libavcodec/aaccoder.c
78e65cd7
 /*
  * AAC coefficients encoder
  * Copyright (C) 2008-2009 Konstantin Shishkov
  *
  * This file is part of FFmpeg.
  *
  * FFmpeg is free software; you can redistribute it and/or
  * modify it under the terms of the GNU Lesser General Public
  * License as published by the Free Software Foundation; either
  * version 2.1 of the License, or (at your option) any later version.
  *
  * FFmpeg is distributed in the hope that it will be useful,
  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  * Lesser General Public License for more details.
  *
  * You should have received a copy of the GNU Lesser General Public
  * License along with FFmpeg; if not, write to the Free Software
  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  */
 
 /**
ba87f080
  * @file
78e65cd7
  * AAC coefficients encoder
  */
 
 /***********************************
  *              TODOs:
  * speedup quantizer selection
  * add sane pulse detection
  ***********************************/
 
083e715f
 #include "libavutil/libm.h" // brought forward to work around cygwin header breakage
 
144c5e3d
 #include <float.h>
85770d6e
 #include "libavutil/mathematics.h"
78e65cd7
 #include "avcodec.h"
 #include "put_bits.h"
 #include "aac.h"
 #include "aacenc.h"
 #include "aactab.h"
 
 /** bits needed to code codebook run value for long windows */
 static const uint8_t run_value_bits_long[64] = {
      5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,
      5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5, 10,
     10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
     10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 15
 };
 
 /** bits needed to code codebook run value for short windows */
 static const uint8_t run_value_bits_short[16] = {
     3, 3, 3, 3, 3, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 9
 };
 
99d61d34
 static const uint8_t *run_value_bits[2] = {
78e65cd7
     run_value_bits_long, run_value_bits_short
 };
 
 
 /**
  * Quantize one coefficient.
  * @return absolute value of the quantized coefficient
  * @see 3GPP TS26.403 5.6.2 "Scalefactor determination"
  */
 static av_always_inline int quant(float coef, const float Q)
 {
3d51be01
     float a = coef * Q;
     return sqrtf(a * sqrtf(a)) + 0.4054;
78e65cd7
 }
 
4d986b71
 static void quantize_bands(int *out, const float *in, const float *scaled,
99d61d34
                            int size, float Q34, int is_signed, int maxval)
78e65cd7
 {
     int i;
     double qc;
     for (i = 0; i < size; i++) {
         qc = scaled[i] * Q34;
4d986b71
         out[i] = (int)FFMIN(qc + 0.4054, (double)maxval);
78e65cd7
         if (is_signed && in[i] < 0.0f) {
4d986b71
             out[i] = -out[i];
78e65cd7
         }
     }
 }
 
99d61d34
 static void abs_pow34_v(float *out, const float *in, const int size)
78e65cd7
 {
 #ifndef USE_REALLY_FULL_SEARCH
     int i;
3d51be01
     for (i = 0; i < size; i++) {
         float a = fabsf(in[i]);
         out[i] = sqrtf(a * sqrtf(a));
     }
78e65cd7
 #endif /* USE_REALLY_FULL_SEARCH */
 }
 
 static const uint8_t aac_cb_range [12] = {0, 3, 3, 3, 3, 9, 9, 8, 8, 13, 13, 17};
 static const uint8_t aac_cb_maxval[12] = {0, 1, 1, 2, 2, 4, 4, 7, 7, 12, 12, 16};
 
