOG_ERROR,
                    "Buffer is too small for the claimed bitrate.\n");
             return RATE_ERRS;
         }
         (*buf)++;
         *buf_size -= 1;
     } else if ((bitrate = buf_size2bitrate(*buf_size + 1)) >= 0) {
         av_log(avctx, AV_LOG_DEBUG,
                "Bitrate byte is missing, guessing the bitrate from packet size.\n");
     } else
         return RATE_ERRS;
 
     return bitrate;
 }
 
 static void warn_insufficient_frame_quality(AVCodecContext *avctx,
                                             const char *message)
 {
     av_log(avctx, AV_LOG_WARNING, "Frame #%d, %s\n",
            avctx->frame_number, message);
 }
 
 /**
  * Initialize the speech codec according to the specification.
  *
  * TIA/IS-127 5.2
  */
 static av_cold int evrc_decode_init(AVCodecContext *avctx)
 {
     EVRCContext *e = avctx->priv_data;
     int i, n, idx = 0;
     float denom = 2.0 / (2.0 * 8.0 + 1.0);
 
     avctx->channels       = 1;
     avctx->channel_layout = AV_CH_LAYOUT_MONO;
     avctx->sample_fmt     = AV_SAMPLE_FMT_FLT;
 
     for (i = 0; i < FILTER_ORDER; i++) {
         e->prev_lspf[i] = (i + 1) * 0.048;
         e->synthesis[i] = 0.0;
     }
 
     for (i = 0; i < ACB_SIZE; i++)
         e->pitch[i] = e->pitch_back[i] = 0.0;
 
     e->last_valid_bitrate = RATE_QUANT;
     e->prev_pitch_delay   = 40.0;
     e->fade_scale         = 1.0;
     e->prev_error_flag    = 0;
     e->avg_acb_gain = e->avg_fcb_gain = 0.0;
 
     for (i = 0; i < 8; i++) {
         float tt = ((float)i - 8.0 / 2.0) / 8.0;
 
         for (n = -8; n <= 8; n++, idx++) {
             float arg1 = M_PI * 0.9 * (tt - n);
             float arg2 = M_PI * (tt - n);
 
             e->interpolation_coeffs[idx] = 0.9;
             if (arg1)
                 e->interpolation_coeffs[idx] *= (0.54 + 0.46 * cos(arg2 * denom)) *
                                                  sin(arg1) / arg1;
         }
     }
 
     return 0;
 }
 
 /**
  * Decode the 10 vector quantized line spectral pair frequencies from the LSP
  * transmission codes of any bitrate and check for badly received packets.
  *
  * @param e the context
  *
  * @return 0 on success, -1 if the packet is badly received
  *
  * TIA/IS-127 5.2.1, 5.7.1
  */
 static int decode_lspf(EVRCContext *e)
 {
     const float **codebooks = evrc_lspq_codebooks[e->bitrate];
     int i, j, k = 0;
 
     for (i = 0; i < evrc_lspq_nb_codebooks[e->bitrate]; i++) {
         int row_size = evrc_lspq_codebooks_row_sizes[e->bitrate][i];
         const float *codebook = codebooks[i];
 
         for (j = 0; j < row_size; j++)
             e->lspf[k++] = codebook[e->frame.lsp[i] * row_size + j];
     }
 
     // check for monotonic LSPs
     for (i = 1; i < FILTER_ORDER; i++)
         if (e->lspf[i] <= e->lspf[i - 1])
             return -1;
 
     // check for minimum separation of LSPs at the splits
     for (i = 0, k = 0; i < evrc_lspq_nb_codebooks[e->bitrate] - 1; i++) {
         k += evrc_lspq_codebooks_row_sizes[e->bitrate][i];
         if (e->lspf[k] - e->lspf[k - 1] <= MIN_LSP_SEP)
             return -1;
     }
 
     return 0;
 }
 
 /*
  * Interpolation of LSP parameters.
  *
  * TIA/IS-127 5.2.3.1, 5.7.3.2
  */
 static void interpolate_lsp(float *ilsp, const float *lsp,
                             const float *prev, int index)
 {
     static const float lsp_interpolation_factors[] = { 0.1667, 0.5, 0.8333 };
     ff_weighted_vector_sumf(ilsp, prev, lsp,
                             1.0 - lsp_interpolation_factors[index],
                             lsp_interpolation_factors[index], FILTER_ORDER);
 }
 
