libavcodec/ffv1enc.c
e4255eaf
 /*
  * FFV1 encoder
  *
  * Copyright (c) 2003-2012 Michael Niedermayer <michaelni@gmx.at>
  *
  * This file is part of FFmpeg.
  *
  * FFmpeg is free software; you can redistribute it and/or
  * modify it under the terms of the GNU Lesser General Public
  * License as published by the Free Software Foundation; either
  * version 2.1 of the License, or (at your option) any later version.
  *
  * FFmpeg is distributed in the hope that it will be useful,
  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  * Lesser General Public License for more details.
  *
  * You should have received a copy of the GNU Lesser General Public
  * License along with FFmpeg; if not, write to the Free Software
  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  */
 
 /**
  * @file
  * FF Video Codec 1 (a lossless codec) encoder
  */
 
 #include "libavutil/avassert.h"
 #include "libavutil/crc.h"
 #include "libavutil/opt.h"
 #include "libavutil/imgutils.h"
 #include "libavutil/pixdesc.h"
 #include "libavutil/timer.h"
 #include "avcodec.h"
 #include "internal.h"
be38aaba
 #include "put_bits.h"
e4255eaf
 #include "rangecoder.h"
 #include "golomb.h"
 #include "mathops.h"
 #include "ffv1.h"
 
 static const int8_t quant5_10bit[256] = {
      0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  1,  1,  1,  1,  1,
      1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,
      1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,
      1,  1,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,
      2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,
      2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,
      2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,
      2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,
     -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
     -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
     -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
     -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
     -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -1,
     -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
     -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
     -1, -1, -1, -1, -1, -1, -0, -0, -0, -0, -0, -0, -0, -0, -0, -0,
 };
 
 static const int8_t quant5[256] = {
      0,  1,  1,  1,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,
      2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,
      2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,
      2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,
      2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,
      2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,
      2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,
      2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,
     -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
     -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
     -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
     -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
     -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
     -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
     -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
     -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -1, -1, -1,
 };
 
 static const int8_t quant9_10bit[256] = {
      0,  0,  0,  0,  0,  1,  1,  1,  1,  1,  1,  1,  1,  2,  2,  2,
      2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  3,  3,  3,  3,  3,
      3,  3,  3,  3,  3,  3,  3,  3,  3,  3,  3,  3,  3,  3,  3,  3,
      3,  3,  3,  3,  3,  3,  3,  3,  4,  4,  4,  4,  4,  4,  4,  4,
      4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,
      4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,
      4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,
      4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,
     -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,
     -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,
     -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,
     -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,
     -4, -4, -4, -4, -4, -4, -4, -4, -4, -3, -3, -3, -3, -3, -3, -3,
     -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3,
     -3, -3, -3, -3, -3, -3, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
     -2, -2, -2, -2, -1, -1, -1, -1, -1, -1, -1, -1, -0, -0, -0, -0,
 };
 
 static const int8_t quant11[256] = {
      0,  1,  2,  2,  2,  3,  3,  3,  3,  3,  3,  3,  4,  4,  4,  4,
      4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,
      4,  4,  4,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,
      5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,
      5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,
      5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,
      5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,
      5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,
     -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5,
     -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5,
     -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5,
     -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5,
     -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5,
     -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -4, -4,
     -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,
     -4, -4, -4, -4, -4, -3, -3, -3, -3, -3, -3, -3, -2, -2, -2, -1,
 };
 
 static const uint8_t ver2_state[256] = {
       0,  10,  10,  10,  10,  16,  16,  16, 28,   16,  16,  29,  42,  49,  20,  49,
      59,  25,  26,  26,  27,  31,  33,  33, 33,   34,  34,  37,  67,  38,  39,  39,
      40,  40,  41,  79,  43,  44,  45,  45, 48,   48,  64,  50,  51,  52,  88,  52,
      53,  74,  55,  57,  58,  58,  74,  60, 101,  61,  62,  84,  66,  66,  68,  69,
      87,  82,  71,  97,  73,  73,  82,  75, 111,  77,  94,  78,  87,  81,  83,  97,
      85,  83,  94,  86,  99,  89,  90,  99, 111,  92,  93,  134, 95,  98,  105, 98,
     105, 110, 102, 108, 102, 118, 103, 106, 106, 113, 109, 112, 114, 112, 116, 125,
     115, 116, 117, 117, 126, 119, 125, 121, 121, 123, 145, 124, 126, 131, 127, 129,
     165, 130, 132, 138, 133, 135, 145, 136, 137, 139, 146, 141, 143, 142, 144, 148,
     147, 155, 151, 149, 151, 150, 152, 157, 153, 154, 156, 168, 158, 162, 161, 160,
     172, 163, 169, 164, 166, 184, 167, 170, 177, 174, 171, 173, 182, 176, 180, 178,
     175, 189, 179, 181, 186, 183, 192, 185, 200, 187, 191, 188, 190, 197, 193, 196,
     197, 194, 195, 196, 198, 202, 199, 201, 210, 203, 207, 204, 205, 206, 208, 214,
     209, 211, 221, 212, 213, 215, 224, 216, 217, 218, 219, 220, 222, 228, 223, 225,
     226, 224, 227, 229, 240, 230, 231, 232, 233, 234, 235, 236, 238, 239, 237, 242,
     241, 243, 242, 244, 245, 246, 247, 248, 249, 250, 251, 252, 252, 253, 254, 255,
 };
 
 static void find_best_state(uint8_t best_state[256][256],
                             const uint8_t one_state[256])
 {
     int i, j, k, m;
     double l2tab[256];
 
     for (i = 1; i < 256; i++)
         l2tab[i] = log2(i / 256.0);
 
     for (i = 0; i < 256; i++) {
         double best_len[256];
         double p = i / 256.0;
 
         for (j = 0; j < 256; j++)
             best_len[j] = 1 << 30;
 