 /**
  * Calculate rate distortion cost for quantizing with given codebook
  *
  * @return quantization distortion
  */
1676b099
 static av_always_inline float quantize_and_encode_band_cost_template(
                                 struct AACEncContext *s,
508f092a
                                 PutBitContext *pb, const float *in,
99d61d34
                                 const float *scaled, int size, int scale_idx,
                                 int cb, const float lambda, const float uplim,
1676b099
                                 int *bits, int BT_ZERO, int BT_UNSIGNED,
                                 int BT_PAIR, int BT_ESC)
78e65cd7
 {
80d44277
     const int q_idx = POW_SF2_ZERO - scale_idx + SCALE_ONE_POS - SCALE_DIV_512;
     const float Q   = ff_aac_pow2sf_tab [q_idx];
     const float Q34 = ff_aac_pow34sf_tab[q_idx];
     const float IQ  = ff_aac_pow2sf_tab [POW_SF2_ZERO + scale_idx - SCALE_ONE_POS + SCALE_DIV_512];
78e65cd7
     const float CLIPPED_ESCAPE = 165140.0f*IQ;
57cc1ad3
     int i, j;
78e65cd7
     float cost = 0;
1676b099
     const int dim = BT_PAIR ? 2 : 4;
78e65cd7
     int resbits = 0;
99d61d34
     const int range  = aac_cb_range[cb];
78e65cd7
     const int maxval = aac_cb_maxval[cb];
4d986b71
     int off;
78e65cd7
 
1676b099
     if (BT_ZERO) {
fd257dc4
         for (i = 0; i < size; i++)
0bd9aa44
             cost += in[i]*in[i];
a5762c9b
         if (bits)
             *bits = 0;
0bd9aa44
         return cost * lambda;
78e65cd7
     }
508f092a
     if (!scaled) {
         abs_pow34_v(s->scoefs, in, size);
         scaled = s->scoefs;
     }
1676b099
     quantize_bands(s->qcoefs, in, scaled, size, Q34, !BT_UNSIGNED, maxval);
     if (BT_UNSIGNED) {
4d986b71
         off = 0;
     } else {
         off = maxval;
     }
fd257dc4
     for (i = 0; i < size; i += dim) {
78e65cd7
         const float *vec;
4d986b71
         int *quants = s->qcoefs + i;
         int curidx = 0;
         int curbits;
         float rd = 0.0f;
         for (j = 0; j < dim; j++) {
             curidx *= range;
             curidx += quants[j] + off;
         }
4afedfd8
         curbits =  ff_aac_spectral_bits[cb-1][curidx];
         vec     = &ff_aac_codebook_vectors[cb-1][curidx*dim];
         if (BT_UNSIGNED) {
57cc1ad3
             for (j = 0; j < dim; j++) {
                 float t = fabsf(in[i+j]);
4afedfd8
                 float di;
57cc1ad3
                 if (BT_ESC && vec[j] == 64.0f) { //FIXME: slow
4afedfd8
                     if (t >= CLIPPED_ESCAPE) {
                         di = t - CLIPPED_ESCAPE;
                         curbits += 21;
fd257dc4
                     } else {
4afedfd8
                         int c = av_clip(quant(t, Q), 0, 8191);
                         di = t - c*cbrtf(c)*IQ;
                         curbits += av_log2(c)*2 - 4 + 1;
78e65cd7
                     }
4afedfd8
                 } else {
57cc1ad3
                     di = t - vec[j]*IQ;
78e65cd7
                 }
57cc1ad3
                 if (vec[j] != 0.0f)
4afedfd8
                     curbits++;
                 rd += di*di;
             }
         } else {
57cc1ad3
             for (j = 0; j < dim; j++) {
                 float di = in[i+j] - vec[j]*IQ;
4afedfd8
                 rd += di*di;
78e65cd7
             }
4afedfd8
         }
4d986b71
         cost    += rd * lambda + curbits;
         resbits += curbits;
fd257dc4
         if (cost >= uplim)
78e65cd7
             return uplim;
508f092a
         if (pb) {
6d9f1b67
             put_bits(pb, ff_aac_spectral_bits[cb-1][curidx], ff_aac_spectral_codes[cb-1][curidx]);
             if (BT_UNSIGNED)
                 for (j = 0; j < dim; j++)
                     if (ff_aac_codebook_vectors[cb-1][curidx*dim+j] != 0.0f)
                         put_bits(pb, 1, in[i+j] < 0.0f);
             if (BT_ESC) {
                 for (j = 0; j < 2; j++) {
                     if (ff_aac_codebook_vectors[cb-1][curidx*2+j] == 64.0f) {
                         int coef = av_clip(quant(fabsf(in[i+j]), Q), 0, 8191);
                         int len = av_log2(coef);
 