 /*
  * Reconstruction of the delay contour.
  *
  * TIA/IS-127 5.2.2.3.2
  */
 static void interpolate_delay(float *dst, float current, float prev, int index)
 {
     static const float d_interpolation_factors[] = { 0, 0.3313, 0.6625, 1, 1 };
     dst[0] = (1.0 - d_interpolation_factors[index    ]) * prev
                   + d_interpolation_factors[index    ]  * current;
     dst[1] = (1.0 - d_interpolation_factors[index + 1]) * prev
                   + d_interpolation_factors[index + 1]  * current;
     dst[2] = (1.0 - d_interpolation_factors[index + 2]) * prev
                   + d_interpolation_factors[index + 2]  * current;
 }
 
 /*
  * Convert the quantized, interpolated line spectral frequencies,
  * to prediction coefficients.
  *
  * TIA/IS-127 5.2.3.2, 4.7.2.2
  */
 static void decode_predictor_coeffs(const float *ilspf, float *ilpc)
 {
     double lsp[FILTER_ORDER];
     float a[FILTER_ORDER / 2 + 1], b[FILTER_ORDER / 2 + 1];
     float a1[FILTER_ORDER / 2] = { 0 };
     float a2[FILTER_ORDER / 2] = { 0 };
     float b1[FILTER_ORDER / 2] = { 0 };
     float b2[FILTER_ORDER / 2] = { 0 };
     int i, k;
 
     ff_acelp_lsf2lspd(lsp, ilspf, FILTER_ORDER);
 
     for (k = 0; k <= FILTER_ORDER; k++) {
         a[0] = k < 2 ? 0.25 : 0;
         b[0] = k < 2 ? k < 1 ? 0.25 : -0.25 : 0;
 
         for (i = 0; i < FILTER_ORDER / 2; i++) {
             a[i + 1] = a[i] - 2 * lsp[i * 2    ] * a1[i] + a2[i];
             b[i + 1] = b[i] - 2 * lsp[i * 2 + 1] * b1[i] + b2[i];
             a2[i] = a1[i];
             a1[i] = a[i];
             b2[i] = b1[i];
             b1[i] = b[i];
         }
 
         if (k)
             ilpc[k - 1] = 2.0 * (a[FILTER_ORDER / 2] + b[FILTER_ORDER / 2]);
     }
 }
 
 static void bl_intrp(EVRCContext *e, float *ex, float delay)
 {
     float *f;
     int offset, i, coef_idx;
     int16_t t;
 
     offset = lrintf(fabs(delay));
 
     t = (offset - delay + 0.5) * 8.0 + 0.5;
     if (t == 8) {
         t = 0;
         offset--;
     }
 
     f = ex - offset - 8;
 
     coef_idx = t * (2 * 8 + 1);
 
     ex[0] = 0.0;
     for (i = 0; i < 2 * 8 + 1; i++)
         ex[0] += e->interpolation_coeffs[coef_idx + i] * f[i];
 }
 
 /*
  * Adaptive codebook excitation.
  *
  * TIA/IS-127 5.2.2.3.3, 4.12.5.2
  */
 static void acb_excitation(EVRCContext *e, float *excitation, float gain,
                            const float delay[3], int length)
 {
     float denom, locdelay, dpr, invl;
     int i;
 
     invl = 1.0 / ((float) length);
     dpr = length;
 