         for (j = FFMAX(i - 10, 1); j < FFMIN(i + 11, 256); j++) {
             double occ[256] = { 0 };
             double len      = 0;
             occ[j] = 1.0;
             for (k = 0; k < 256; k++) {
                 double newocc[256] = { 0 };
                 for (m = 1; m < 256; m++)
                     if (occ[m]) {
                         len -=occ[m]*(     p *l2tab[    m]
                                       + (1-p)*l2tab[256-m]);
                     }
                 if (len < best_len[k]) {
                     best_len[k]      = len;
                     best_state[i][k] = j;
                 }
                 for (m = 0; m < 256; m++)
                     if (occ[m]) {
                         newocc[      one_state[      m]] += occ[m] * p;
                         newocc[256 - one_state[256 - m]] += occ[m] * (1 - p);
                     }
                 memcpy(occ, newocc, sizeof(occ));
             }
         }
     }
 }
 
 static av_always_inline av_flatten void put_symbol_inline(RangeCoder *c,
                                                           uint8_t *state, int v,
                                                           int is_signed,
                                                           uint64_t rc_stat[256][2],
                                                           uint64_t rc_stat2[32][2])
 {
     int i;
 
 #define put_rac(C, S, B)                        \
     do {                                        \
         if (rc_stat) {                          \
             rc_stat[*(S)][B]++;                 \
             rc_stat2[(S) - state][B]++;         \
         }                                       \
         put_rac(C, S, B);                       \
     } while (0)
 
     if (v) {
         const int a = FFABS(v);
         const int e = av_log2(a);
         put_rac(c, state + 0, 0);
         if (e <= 9) {
             for (i = 0; i < e; i++)
                 put_rac(c, state + 1 + i, 1);  // 1..10
             put_rac(c, state + 1 + i, 0);
 
             for (i = e - 1; i >= 0; i--)
                 put_rac(c, state + 22 + i, (a >> i) & 1);  // 22..31
 
             if (is_signed)
                 put_rac(c, state + 11 + e, v < 0);  // 11..21
         } else {
             for (i = 0; i < e; i++)
                 put_rac(c, state + 1 + FFMIN(i, 9), 1);  // 1..10
             put_rac(c, state + 1 + 9, 0);
 
             for (i = e - 1; i >= 0; i--)
                 put_rac(c, state + 22 + FFMIN(i, 9), (a >> i) & 1);  // 22..31
 
             if (is_signed)
                 put_rac(c, state + 11 + 10, v < 0);  // 11..21
         }
     } else {
         put_rac(c, state + 0, 1);
     }
 #undef put_rac
 }
 
 static av_noinline void put_symbol(RangeCoder *c, uint8_t *state,
                                    int v, int is_signed)
 {
     put_symbol_inline(c, state, v, is_signed, NULL, NULL);
 }
 
 
 static inline void put_vlc_symbol(PutBitContext *pb, VlcState *const state,
                                   int v, int bits)
 {
     int i, k, code;
     v = fold(v - state->bias, bits);
 
     i = state->count;
     k = 0;
     while (i < state->error_sum) { // FIXME: optimize
         k++;
         i += i;
     }
 
aa760b17
     av_assert2(k <= 13);
e4255eaf
 
 #if 0 // JPEG LS
     if (k == 0 && 2 * state->drift <= -state->count)
         code = v ^ (-1);
     else
         code = v;
 #else
     code = v ^ ((2 * state->drift + state->count) >> 31);
 #endif
 
     av_dlog(NULL, "v:%d/%d bias:%d error:%d drift:%d count:%d k:%d\n", v, code,
             state->bias, state->error_sum, state->drift, state->count, k);
     set_sr_golomb(pb, code, k, 12, bits);
 
     update_vlc_state(state, v);
 }
 
 static av_always_inline int encode_line(FFV1Context *s, int w,
                                         int16_t *sample[3],
                                         int plane_index, int bits)
 {
     PlaneContext *const p = &s->plane[plane_index];
     RangeCoder *const c   = &s->c;
     int x;
     int run_index = s->run_index;
     int run_count = 0;
     int run_mode  = 0;
 
     if (s->ac) {
         if (c->bytestream_end - c->bytestream < w * 20) {
             av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
4a2a4524
             return AVERROR_INVALIDDATA;
e4255eaf
         }
     } else {
         if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) < w * 4) {
             av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
4a2a4524
             return AVERROR_INVALIDDATA;
e4255eaf
         }
     }
 
     for (x = 0; x < w; x++) {
         int diff, context;
 
         context = get_context(p, sample[0] + x, sample[1] + x, sample[2] + x);
         diff    = sample[0][x] - predict(sample[0] + x, sample[1] + x);
 
         if (context < 0) {
             context = -context;
             diff    = -diff;
         }
 
         diff = fold(diff, bits);
 
         if (s->ac) {
             if (s->flags & CODEC_FLAG_PASS1) {
                 put_symbol_inline(c, p->state[context], diff, 1, s->rc_stat,
                                   s->rc_stat2[p->quant_table_index][context]);
             } else {
                 put_symbol_inline(c, p->state[context], diff, 1, NULL, NULL);
             }
         } else {
             if (context == 0)
                 run_mode = 1;
 
             if (run_mode) {
                 if (diff) {
                     while (run_count >= 1 << ff_log2_run[run_index]) {
                         run_count -= 1 << ff_log2_run[run_index];
                         run_index++;
                         put_bits(&s->pb, 1, 1);
                     }
 
                     put_bits(&s->pb, 1 + ff_log2_run[run_index], run_count);
                     if (run_index)
                         run_index--;
                     run_count = 0;
                     run_mode  = 0;
                     if (diff > 0)
                         diff--;
                 } else {
                     run_count++;
                 }
             }
 
             av_dlog(s->avctx, "count:%d index:%d, mode:%d, x:%d pos:%d\n",
                     run_count, run_index, run_mode, x,
                     (int)put_bits_count(&s->pb));
 
             if (run_mode == 0)
                 put_vlc_symbol(&s->pb, &p->vlc_state[context], diff, bits);
         }
     }
     if (run_mode) {
         while (run_count >= 1 << ff_log2_run[run_index]) {
             run_count -= 1 << ff_log2_run[run_index];
             run_index++;
             put_bits(&s->pb, 1, 1);
         }
 