                         put_bits(pb, len - 4 + 1, (1 << (len - 4 + 1)) - 2);
                         put_bits(pb, len, coef & ((1 << len) - 1));
                     }
78e65cd7
                 }
             }
         }
     }
508f092a
 
     if (bits)
         *bits = resbits;
     return cost;
 }
1676b099
 
 #define QUANTIZE_AND_ENCODE_BAND_COST_FUNC(NAME, BT_ZERO, BT_UNSIGNED, BT_PAIR, BT_ESC) \
 static float quantize_and_encode_band_cost_ ## NAME(                                        \
                                 struct AACEncContext *s,                                \
                                 PutBitContext *pb, const float *in,                     \
                                 const float *scaled, int size, int scale_idx,           \
                                 int cb, const float lambda, const float uplim,          \
                                 int *bits) {                                            \
     return quantize_and_encode_band_cost_template(                                      \
                                 s, pb, in, scaled, size, scale_idx,                     \
                                 BT_ESC ? ESC_BT : cb, lambda, uplim, bits,              \
                                 BT_ZERO, BT_UNSIGNED, BT_PAIR, BT_ESC);                 \
 }
 
 QUANTIZE_AND_ENCODE_BAND_COST_FUNC(ZERO,  1, 0, 0, 0)
 QUANTIZE_AND_ENCODE_BAND_COST_FUNC(SQUAD, 0, 0, 0, 0)
 QUANTIZE_AND_ENCODE_BAND_COST_FUNC(UQUAD, 0, 1, 0, 0)
 QUANTIZE_AND_ENCODE_BAND_COST_FUNC(SPAIR, 0, 0, 1, 0)
 QUANTIZE_AND_ENCODE_BAND_COST_FUNC(UPAIR, 0, 1, 1, 0)
 QUANTIZE_AND_ENCODE_BAND_COST_FUNC(ESC,   0, 1, 1, 1)
 
a2310d1e
 static float (*const quantize_and_encode_band_cost_arr[])(
1676b099
                                 struct AACEncContext *s,
                                 PutBitContext *pb, const float *in,
                                 const float *scaled, int size, int scale_idx,
                                 int cb, const float lambda, const float uplim,
                                 int *bits) = {
     quantize_and_encode_band_cost_ZERO,
     quantize_and_encode_band_cost_SQUAD,
     quantize_and_encode_band_cost_SQUAD,
     quantize_and_encode_band_cost_UQUAD,
     quantize_and_encode_band_cost_UQUAD,
     quantize_and_encode_band_cost_SPAIR,
     quantize_and_encode_band_cost_SPAIR,
     quantize_and_encode_band_cost_UPAIR,
     quantize_and_encode_band_cost_UPAIR,
     quantize_and_encode_band_cost_UPAIR,
     quantize_and_encode_band_cost_UPAIR,
     quantize_and_encode_band_cost_ESC,
 };
 
 #define quantize_and_encode_band_cost(                                  \
                                 s, pb, in, scaled, size, scale_idx, cb, \
                                 lambda, uplim, bits)                    \
     quantize_and_encode_band_cost_arr[cb](                              \
                                 s, pb, in, scaled, size, scale_idx, cb, \
                                 lambda, uplim, bits)
 