     /* first at-most extra samples */
     denom = (delay[1] - delay[0]) * invl;
     for (i = 0; i < dpr; i++) {
         locdelay = delay[0] + i * denom;
         bl_intrp(e, excitation + i, locdelay);
     }
 
     denom = (delay[2] - delay[1]) * invl;
     /* interpolation */
     for (i = dpr; i < dpr + 10; i++) {
         locdelay = delay[1] + (i - dpr) * denom;
         bl_intrp(e, excitation + i, locdelay);
     }
 
     for (i = 0; i < length; i++)
         excitation[i] *= gain;
 }
 
 static void decode_8_pulses_35bits(const uint16_t *fixed_index, float *cod)
 {
     int i, pos1, pos2, offset;
 
     offset = (fixed_index[3] >> 9) & 3;
 
     for (i = 0; i < 3; i++) {
         pos1 = ((fixed_index[i] & 0x7f) / 11) * 5 + ((i + offset) % 5);
         pos2 = ((fixed_index[i] & 0x7f) % 11) * 5 + ((i + offset) % 5);
 
         cod[pos1] = (fixed_index[i] & 0x80) ? -1.0 : 1.0;
 
         if (pos2 < pos1)
             cod[pos2]  = -cod[pos1];
         else
             cod[pos2] +=  cod[pos1];
     }
 
     pos1 = ((fixed_index[3] & 0x7f) / 11) * 5 + ((3 + offset) % 5);
     pos2 = ((fixed_index[3] & 0x7f) % 11) * 5 + ((4 + offset) % 5);
 
     cod[pos1] = (fixed_index[3] & 0x100) ? -1.0 : 1.0;
     cod[pos2] = (fixed_index[3] & 0x80 ) ? -1.0 : 1.0;
 }
 
 static void decode_3_pulses_10bits(uint16_t fixed_index, float *cod)
 {
     float sign;
     int pos;
 
     sign = (fixed_index & 0x200) ? -1.0 : 1.0;
 
     pos = ((fixed_index        & 0x7) * 7) + 4;
     cod[pos] += sign;
     pos = (((fixed_index >> 3) & 0x7) * 7) + 2;
     cod[pos] -= sign;
     pos = (((fixed_index >> 6) & 0x7) * 7);
     cod[pos] += sign;
 }
 
 /*
  * Reconstruction of ACELP fixed codebook excitation for full and half rate.
  *
  * TIA/IS-127 5.2.3.7
  */
 static void fcb_excitation(EVRCContext *e, const uint16_t *codebook,
                            float *excitation, float pitch_gain,
                            int pitch_lag, int subframe_size)
 {
     int i;
 
     if (e->bitrate == RATE_FULL)
         decode_8_pulses_35bits(codebook, excitation);
     else
         decode_3_pulses_10bits(*codebook, excitation);
 
     pitch_gain = av_clipf(pitch_gain, 0.2, 0.9);
 
     for (i = pitch_lag; i < subframe_size; i++)
         excitation[i] += pitch_gain * excitation[i - pitch_lag];
 }
 
 /**
  * Synthesis of the decoder output signal.
  *
  * param[in]     in              input signal
  * param[in]     filter_coeffs   LPC coefficients
  * param[in/out] memory          synthesis filter memory
  * param         buffer_length   amount of data to process
  * param[out]    samples         output samples
  *
  * TIA/IS-127 5.2.3.15, 5.7.3.4
  */
 static void synthesis_filter(const float *in, const float *filter_coeffs,
                              float *memory, int buffer_length, float *samples)
 {
     int i, j;
 
     for (i = 0; i < buffer_length; i++) {
         samples[i] = in[i];
         for (j = FILTER_ORDER - 1; j > 0; j--) {
             samples[i] -= filter_coeffs[j] * memory[j];
             memory[j]   = memory[j - 1];
         }
         samples[i] -= filter_coeffs[0] * memory[0];
         memory[0]   = samples[i];
     }
 }
 
 static void bandwidth_expansion(float *coeff, const float *inbuf, float gamma)
 {
     double fac = gamma;
     int i;
 
     for (i = 0; i < FILTER_ORDER; i++) {
         coeff[i] = inbuf[i] * fac;
         fac *= gamma;
     }
 }
 
 static void residual_filter(float *output, const float *input,
                             const float *coef, float *memory, int length)
 {
     float sum;
     int i, j;
 
     for (i = 0; i < length; i++) {
         sum = input[i];
 
         for (j = FILTER_ORDER - 1; j > 0; j--) {
             sum      += coef[j] * memory[j];
             memory[j] = memory[j - 1];
         }
         sum += coef[0] * memory[0];
         memory[0] = input[i];
         output[i] = sum;
     }
 }
 