         if (run_count)
             put_bits(&s->pb, 1, 1);
     }
     s->run_index = run_index;
 
     return 0;
 }
 
 static void encode_plane(FFV1Context *s, uint8_t *src, int w, int h,
                          int stride, int plane_index)
 {
     int x, y, i;
     const int ring_size = s->avctx->context_model ? 3 : 2;
     int16_t *sample[3];
     s->run_index = 0;
 
     memset(s->sample_buffer, 0, ring_size * (w + 6) * sizeof(*s->sample_buffer));
 
     for (y = 0; y < h; y++) {
         for (i = 0; i < ring_size; i++)
             sample[i] = s->sample_buffer + (w + 6) * ((h + i - y) % ring_size) + 3;
 
         sample[0][-1]= sample[1][0  ];
         sample[1][ w]= sample[1][w-1];
 // { START_TIMER
         if (s->bits_per_raw_sample <= 8) {
             for (x = 0; x < w; x++)
                 sample[0][x] = src[x + stride * y];
             encode_line(s, w, sample, plane_index, 8);
         } else {
             if (s->packed_at_lsb) {
                 for (x = 0; x < w; x++) {
                     sample[0][x] = ((uint16_t*)(src + stride*y))[x];
                 }
             } else {
                 for (x = 0; x < w; x++) {
                     sample[0][x] = ((uint16_t*)(src + stride*y))[x] >> (16 - s->bits_per_raw_sample);
                 }
             }
             encode_line(s, w, sample, plane_index, s->bits_per_raw_sample);
         }
 // STOP_TIMER("encode line") }
     }
 }
 
 static void encode_rgb_frame(FFV1Context *s, uint8_t *src[3], int w, int h, int stride[3])
 {
     int x, y, p, i;
     const int ring_size = s->avctx->context_model ? 3 : 2;
     int16_t *sample[4][3];
c6ef7641
     int lbd    = s->bits_per_raw_sample <= 8;
     int bits   = s->bits_per_raw_sample > 0 ? s->bits_per_raw_sample : 8;
e4255eaf
     int offset = 1 << bits;
0f13cd31
 
e4255eaf
     s->run_index = 0;
 
0f13cd31
     memset(s->sample_buffer, 0, ring_size * MAX_PLANES *
                                 (w + 6) * sizeof(*s->sample_buffer));
e4255eaf
 
     for (y = 0; y < h; y++) {
         for (i = 0; i < ring_size; i++)
0f13cd31
             for (p = 0; p < MAX_PLANES; p++)
e4255eaf
                 sample[p][i]= s->sample_buffer + p*ring_size*(w+6) + ((h+i-y)%ring_size)*(w+6) + 3;
 
         for (x = 0; x < w; x++) {
             int b, g, r, av_uninit(a);
             if (lbd) {
                 unsigned v = *((uint32_t*)(src[0] + x*4 + stride[0]*y));
                 b =  v        & 0xFF;
                 g = (v >>  8) & 0xFF;
                 r = (v >> 16) & 0xFF;
                 a =  v >> 24;
             } else {
                 b = *((uint16_t*)(src[0] + x*2 + stride[0]*y));
                 g = *((uint16_t*)(src[1] + x*2 + stride[1]*y));
                 r = *((uint16_t*)(src[2] + x*2 + stride[2]*y));
             }
 
             b -= g;
             r -= g;
             g += (b + r) >> 2;
             b += offset;
             r += offset;
 
             sample[0][0][x] = g;
             sample[1][0][x] = b;
             sample[2][0][x] = r;
             sample[3][0][x] = a;
         }
         for (p = 0; p < 3 + s->transparency; p++) {
             sample[p][0][-1] = sample[p][1][0  ];
             sample[p][1][ w] = sample[p][1][w-1];
             if (lbd)
0f13cd31
                 encode_line(s, w, sample[p], (p + 1) / 2, 9);
e4255eaf
             else
0f13cd31
                 encode_line(s, w, sample[p], (p + 1) / 2, bits + 1);
e4255eaf
         }
     }
 }
 
 static void write_quant_table(RangeCoder *c, int16_t *quant_table)
 {
     int last = 0;
     int i;
     uint8_t state[CONTEXT_SIZE];
     memset(state, 128, sizeof(state));
 
     for (i = 1; i < 128; i++)
         if (quant_table[i] != quant_table[i - 1]) {
             put_symbol(c, state, i - last - 1, 0);
             last = i;
         }
     put_symbol(c, state, i - last - 1, 0);
 }
 
 static void write_quant_tables(RangeCoder *c,
                                int16_t quant_table[MAX_CONTEXT_INPUTS][256])
 {
     int i;
     for (i = 0; i < 5; i++)
         write_quant_table(c, quant_table[i]);
 }
 
 static void write_header(FFV1Context *f)
 {
     uint8_t state[CONTEXT_SIZE];
     int i, j;
     RangeCoder *const c = &f->slice_context[0]->c;
 
     memset(state, 128, sizeof(state));
 
     if (f->version < 2) {
         put_symbol(c, state, f->version, 0);
         put_symbol(c, state, f->ac, 0);
         if (f->ac > 1) {
             for (i = 1; i < 256; i++)
                 put_symbol(c, state,
                            f->state_transition[i] - c->one_state[i], 1);
         }
         put_symbol(c, state, f->colorspace, 0); //YUV cs type
         if (f->version > 0)
             put_symbol(c, state, f->bits_per_raw_sample, 0);
         put_rac(c, state, f->chroma_planes);
         put_symbol(c, state, f->chroma_h_shift, 0);
         put_symbol(c, state, f->chroma_v_shift, 0);
         put_rac(c, state, f->transparency);
 
         write_quant_tables(c, f->quant_table);
     } else if (f->version < 3) {
         put_symbol(c, state, f->slice_count, 0);
         for (i = 0; i < f->slice_count; i++) {
             FFV1Context *fs = f->slice_context[i];
             put_symbol(c, state,
                        (fs->slice_x      + 1) * f->num_h_slices / f->width, 0);
             put_symbol(c, state,
                        (fs->slice_y      + 1) * f->num_v_slices / f->height, 0);
             put_symbol(c, state,
                        (fs->slice_width  + 1) * f->num_h_slices / f->width - 1,
                        0);
             put_symbol(c, state,
                        (fs->slice_height + 1) * f->num_v_slices / f->height - 1,
                        0);
             for (j = 0; j < f->plane_count; j++) {
                 put_symbol(c, state, f->plane[j].quant_table_index, 0);
                 av_assert0(f->plane[j].quant_table_index == f->avctx->context_model);
             }
         }
     }
 }
 