508f092a
 static float quantize_band_cost(struct AACEncContext *s, const float *in,
                                 const float *scaled, int size, int scale_idx,
                                 int cb, const float lambda, const float uplim,
                                 int *bits)
 {
     return quantize_and_encode_band_cost(s, NULL, in, scaled, size, scale_idx,
                                          cb, lambda, uplim, bits);
 }
 
 static void quantize_and_encode_band(struct AACEncContext *s, PutBitContext *pb,
                                      const float *in, int size, int scale_idx,
                                      int cb, const float lambda)
 {
     quantize_and_encode_band_cost(s, pb, in, NULL, size, scale_idx, cb, lambda,
                                   INFINITY, NULL);
78e65cd7
 }
 
0ecfa7b7
 static float find_max_val(int group_len, int swb_size, const float *scaled) {
05e659ef
     float maxval = 0.0f;
0ecfa7b7
     int w2, i;
05e659ef
     for (w2 = 0; w2 < group_len; w2++) {
         for (i = 0; i < swb_size; i++) {
             maxval = FFMAX(maxval, scaled[w2*128+i]);
         }
     }
0ecfa7b7
     return maxval;
 }
 
 static int find_min_book(float maxval, int sf) {
d70fa4c4
     float Q = ff_aac_pow2sf_tab[POW_SF2_ZERO - sf + SCALE_ONE_POS - SCALE_DIV_512];
0ecfa7b7
     float Q34 = sqrtf(Q * sqrtf(Q));
     int qmaxval, cb;
05e659ef
     qmaxval = maxval * Q34 + 0.4054f;
     if      (qmaxval ==  0) cb = 0;
     else if (qmaxval ==  1) cb = 1;
     else if (qmaxval ==  2) cb = 3;
     else if (qmaxval <=  4) cb = 5;
     else if (qmaxval <=  7) cb = 7;
     else if (qmaxval <= 12) cb = 9;
     else                    cb = 11;
     return cb;
 }
 
78e65cd7
 /**
  * structure used in optimal codebook search
  */
 typedef struct BandCodingPath {
     int prev_idx; ///< pointer to the previous path point
     float cost;   ///< path cost
     int run;
 } BandCodingPath;
 
 /**
  * Encode band info for single window group bands.
  */
 static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce,
                                      int win, int group_len, const float lambda)
 {
     BandCodingPath path[120][12];
e65ab9d9
     int w, swb, cb, start, size;
78e65cd7
     int i, j;
99d61d34
     const int max_sfb  = sce->ics.max_sfb;
78e65cd7
     const int run_bits = sce->ics.num_windows == 1 ? 5 : 3;
99d61d34
     const int run_esc  = (1 << run_bits) - 1;
78e65cd7
     int idx, ppos, count;
     int stackrun[120], stackcb[120], stack_len;
     float next_minrd = INFINITY;
     int next_mincb = 0;
 