 /*
  * TIA/IS-127 Table 5.9.1-1.
  */
 static const struct PfCoeff {
     float tilt;
     float ltgain;
     float p1;
     float p2;
 } postfilter_coeffs[5] = {
     { 0.0 , 0.0 , 0.0 , 0.0  },
     { 0.0 , 0.0 , 0.57, 0.57 },
     { 0.0 , 0.0 , 0.0 , 0.0  },
     { 0.35, 0.50, 0.50, 0.75 },
     { 0.20, 0.50, 0.57, 0.75 },
 };
 
 /*
  * Adaptive postfilter.
  *
  * TIA/IS-127 5.9
  */
 static void postfilter(EVRCContext *e, float *in, const float *coeff,
                        float *out, int idx, const struct PfCoeff *pfc,
                        int length)
 {
     float wcoef1[FILTER_ORDER], wcoef2[FILTER_ORDER],
           scratch[SUBFRAME_SIZE], temp[SUBFRAME_SIZE],
           mem[SUBFRAME_SIZE];
     float sum1 = 0.0, sum2 = 0.0, gamma, gain;
     float tilt = pfc->tilt;
     int i, n, best;
 
     bandwidth_expansion(wcoef1, coeff, pfc->p1);
     bandwidth_expansion(wcoef2, coeff, pfc->p2);
 
     /* Tilt compensation filter, TIA/IS-127 5.9.1 */
     for (i = 0; i < length - 1; i++)
         sum2 += in[i] * in[i + 1];
     if (sum2 < 0.0)
         tilt = 0.0;
 
     for (i = 0; i < length; i++) {
         scratch[i] = in[i] - tilt * e->last;
         e->last = in[i];
     }
 
     /* Short term residual filter, TIA/IS-127 5.9.2 */
     residual_filter(&e->postfilter_residual[ACB_SIZE], scratch, wcoef1, e->postfilter_fir, length);
 
     /* Long term postfilter */
     best = idx;
     for (i = FFMIN(MIN_DELAY, idx - 3); i <= FFMAX(MAX_DELAY, idx + 3); i++) {
         for (n = ACB_SIZE, sum2 = 0; n < ACB_SIZE + length; n++)
             sum2 += e->postfilter_residual[n] * e->postfilter_residual[n - i];
         if (sum2 > sum1) {
             sum1 = sum2;
             best = i;
         }
     }
 
     for (i = ACB_SIZE, sum1 = 0; i < ACB_SIZE + length; i++)
         sum1 += e->postfilter_residual[i - best] * e->postfilter_residual[i - best];
     for (i = ACB_SIZE, sum2 = 0; i < ACB_SIZE + length; i++)
         sum2 += e->postfilter_residual[i] * e->postfilter_residual[i - best];
 
     if (sum2 * sum1 == 0 || e->bitrate == RATE_QUANT) {
         memcpy(temp, e->postfilter_residual + ACB_SIZE, length * sizeof(float));
     } else {
         gamma = sum2 / sum1;
         if (gamma < 0.5)
             memcpy(temp, e->postfilter_residual + ACB_SIZE, length * sizeof(float));
         else {
             gamma = FFMIN(gamma, 1.0);
 
             for (i = 0; i < length; i++) {
                 temp[i] = e->postfilter_residual[ACB_SIZE + i] + gamma *
                     pfc->ltgain * e->postfilter_residual[ACB_SIZE + i - best];
             }
         }
     }
 
     memcpy(scratch, temp, length * sizeof(float));
     memcpy(mem, e->postfilter_iir, FILTER_ORDER * sizeof(float));
     synthesis_filter(scratch, wcoef2, mem, length, scratch);
 
     /* Gain computation, TIA/IS-127 5.9.4-2 */
     for (i = 0, sum1 = 0, sum2 = 0; i < length; i++) {
         sum1 += in[i] * in[i];
         sum2 += scratch[i] * scratch[i];
     }
     gain = sum2 ? sqrt(sum1 / sum2) : 1.0;
 
     for (i = 0; i < length; i++)
         temp[i] *= gain;
 