0f13cd31
 static int write_extradata(FFV1Context *f)
e4255eaf
 {
     RangeCoder *const c = &f->c;
     uint8_t state[CONTEXT_SIZE];
     int i, j, k;
     uint8_t state2[32][CONTEXT_SIZE];
     unsigned v;
 
     memset(state2, 128, sizeof(state2));
     memset(state, 128, sizeof(state));
 
0f13cd31
     f->avctx->extradata_size = 10000 + 4 +
                                     (11 * 11 * 5 * 5 * 5 + 11 * 11 * 11) * 32;
     f->avctx->extradata = av_malloc(f->avctx->extradata_size);
e4255eaf
     ff_init_range_encoder(c, f->avctx->extradata, f->avctx->extradata_size);
     ff_build_rac_states(c, 0.05 * (1LL << 32), 256 - 8);
 
     put_symbol(c, state, f->version, 0);
     if (f->version > 2) {
         if (f->version == 3)
             f->minor_version = 2;
         put_symbol(c, state, f->minor_version, 0);
     }
0f13cd31
 
e4255eaf
     put_symbol(c, state, f->ac, 0);
     if (f->ac > 1)
         for (i = 1; i < 256; i++)
             put_symbol(c, state, f->state_transition[i] - c->one_state[i], 1);
0f13cd31
 
e4255eaf
     put_symbol(c, state, f->colorspace, 0); // YUV cs type
     put_symbol(c, state, f->bits_per_raw_sample, 0);
     put_rac(c, state, f->chroma_planes);
     put_symbol(c, state, f->chroma_h_shift, 0);
     put_symbol(c, state, f->chroma_v_shift, 0);
     put_rac(c, state, f->transparency);
     put_symbol(c, state, f->num_h_slices - 1, 0);
     put_symbol(c, state, f->num_v_slices - 1, 0);
 
     put_symbol(c, state, f->quant_table_count, 0);
     for (i = 0; i < f->quant_table_count; i++)
         write_quant_tables(c, f->quant_tables[i]);
 
     for (i = 0; i < f->quant_table_count; i++) {
         for (j = 0; j < f->context_count[i] * CONTEXT_SIZE; j++)
             if (f->initial_states[i] && f->initial_states[i][0][j] != 128)
                 break;
         if (j < f->context_count[i] * CONTEXT_SIZE) {
             put_rac(c, state, 1);
             for (j = 0; j < f->context_count[i]; j++)
                 for (k = 0; k < CONTEXT_SIZE; k++) {
                     int pred = j ? f->initial_states[i][j - 1][k] : 128;
                     put_symbol(c, state2[k],
                                (int8_t)(f->initial_states[i][j][k] - pred), 1);
                 }
         } else {
             put_rac(c, state, 0);
         }
     }
 
     if (f->version > 2) {
         put_symbol(c, state, f->ec, 0);
     }
 
     f->avctx->extradata_size = ff_rac_terminate(c);
     v = av_crc(av_crc_get_table(AV_CRC_32_IEEE), 0, f->avctx->extradata, f->avctx->extradata_size);
     AV_WL32(f->avctx->extradata + f->avctx->extradata_size, v);
     f->avctx->extradata_size += 4;
 
     return 0;
 }
 
 static int sort_stt(FFV1Context *s, uint8_t stt[256])
 {
     int i, i2, changed, print = 0;
 
     do {
         changed = 0;
         for (i = 12; i < 244; i++) {
             for (i2 = i + 1; i2 < 245 && i2 < i + 4; i2++) {
 
 #define COST(old, new)                                      \
     s->rc_stat[old][0] * -log2((256 - (new)) / 256.0) +     \
     s->rc_stat[old][1] * -log2((new)         / 256.0)
 
 #define COST2(old, new)                         \
     COST(old, new) + COST(256 - (old), 256 - (new))
 
                 double size0 = COST2(i,  i) + COST2(i2, i2);
                 double sizeX = COST2(i, i2) + COST2(i2, i);
c2cbc80a
                 if (size0 - sizeX > size0*(1e-14) && i != 128 && i2 != 128) {
e4255eaf
                     int j;
                     FFSWAP(int, stt[i], stt[i2]);
                     FFSWAP(int, s->rc_stat[i][0], s->rc_stat[i2][0]);
                     FFSWAP(int, s->rc_stat[i][1], s->rc_stat[i2][1]);
                     if (i != 256 - i2) {
                         FFSWAP(int, stt[256 - i], stt[256 - i2]);
                         FFSWAP(int, s->rc_stat[256 - i][0], s->rc_stat[256 - i2][0]);
                         FFSWAP(int, s->rc_stat[256 - i][1], s->rc_stat[256 - i2][1]);
                     }
                     for (j = 1; j < 256; j++) {
                         if (stt[j] == i)
                             stt[j] = i2;
                         else if (stt[j] == i2)
                             stt[j] = i;
                         if (i != 256 - i2) {
                             if (stt[256 - j] == 256 - i)
                                 stt[256 - j] = 256 - i2;
                             else if (stt[256 - j] == 256 - i2)
                                 stt[256 - j] = 256 - i;
                         }
                     }
                     print = changed = 1;
                 }
             }
         }
     } while (changed);
     return print;
 }
 
 static av_cold int encode_init(AVCodecContext *avctx)
 {
     FFV1Context *s = avctx->priv_data;
0f13cd31
     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(avctx->pix_fmt);
4a2a4524
     int i, j, k, m, ret;
e4255eaf
 