     abs_pow34_v(s->scoefs, sce->coeffs, 1024);
     start = win*128;
fd257dc4
     for (cb = 0; cb < 12; cb++) {
99d61d34
         path[0][cb].cost     = 0.0f;
78e65cd7
         path[0][cb].prev_idx = -1;
99d61d34
         path[0][cb].run      = 0;
78e65cd7
     }
fd257dc4
     for (swb = 0; swb < max_sfb; swb++) {
78e65cd7
         size = sce->ics.swb_sizes[swb];
fd257dc4
         if (sce->zeroes[win*16 + swb]) {
             for (cb = 0; cb < 12; cb++) {
78e65cd7
                 path[swb+1][cb].prev_idx = cb;
99d61d34
                 path[swb+1][cb].cost     = path[swb][cb].cost;
                 path[swb+1][cb].run      = path[swb][cb].run + 1;
78e65cd7
             }
fd257dc4
         } else {
78e65cd7
             float minrd = next_minrd;
             int mincb = next_mincb;
             next_minrd = INFINITY;
             next_mincb = 0;
fd257dc4
             for (cb = 0; cb < 12; cb++) {
78e65cd7
                 float cost_stay_here, cost_get_here;
                 float rd = 0.0f;
fd257dc4
                 for (w = 0; w < group_len; w++) {
0bc01cc9
                     FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(win+w)*16+swb];
78e65cd7
                     rd += quantize_band_cost(s, sce->coeffs + start + w*128,
                                              s->scoefs + start + w*128, size,
                                              sce->sf_idx[(win+w)*16+swb], cb,
                                              lambda / band->threshold, INFINITY, NULL);
                 }
                 cost_stay_here = path[swb][cb].cost + rd;
                 cost_get_here  = minrd              + rd + run_bits + 4;
fd257dc4
                 if (   run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run]
99d61d34
                     != run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run+1])
78e65cd7
                     cost_stay_here += run_bits;
                 if (cost_get_here < cost_stay_here) {
                     path[swb+1][cb].prev_idx = mincb;
                     path[swb+1][cb].cost     = cost_get_here;
                     path[swb+1][cb].run      = 1;
                 } else {
                     path[swb+1][cb].prev_idx = cb;
                     path[swb+1][cb].cost     = cost_stay_here;
                     path[swb+1][cb].run      = path[swb][cb].run + 1;
                 }
                 if (path[swb+1][cb].cost < next_minrd) {
                     next_minrd = path[swb+1][cb].cost;
                     next_mincb = cb;
                 }
             }
         }
         start += sce->ics.swb_sizes[swb];
     }
 
     //convert resulting path from backward-linked list
     stack_len = 0;
99d61d34
     idx       = 0;
c8f47d8b
     for (cb = 1; cb < 12; cb++)
fd257dc4
         if (path[max_sfb][cb].cost < path[max_sfb][idx].cost)
78e65cd7
             idx = cb;
     ppos = max_sfb;
99d61d34
     while (ppos > 0) {
78e65cd7
         cb = idx;
         stackrun[stack_len] = path[ppos][cb].run;
         stackcb [stack_len] = cb;
         idx = path[ppos-path[ppos][cb].run+1][cb].prev_idx;
         ppos -= path[ppos][cb].run;
         stack_len++;
     }
     //perform actual band info encoding
     start = 0;
fd257dc4
     for (i = stack_len - 1; i >= 0; i--) {
78e65cd7
         put_bits(&s->pb, 4, stackcb[i]);
         count = stackrun[i];
         memset(sce->zeroes + win*16 + start, !stackcb[i], count);
         //XXX: memset when band_type is also uint8_t
fd257dc4
         for (j = 0; j < count; j++) {
78e65cd7
             sce->band_type[win*16 + start] =  stackcb[i];
             start++;
         }
99d61d34
         while (count >= run_esc) {
78e65cd7
             put_bits(&s->pb, run_bits, run_esc);
             count -= run_esc;
         }
         put_bits(&s->pb, run_bits, count);
     }
 }
 
759510e6
 static void codebook_trellis_rate(AACEncContext *s, SingleChannelElement *sce,
                                   int win, int group_len, const float lambda)
 {
     BandCodingPath path[120][12];
e65ab9d9
     int w, swb, cb, start, size;
759510e6
     int i, j;
     const int max_sfb  = sce->ics.max_sfb;
     const int run_bits = sce->ics.num_windows == 1 ? 5 : 3;
     const int run_esc  = (1 << run_bits) - 1;
     int idx, ppos, count;
     int stackrun[120], stackcb[120], stack_len;
207bf44d
     float next_minbits = INFINITY;
759510e6
     int next_mincb = 0;
 