     /* Short term postfilter */
     synthesis_filter(temp, wcoef2, e->postfilter_iir, length, out);
 
     memcpy(e->postfilter_residual,
            e->postfilter_residual + length, ACB_SIZE * sizeof(float));
 }
 
 static void frame_erasure(EVRCContext *e, float *samples)
 {
     float ilspf[FILTER_ORDER], ilpc[FILTER_ORDER], idelay[NB_SUBFRAMES],
           tmp[SUBFRAME_SIZE + 6], f;
     int i, j;
 
     for (i = 0; i < FILTER_ORDER; i++) {
         if (e->bitrate != RATE_QUANT)
             e->lspf[i] = e->prev_lspf[i] * 0.875 + 0.125 * (i + 1) * 0.048;
         else
             e->lspf[i] = e->prev_lspf[i];
     }
 
     if (e->prev_error_flag)
         e->avg_acb_gain *= 0.75;
     if (e->bitrate == RATE_FULL)
         memcpy(e->pitch_back, e->pitch, ACB_SIZE * sizeof(float));
     if (e->last_valid_bitrate == RATE_QUANT)
         e->bitrate = RATE_QUANT;
     else
         e->bitrate = RATE_FULL;
 
     if (e->bitrate == RATE_FULL || e->bitrate == RATE_HALF) {
         e->pitch_delay = e->prev_pitch_delay;
     } else {
         float sum = 0;
 
         idelay[0] = idelay[1] = idelay[2] = MIN_DELAY;
 
         for (i = 0; i < NB_SUBFRAMES; i++)
             sum += evrc_energy_quant[e->prev_energy_gain][i];
         sum /= (float) NB_SUBFRAMES;
         sum  = pow(10, sum);
         for (i = 0; i < NB_SUBFRAMES; i++)
             e->energy_vector[i] = sum;
     }
 
     if (fabs(e->pitch_delay - e->prev_pitch_delay) > 15)
         e->prev_pitch_delay = e->pitch_delay;
 
     for (i = 0; i < NB_SUBFRAMES; i++) {
         int subframe_size = subframe_sizes[i];
         int pitch_lag;
 
         interpolate_lsp(ilspf, e->lspf, e->prev_lspf, i);
 
         if (e->bitrate != RATE_QUANT) {
             if (e->avg_acb_gain < 0.3) {
                 idelay[0] = estimation_delay[i];
                 idelay[1] = estimation_delay[i + 1];
                 idelay[2] = estimation_delay[i + 2];
             } else {
                 interpolate_delay(idelay, e->pitch_delay, e->prev_pitch_delay, i);
             }
         }
 
         pitch_lag = lrintf((idelay[1] + idelay[0]) / 2.0);
         decode_predictor_coeffs(ilspf, ilpc);
 
         if (e->bitrate != RATE_QUANT) {
             acb_excitation(e, e->pitch + ACB_SIZE,
                            e->avg_acb_gain, idelay, subframe_size);
             for (j = 0; j < subframe_size; j++)
                 e->pitch[ACB_SIZE + j] *= e->fade_scale;
             e->fade_scale = FFMAX(e->fade_scale - 0.05, 0.0);
         } else {
             for (j = 0; j < subframe_size; j++)
                 e->pitch[ACB_SIZE + j] = e->energy_vector[i];
         }
 
         memcpy(e->pitch, e->pitch + subframe_size, ACB_SIZE * sizeof(float));
 
         if (e->bitrate != RATE_QUANT && e->avg_acb_gain < 0.4) {
             f = 0.1 * e->avg_fcb_gain;
             for (j = 0; j < subframe_size; j++)
                 e->pitch[ACB_SIZE + j] += f;
         } else if (e->bitrate == RATE_QUANT) {
             for (j = 0; j < subframe_size; j++)
                 e->pitch[ACB_SIZE + j] = e->energy_vector[i];
         }
 
         synthesis_filter(e->pitch + ACB_SIZE, ilpc,
                          e->synthesis, subframe_size, tmp);
         postfilter(e, tmp, ilpc, samples, pitch_lag,
                    &postfilter_coeffs[e->bitrate], subframe_size);
 