     ffv1_common_init(avctx);
 
     s->version = 0;
 
     if ((avctx->flags & (CODEC_FLAG_PASS1|CODEC_FLAG_PASS2)) || avctx->slices>1)
         s->version = FFMAX(s->version, 2);
 
     if (avctx->level == 3) {
         s->version = 3;
     }
 
     if (s->ec < 0) {
         s->ec = (s->version >= 3);
     }
 
     if (s->version >= 2 && avctx->strict_std_compliance > FF_COMPLIANCE_EXPERIMENTAL) {
         av_log(avctx, AV_LOG_ERROR, "Version 2 needed for requested features but version 2 is experimental and not enabled\n");
         return AVERROR_INVALIDDATA;
     }
 
     s->ac = avctx->coder_type > 0 ? 2 : 0;
 
     s->plane_count = 3;
     switch(avctx->pix_fmt) {
     case AV_PIX_FMT_YUV444P9:
     case AV_PIX_FMT_YUV422P9:
     case AV_PIX_FMT_YUV420P9:
         if (!avctx->bits_per_raw_sample)
             s->bits_per_raw_sample = 9;
     case AV_PIX_FMT_YUV444P10:
     case AV_PIX_FMT_YUV420P10:
     case AV_PIX_FMT_YUV422P10:
         s->packed_at_lsb = 1;
         if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
             s->bits_per_raw_sample = 10;
     case AV_PIX_FMT_GRAY16:
     case AV_PIX_FMT_YUV444P16:
     case AV_PIX_FMT_YUV422P16:
     case AV_PIX_FMT_YUV420P16:
         if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample) {
             s->bits_per_raw_sample = 16;
         } else if (!s->bits_per_raw_sample) {
             s->bits_per_raw_sample = avctx->bits_per_raw_sample;
         }
         if (s->bits_per_raw_sample <= 8) {
             av_log(avctx, AV_LOG_ERROR, "bits_per_raw_sample invalid\n");
             return AVERROR_INVALIDDATA;
         }
         if (!s->ac && avctx->coder_type == -1) {
             av_log(avctx, AV_LOG_INFO, "bits_per_raw_sample > 8, forcing coder 1\n");
             s->ac = 2;
         }
         if (!s->ac) {
             av_log(avctx, AV_LOG_ERROR, "bits_per_raw_sample of more than 8 needs -coder 1 currently\n");
4a2a4524
             return AVERROR(ENOSYS);
e4255eaf
         }
         s->version = FFMAX(s->version, 1);
     case AV_PIX_FMT_GRAY8:
     case AV_PIX_FMT_YUV444P:
     case AV_PIX_FMT_YUV440P:
     case AV_PIX_FMT_YUV422P:
     case AV_PIX_FMT_YUV420P:
     case AV_PIX_FMT_YUV411P:
     case AV_PIX_FMT_YUV410P:
         s->chroma_planes = desc->nb_components < 3 ? 0 : 1;
         s->colorspace = 0;
         break;
     case AV_PIX_FMT_YUVA444P:
     case AV_PIX_FMT_YUVA422P:
     case AV_PIX_FMT_YUVA420P:
         s->chroma_planes = 1;
         s->colorspace = 0;
         s->transparency = 1;
         break;
     case AV_PIX_FMT_RGB32:
         s->colorspace = 1;
         s->transparency = 1;
         break;
     case AV_PIX_FMT_0RGB32:
         s->colorspace = 1;
         break;
     case AV_PIX_FMT_GBRP9:
         if (!avctx->bits_per_raw_sample)
             s->bits_per_raw_sample = 9;
     case AV_PIX_FMT_GBRP10:
         if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
             s->bits_per_raw_sample = 10;
     case AV_PIX_FMT_GBRP12:
         if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
             s->bits_per_raw_sample = 12;
     case AV_PIX_FMT_GBRP14:
         if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
             s->bits_per_raw_sample = 14;
         else if (!s->bits_per_raw_sample)
             s->bits_per_raw_sample = avctx->bits_per_raw_sample;
         s->colorspace = 1;
         s->chroma_planes = 1;
         s->version = FFMAX(s->version, 1);
         break;
     default:
         av_log(avctx, AV_LOG_ERROR, "format not supported\n");
4a2a4524
         return AVERROR(ENOSYS);
e4255eaf
     }
     if (s->transparency) {
         av_log(avctx, AV_LOG_WARNING, "Storing alpha plane, this will require a recent FFV1 decoder to playback!\n");
     }
     if (avctx->context_model > 1U) {
         av_log(avctx, AV_LOG_ERROR, "Invalid context model %d, valid values are 0 and 1\n", avctx->context_model);
         return AVERROR(EINVAL);
     }
 
     if (s->ac > 1)
         for (i = 1; i < 256; i++)
             s->state_transition[i] = ver2_state[i];
 
     for (i = 0; i < 256; i++) {
         s->quant_table_count = 2;
         if (s->bits_per_raw_sample <= 8) {
             s->quant_tables[0][0][i]=           quant11[i];
             s->quant_tables[0][1][i]=        11*quant11[i];
             s->quant_tables[0][2][i]=     11*11*quant11[i];
             s->quant_tables[1][0][i]=           quant11[i];
             s->quant_tables[1][1][i]=        11*quant11[i];
             s->quant_tables[1][2][i]=     11*11*quant5 [i];
             s->quant_tables[1][3][i]=   5*11*11*quant5 [i];
             s->quant_tables[1][4][i]= 5*5*11*11*quant5 [i];
         } else {
             s->quant_tables[0][0][i]=           quant9_10bit[i];
             s->quant_tables[0][1][i]=        11*quant9_10bit[i];
             s->quant_tables[0][2][i]=     11*11*quant9_10bit[i];
             s->quant_tables[1][0][i]=           quant9_10bit[i];
             s->quant_tables[1][1][i]=        11*quant9_10bit[i];
             s->quant_tables[1][2][i]=     11*11*quant5_10bit[i];
             s->quant_tables[1][3][i]=   5*11*11*quant5_10bit[i];
             s->quant_tables[1][4][i]= 5*5*11*11*quant5_10bit[i];
         }
     }
     s->context_count[0] = (11 * 11 * 11        + 1) / 2;
     s->context_count[1] = (11 * 11 * 5 * 5 * 5 + 1) / 2;
     memcpy(s->quant_table, s->quant_tables[avctx->context_model],
            sizeof(s->quant_table));
 
     for (i = 0; i < s->plane_count; i++) {
         PlaneContext *const p = &s->plane[i];
 
         memcpy(p->quant_table, s->quant_table, sizeof(p->quant_table));
         p->quant_table_index = avctx->context_model;
         p->context_count     = s->context_count[p->quant_table_index];
     }
 
0f13cd31
     if ((ret = ffv1_allocate_initial_states(s)) < 0)
         return ret;
e4255eaf
 
     avctx->coded_frame = &s->picture;
     if (!s->transparency)
         s->plane_count = 2;
     avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_h_shift, &s->chroma_v_shift);
     s->picture_number = 0;
 
     if (avctx->flags & (CODEC_FLAG_PASS1 | CODEC_FLAG_PASS2)) {
         for (i = 0; i < s->quant_table_count; i++) {
             s->rc_stat2[i] = av_mallocz(s->context_count[i] *
                                         sizeof(*s->rc_stat2[i]));
             if (!s->rc_stat2[i])
                 return AVERROR(ENOMEM);
         }
     }
     if (avctx->stats_in) {
         char *p = avctx->stats_in;
         uint8_t best_state[256][256];
         int gob_count = 0;
         char *next;
 
         av_assert0(s->version >= 2);
 
         for (;;) {
             for (j = 0; j < 256; j++)
                 for (i = 0; i < 2; i++) {
                     s->rc_stat[j][i] = strtol(p, &next, 0);
                     if (next == p) {
                         av_log(avctx, AV_LOG_ERROR,
                                "2Pass file invalid at %d %d [%s]\n", j, i, p);
4a2a4524
                         return AVERROR_INVALIDDATA;
e4255eaf
                     }
                     p = next;
                 }
             for (i = 0; i < s->quant_table_count; i++)
                 for (j = 0; j < s->context_count[i]; j++) {
                     for (k = 0; k < 32; k++)
                         for (m = 0; m < 2; m++) {
                             s->rc_stat2[i][j][k][m] = strtol(p, &next, 0);
                             if (next == p) {
                                 av_log(avctx, AV_LOG_ERROR,
                                        "2Pass file invalid at %d %d %d %d [%s]\n",
                                        i, j, k, m, p);
                                 return AVERROR_INVALIDDATA;
                             }
                             p = next;
                         }
                 }
             gob_count = strtol(p, &next, 0);
             if (next == p || gob_count <= 0) {
                 av_log(avctx, AV_LOG_ERROR, "2Pass file invalid\n");
                 return AVERROR_INVALIDDATA;
             }
             p = next;
             while (*p == '\n' || *p == ' ')
                 p++;
             if (p[0] == 0)
                 break;
         }
         sort_stt(s, s->state_transition);
 
         find_best_state(best_state, s->state_transition);
 
         for (i = 0; i < s->quant_table_count; i++) {
0aa1d848
             for (k = 0; k < 32; k++) {
                 double a=0, b=0;
                 int jp = 0;
                 for (j = 0; j < s->context_count[i]; j++) {
e4255eaf
                     double p = 128;
0aa1d848
                     if (s->rc_stat2[i][j][k][0] + s->rc_stat2[i][j][k][1] > 200 && j || a+b > 200) {
                         if (a+b)
                             p = 256.0 * b / (a + b);
                         s->initial_states[i][jp][k] =
                             best_state[av_clip(round(p), 1, 255)][av_clip((a + b) / gob_count, 0, 255)];
                         for(jp++; jp<j; jp++)
                             s->initial_states[i][jp][k] = s->initial_states[i][jp-1][k];
                         a=b=0;
                     }
                     a += s->rc_stat2[i][j][k][0];
                     b += s->rc_stat2[i][j][k][1];
                     if (a+b) {
                         p = 256.0 * b / (a + b);
e4255eaf
                     }
                     s->initial_states[i][j][k] =
0aa1d848
                         best_state[av_clip(round(p), 1, 255)][av_clip((a + b) / gob_count, 0, 255)];
e4255eaf
                 }
0aa1d848
             }
e4255eaf
         }
     }
 
     if (s->version > 1) {
8bf16e67
         s->num_v_slices = (avctx->width > 352 || avctx->height > 288 || !avctx->slices) ? 2 : 1;
         for (; s->num_v_slices < 9; s->num_v_slices++) {
e4255eaf
             for (s->num_h_slices = s->num_v_slices; s->num_h_slices < 2*s->num_v_slices; s->num_h_slices++) {
                 if (avctx->slices == s->num_h_slices * s->num_v_slices && avctx->slices <= 64 || !avctx->slices)
                     goto slices_ok;
             }
         }
0f13cd31
         av_log(avctx, AV_LOG_ERROR,
                "Unsupported number %d of slices requested, please specify a "
                "supported number with -slices (ex:4,6,9,12,16, ...)\n",
                avctx->slices);
         return AVERROR(ENOSYS);
 slices_ok:
         write_extradata(s);
e4255eaf
     }
 
4a2a4524
     if ((ret = ffv1_init_slice_contexts(s)) < 0)
         return ret;
99ea47fe
     if ((ret = ffv1_init_slices_state(s)) < 0)
4a2a4524
         return ret;
e4255eaf
 