         samples += subframe_size;
     }
 }
 
 static int evrc_decode_frame(AVCodecContext *avctx, void *data,
                              int *got_frame_ptr, AVPacket *avpkt)
 {
     const uint8_t *buf = avpkt->data;
8f7c7ff2
     AVFrame *frame     = data;
098d3891
     EVRCContext *e     = avctx->priv_data;
     int buf_size       = avpkt->size;
     float ilspf[FILTER_ORDER], ilpc[FILTER_ORDER], idelay[NB_SUBFRAMES];
     float *samples;
     int   i, j, ret, error_flag = 0;
 
8f7c7ff2
     frame->nb_samples = 160;
     if ((ret = ff_get_buffer(avctx, frame)) < 0)
098d3891
         return ret;
8f7c7ff2
     samples = (float *)frame->data[0];
098d3891
 
     if ((e->bitrate = determine_bitrate(avctx, &buf_size, &buf)) == RATE_ERRS) {
         warn_insufficient_frame_quality(avctx, "bitrate cannot be determined.");
         goto erasure;
     }
     if (e->bitrate <= SILENCE || e->bitrate == RATE_QUARTER)
         goto erasure;
     if (e->bitrate == RATE_QUANT && e->last_valid_bitrate == RATE_FULL
                                  && !e->prev_error_flag)
         goto erasure;
 
     init_get_bits(&e->gb, buf, 8 * buf_size);
     memset(&e->frame, 0, sizeof(EVRCAFrame));
 
     unpack_frame(e);
 
     if (e->bitrate != RATE_QUANT) {
         uint8_t *p = (uint8_t *) &e->frame;
         for (i = 0; i < sizeof(EVRCAFrame); i++) {
             if (p[i])
                 break;
         }
         if (i == sizeof(EVRCAFrame))
             goto erasure;
5d7009da
     } else if (e->frame.lsp[0] == 0xf &&
                e->frame.lsp[1] == 0xf &&
098d3891
                e->frame.energy_gain == 0xff) {
         goto erasure;
     }
 
     if (decode_lspf(e) < 0)
         goto erasure;
 
     if (e->bitrate == RATE_FULL || e->bitrate == RATE_HALF) {
         /* Pitch delay parameter checking as per TIA/IS-127 5.1.5.1 */
         if (e->frame.pitch_delay > MAX_DELAY - MIN_DELAY)
             goto erasure;
 
         e->pitch_delay = e->frame.pitch_delay + MIN_DELAY;
 
         /* Delay diff parameter checking as per TIA/IS-127 5.1.5.2 */
         if (e->frame.delay_diff) {
             int p = e->pitch_delay - e->frame.delay_diff + 16;
             if (p < MIN_DELAY || p > MAX_DELAY)
                 goto erasure;
         }
 
         /* Delay contour reconstruction as per TIA/IS-127 5.2.2.2 */
         if (e->frame.delay_diff &&
             e->bitrate == RATE_FULL && e->prev_error_flag) {
             float delay;
 
             memcpy(e->pitch, e->pitch_back, ACB_SIZE * sizeof(float));
 
             delay = e->prev_pitch_delay;
             e->prev_pitch_delay = delay - e->frame.delay_diff + 16.0;
 
             if (fabs(e->pitch_delay - delay) > 15)
                 delay = e->pitch_delay;
 
             for (i = 0; i < NB_SUBFRAMES; i++) {
                 int subframe_size = subframe_sizes[i];
 
                 interpolate_delay(idelay, delay, e->prev_pitch_delay, i);
                 acb_excitation(e, e->pitch + ACB_SIZE, e->avg_acb_gain, idelay, subframe_size);
                 memcpy(e->pitch, e->pitch + subframe_size, ACB_SIZE * sizeof(float));
             }
         }
 
         /* Smoothing of the decoded delay as per TIA/IS-127 5.2.2.5 */
         if (fabs(e->pitch_delay - e->prev_pitch_delay) > 15)
             e->prev_pitch_delay = e->pitch_delay;
 
         e->avg_acb_gain = e->avg_fcb_gain = 0.0;
     } else {
         idelay[0] = idelay[1] = idelay[2] = MIN_DELAY;
 