 #define STATS_OUT_SIZE 1024 * 1024 * 6
     if (avctx->flags & CODEC_FLAG_PASS1) {
         avctx->stats_out = av_mallocz(STATS_OUT_SIZE);
b77d94dc
         if (!avctx->stats_out)
             return AVERROR(ENOMEM);
e4255eaf
         for (i = 0; i < s->quant_table_count; i++)
             for (j = 0; j < s->slice_count; j++) {
                 FFV1Context *sf = s->slice_context[j];
                 av_assert0(!sf->rc_stat2[i]);
                 sf->rc_stat2[i] = av_mallocz(s->context_count[i] *
                                              sizeof(*sf->rc_stat2[i]));
                 if (!sf->rc_stat2[i])
                     return AVERROR(ENOMEM);
             }
     }
 
     return 0;
 }
 
 static void encode_slice_header(FFV1Context *f, FFV1Context *fs)
 {
     RangeCoder *c = &fs->c;
     uint8_t state[CONTEXT_SIZE];
     int j;
     memset(state, 128, sizeof(state));
 
     put_symbol(c, state, (fs->slice_x     +1)*f->num_h_slices / f->width   , 0);
     put_symbol(c, state, (fs->slice_y     +1)*f->num_v_slices / f->height  , 0);
     put_symbol(c, state, (fs->slice_width +1)*f->num_h_slices / f->width -1, 0);
     put_symbol(c, state, (fs->slice_height+1)*f->num_v_slices / f->height-1, 0);
     for (j=0; j<f->plane_count; j++) {
         put_symbol(c, state, f->plane[j].quant_table_index, 0);
         av_assert0(f->plane[j].quant_table_index == f->avctx->context_model);
     }
0f13cd31
     if (!f->picture.interlaced_frame)
         put_symbol(c, state, 3, 0);
     else
         put_symbol(c, state, 1 + !f->picture.top_field_first, 0);
e4255eaf
     put_symbol(c, state, f->picture.sample_aspect_ratio.num, 0);
     put_symbol(c, state, f->picture.sample_aspect_ratio.den, 0);
 }
 
 static int encode_slice(AVCodecContext *c, void *arg)
 {
     FFV1Context *fs  = *(void **)arg;
     FFV1Context *f   = fs->avctx->priv_data;
     int width        = fs->slice_width;
     int height       = fs->slice_height;
     int x            = fs->slice_x;
     int y            = fs->slice_y;
     AVFrame *const p = &f->picture;
     const int ps     = av_pix_fmt_desc_get(c->pix_fmt)->comp[0].step_minus1 + 1;
 
     if (p->key_frame)
         ffv1_clear_slice_state(f, fs);
     if (f->version > 2) {
         encode_slice_header(f, fs);
     }
     if (!fs->ac) {
         if (f->version > 2)
0f13cd31
             put_rac(&fs->c, (uint8_t[]) { 129 }, 0);
aa760b17
         fs->ac_byte_count = f->version > 2 || (!x && !y) ? ff_rac_terminate(&fs->c) : 0;
         init_put_bits(&fs->pb,
                       fs->c.bytestream_start + fs->ac_byte_count,
0f13cd31
                       fs->c.bytestream_end - fs->c.bytestream_start - fs->ac_byte_count);
e4255eaf
     }
 
     if (f->colorspace == 0) {
         const int chroma_width  = -((-width) >> f->chroma_h_shift);
         const int chroma_height = -((-height) >> f->chroma_v_shift);
         const int cx            = x >> f->chroma_h_shift;
         const int cy            = y >> f->chroma_v_shift;
 
         encode_plane(fs, p->data[0] + ps*x + y*p->linesize[0], width, height, p->linesize[0], 0);
 
         if (f->chroma_planes) {
             encode_plane(fs, p->data[1] + ps*cx+cy*p->linesize[1], chroma_width, chroma_height, p->linesize[1], 1);
             encode_plane(fs, p->data[2] + ps*cx+cy*p->linesize[2], chroma_width, chroma_height, p->linesize[2], 1);
         }
         if (fs->transparency)
             encode_plane(fs, p->data[3] + ps*x + y*p->linesize[3], width, height, p->linesize[3], 2);
     } else {
         uint8_t *planes[3] = {p->data[0] + ps*x + y*p->linesize[0],
                               p->data[1] + ps*x + y*p->linesize[1],
                               p->data[2] + ps*x + y*p->linesize[2]};
         encode_rgb_frame(fs, planes, width, height, p->linesize);
     }
     emms_c();
 
     return 0;
 }
 
 static int encode_frame(AVCodecContext *avctx, AVPacket *pkt,
                         const AVFrame *pict, int *got_packet)
 {
     FFV1Context *f      = avctx->priv_data;
     RangeCoder *const c = &f->slice_context[0]->c;
     AVFrame *const p    = &f->picture;
     int used_count      = 0;
     uint8_t keystate    = 128;
     uint8_t *buf_p;
     int i, ret;
 
     if ((ret = ff_alloc_packet2(avctx, pkt, avctx->width*avctx->height*((8*2+1+1)*4)/8
                                             + FF_MIN_BUFFER_SIZE)) < 0)
         return ret;
 
     ff_init_range_encoder(c, pkt->data, pkt->size);
     ff_build_rac_states(c, 0.05 * (1LL << 32), 256 - 8);
 
     *p           = *pict;
     p->pict_type = AV_PICTURE_TYPE_I;
 
     if (avctx->gop_size == 0 || f->picture_number % avctx->gop_size == 0) {
         put_rac(c, &keystate, 1);
         p->key_frame = 1;
         f->gob_count++;
         write_header(f);
     } else {
         put_rac(c, &keystate, 0);
         p->key_frame = 0;
     }
 
     if (f->ac > 1) {
         int i;
         for (i = 1; i < 256; i++) {
             c->one_state[i]        = f->state_transition[i];
             c->zero_state[256 - i] = 256 - c->one_state[i];
         }
     }
 
     for (i = 1; i < f->slice_count; i++) {
         FFV1Context *fs = f->slice_context[i];
         uint8_t *start  = pkt->data + (pkt->size - used_count) * (int64_t)i / f->slice_count;
         int len         = pkt->size / f->slice_count;
         ff_init_range_encoder(&fs->c, start, len);
     }
     avctx->execute(avctx, encode_slice, &f->slice_context[0], NULL,
                    f->slice_count, sizeof(void *));
 