         /* Decode frame energy vectors as per TIA/IS-127 5.7.2 */
         for (i = 0; i < NB_SUBFRAMES; i++)
             e->energy_vector[i] = pow(10, evrc_energy_quant[e->frame.energy_gain][i]);
         e->prev_energy_gain = e->frame.energy_gain;
     }
 
     for (i = 0; i < NB_SUBFRAMES; i++) {
         float tmp[SUBFRAME_SIZE + 6] = { 0 };
         int subframe_size = subframe_sizes[i];
         int pitch_lag;
 
         interpolate_lsp(ilspf, e->lspf, e->prev_lspf, i);
 
         if (e->bitrate != RATE_QUANT)
             interpolate_delay(idelay, e->pitch_delay, e->prev_pitch_delay, i);
 
         pitch_lag = lrintf((idelay[1] + idelay[0]) / 2.0);
         decode_predictor_coeffs(ilspf, ilpc);
 
         /* Bandwidth expansion as per TIA/IS-127 5.2.3.3 */
         if (e->frame.lpc_flag && e->prev_error_flag)
             bandwidth_expansion(ilpc, ilpc, 0.75);
 
         if (e->bitrate != RATE_QUANT) {
             float acb_sum, f;
 
             f = exp((e->bitrate == RATE_HALF ? 0.5 : 0.25)
                          * (e->frame.fcb_gain[i] + 1));
             acb_sum = pitch_gain_vq[e->frame.acb_gain[i]];
             e->avg_acb_gain += acb_sum / NB_SUBFRAMES;
             e->avg_fcb_gain += f / NB_SUBFRAMES;
 
             acb_excitation(e, e->pitch + ACB_SIZE,
                            acb_sum, idelay, subframe_size);
             fcb_excitation(e, e->frame.fcb_shape[i], tmp,
                            acb_sum, pitch_lag, subframe_size);
 
             /* Total excitation generation as per TIA/IS-127 5.2.3.9 */
             for (j = 0; j < subframe_size; j++)
                 e->pitch[ACB_SIZE + j] += f * tmp[j];
             e->fade_scale = FFMIN(e->fade_scale + 0.2, 1.0);
         } else {
             for (j = 0; j < subframe_size; j++)
                 e->pitch[ACB_SIZE + j] = e->energy_vector[i];
         }
 
         memcpy(e->pitch, e->pitch + subframe_size, ACB_SIZE * sizeof(float));
 
         synthesis_filter(e->pitch + ACB_SIZE, ilpc,
                          e->synthesis, subframe_size, tmp);
         postfilter(e, tmp, ilpc, samples, pitch_lag,
                    &postfilter_coeffs[e->bitrate], subframe_size);
 
         samples += subframe_size;
     }
 
     if (error_flag) {
 erasure:
         error_flag = 1;
         av_log(avctx, AV_LOG_WARNING, "frame erasure\n");
         frame_erasure(e, samples);
     }
 
     memcpy(e->prev_lspf, e->lspf, sizeof(e->prev_lspf));
     e->prev_error_flag    = error_flag;
     e->last_valid_bitrate = e->bitrate;
 
     if (e->bitrate != RATE_QUANT)
         e->prev_pitch_delay = e->pitch_delay;
 
8f7c7ff2
     samples = (float *)frame->data[0];
098d3891
     for (i = 0; i < 160; i++)
         samples[i] /= 32768;
 
     *got_frame_ptr   = 1;
 
     return avpkt->size;
 }
 
 AVCodec ff_evrc_decoder = {
     .name           = "evrc",
     .type           = AVMEDIA_TYPE_AUDIO,
     .id             = AV_CODEC_ID_EVRC,
     .init           = evrc_decode_init,
     .decode         = evrc_decode_frame,
     .capabilities   = CODEC_CAP_DR1,
     .priv_data_size = sizeof(EVRCContext),
     .long_name      = NULL_IF_CONFIG_SMALL("EVRC (Enhanced Variable Rate Codec)"),
 };