     buf_p = pkt->data;
     for (i = 0; i < f->slice_count; i++) {
         FFV1Context *fs = f->slice_context[i];
         int bytes;
 
         if (fs->ac) {
0f13cd31
             uint8_t state = 129;
e4255eaf
             put_rac(&fs->c, &state, 0);
             bytes = ff_rac_terminate(&fs->c);
         } else {
             flush_put_bits(&fs->pb); // FIXME: nicer padding
0f13cd31
             bytes = fs->ac_byte_count + (put_bits_count(&fs->pb) + 7) / 8;
e4255eaf
         }
         if (i > 0 || f->version > 2) {
             av_assert0(bytes < pkt->size / f->slice_count);
             memmove(buf_p, fs->c.bytestream_start, bytes);
             av_assert0(bytes < (1 << 24));
             AV_WB24(buf_p + bytes, bytes);
             bytes += 3;
         }
         if (f->ec) {
             unsigned v;
             buf_p[bytes++] = 0;
             v = av_crc(av_crc_get_table(AV_CRC_32_IEEE), 0, buf_p, bytes);
0f13cd31
             AV_WL32(buf_p + bytes, v);
             bytes += 4;
e4255eaf
         }
         buf_p += bytes;
     }
 
     if ((avctx->flags & CODEC_FLAG_PASS1) && (f->picture_number & 31) == 0) {
         int j, k, m;
         char *p   = avctx->stats_out;
         char *end = p + STATS_OUT_SIZE;
 
         memset(f->rc_stat, 0, sizeof(f->rc_stat));
         for (i = 0; i < f->quant_table_count; i++)
             memset(f->rc_stat2[i], 0, f->context_count[i] * sizeof(*f->rc_stat2[i]));
 
         for (j = 0; j < f->slice_count; j++) {
             FFV1Context *fs = f->slice_context[j];
             for (i = 0; i < 256; i++) {
                 f->rc_stat[i][0] += fs->rc_stat[i][0];
                 f->rc_stat[i][1] += fs->rc_stat[i][1];
             }
             for (i = 0; i < f->quant_table_count; i++) {
                 for (k = 0; k < f->context_count[i]; k++)
                     for (m = 0; m < 32; m++) {
                         f->rc_stat2[i][k][m][0] += fs->rc_stat2[i][k][m][0];
                         f->rc_stat2[i][k][m][1] += fs->rc_stat2[i][k][m][1];
                     }
             }
         }
 
         for (j = 0; j < 256; j++) {
             snprintf(p, end - p, "%" PRIu64 " %" PRIu64 " ",
                      f->rc_stat[j][0], f->rc_stat[j][1]);
             p += strlen(p);
         }
         snprintf(p, end - p, "\n");
 
         for (i = 0; i < f->quant_table_count; i++) {
             for (j = 0; j < f->context_count[i]; j++)
                 for (m = 0; m < 32; m++) {
                     snprintf(p, end - p, "%" PRIu64 " %" PRIu64 " ",
                              f->rc_stat2[i][j][m][0], f->rc_stat2[i][j][m][1]);
                     p += strlen(p);
                 }
         }
         snprintf(p, end - p, "%d\n", f->gob_count);
     } else if (avctx->flags & CODEC_FLAG_PASS1)
         avctx->stats_out[0] = '\0';
 
     f->picture_number++;
     pkt->size   = buf_p - pkt->data;
     pkt->flags |= AV_PKT_FLAG_KEY * p->key_frame;
     *got_packet = 1;
 
     return 0;
 }
 
 #define OFFSET(x) offsetof(FFV1Context, x)
 #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
 static const AVOption options[] = {
aa760b17
     { "slicecrc", "Protect slices with CRCs", OFFSET(ec), AV_OPT_TYPE_INT, { .i64 = -1 }, -1, 1, VE },
0f13cd31
     { NULL }
e4255eaf
 };
 
 static const AVClass class = {
     .class_name = "ffv1 encoder",
     .item_name  = av_default_item_name,
     .option     = options,
     .version    = LIBAVUTIL_VERSION_INT,
 };
 
 static const AVCodecDefault ffv1_defaults[] = {
0f13cd31
     { "coder", "-1" },
e4255eaf
     { NULL },
 };
 
 AVCodec ff_ffv1_encoder = {
     .name           = "ffv1",
     .type           = AVMEDIA_TYPE_VIDEO,
     .id             = AV_CODEC_ID_FFV1,
     .priv_data_size = sizeof(FFV1Context),
     .init           = encode_init,
     .encode2        = encode_frame,
71f7b22d
     .close          = ffv1_close,
e4255eaf
     .capabilities   = CODEC_CAP_SLICE_THREADS,
     .pix_fmts       = (const enum AVPixelFormat[]) {
aa760b17
         AV_PIX_FMT_YUV420P,   AV_PIX_FMT_YUVA420P,  AV_PIX_FMT_YUVA422P,  AV_PIX_FMT_YUV444P,
         AV_PIX_FMT_YUVA444P,  AV_PIX_FMT_YUV440P,   AV_PIX_FMT_YUV422P,   AV_PIX_FMT_YUV411P,
         AV_PIX_FMT_YUV410P,   AV_PIX_FMT_0RGB32,    AV_PIX_FMT_RGB32,     AV_PIX_FMT_YUV420P16,
         AV_PIX_FMT_YUV422P16, AV_PIX_FMT_YUV444P16, AV_PIX_FMT_YUV444P9,  AV_PIX_FMT_YUV422P9,
         AV_PIX_FMT_YUV420P9,  AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10,
         AV_PIX_FMT_GRAY16,    AV_PIX_FMT_GRAY8,     AV_PIX_FMT_GBRP9,     AV_PIX_FMT_GBRP10,
         AV_PIX_FMT_GBRP12,    AV_PIX_FMT_GBRP14,
e4255eaf
         AV_PIX_FMT_NONE
0f13cd31
 
e4255eaf
     },
     .long_name      = NULL_IF_CONFIG_SMALL("FFmpeg video codec #1"),
0f13cd31
     .defaults       = ffv1_defaults,
e4255eaf
     .priv_class     = &class,
 };