     abs_pow34_v(s->scoefs, sce->coeffs, 1024);
     start = win*128;
     for (cb = 0; cb < 12; cb++) {
         path[0][cb].cost     = run_bits+4;
         path[0][cb].prev_idx = -1;
         path[0][cb].run      = 0;
     }
     for (swb = 0; swb < max_sfb; swb++) {
         size = sce->ics.swb_sizes[swb];
         if (sce->zeroes[win*16 + swb]) {
8dbaa5bd
             float cost_stay_here = path[swb][0].cost;
207bf44d
             float cost_get_here  = next_minbits + run_bits + 4;
8dbaa5bd
             if (   run_value_bits[sce->ics.num_windows == 8][path[swb][0].run]
                 != run_value_bits[sce->ics.num_windows == 8][path[swb][0].run+1])
                 cost_stay_here += run_bits;
             if (cost_get_here < cost_stay_here) {
                 path[swb+1][0].prev_idx = next_mincb;
                 path[swb+1][0].cost     = cost_get_here;
                 path[swb+1][0].run      = 1;
             } else {
                 path[swb+1][0].prev_idx = 0;
                 path[swb+1][0].cost     = cost_stay_here;
                 path[swb+1][0].run      = path[swb][0].run + 1;
             }
207bf44d
             next_minbits = path[swb+1][0].cost;
8dbaa5bd
             next_mincb = 0;
             for (cb = 1; cb < 12; cb++) {
                 path[swb+1][cb].cost = 61450;
                 path[swb+1][cb].prev_idx = -1;
                 path[swb+1][cb].run = 0;
759510e6
             }
         } else {
207bf44d
             float minbits = next_minbits;
759510e6
             int mincb = next_mincb;
             int startcb = sce->band_type[win*16+swb];
207bf44d
             next_minbits = INFINITY;
759510e6
             next_mincb = 0;
             for (cb = 0; cb < startcb; cb++) {
                 path[swb+1][cb].cost = 61450;
                 path[swb+1][cb].prev_idx = -1;
                 path[swb+1][cb].run = 0;
             }
             for (cb = startcb; cb < 12; cb++) {
                 float cost_stay_here, cost_get_here;
207bf44d
                 float bits = 0.0f;
759510e6
                 for (w = 0; w < group_len; w++) {
207bf44d
                     bits += quantize_band_cost(s, sce->coeffs + start + w*128,
                                                s->scoefs + start + w*128, size,
                                                sce->sf_idx[(win+w)*16+swb], cb,
                                                0, INFINITY, NULL);
759510e6
                 }
207bf44d
                 cost_stay_here = path[swb][cb].cost + bits;
                 cost_get_here  = minbits            + bits + run_bits + 4;
759510e6
                 if (   run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run]
                     != run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run+1])
                     cost_stay_here += run_bits;
                 if (cost_get_here < cost_stay_here) {
                     path[swb+1][cb].prev_idx = mincb;
                     path[swb+1][cb].cost     = cost_get_here;
                     path[swb+1][cb].run      = 1;
                 } else {
                     path[swb+1][cb].prev_idx = cb;
                     path[swb+1][cb].cost     = cost_stay_here;
                     path[swb+1][cb].run      = path[swb][cb].run + 1;
                 }
207bf44d
                 if (path[swb+1][cb].cost < next_minbits) {
                     next_minbits = path[swb+1][cb].cost;
759510e6
                     next_mincb = cb;
                 }
             }
         }
         start += sce->ics.swb_sizes[swb];
     }
 
     //convert resulting path from backward-linked list
     stack_len = 0;
     idx       = 0;
     for (cb = 1; cb < 12; cb++)
         if (path[max_sfb][cb].cost < path[max_sfb][idx].cost)
             idx = cb;
     ppos = max_sfb;
     while (ppos > 0) {
688cb712
         av_assert1(idx >= 0);
759510e6
         cb = idx;
         stackrun[stack_len] = path[ppos][cb].run;
         stackcb [stack_len] = cb;
         idx = path[ppos-path[ppos][cb].run+1][cb].prev_idx;
         ppos -= path[ppos][cb].run;
         stack_len++;
     }
     //perform actual band info encoding
     start = 0;
     for (i = stack_len - 1; i >= 0; i--) {
         put_bits(&s->pb, 4, stackcb[i]);
         count = stackrun[i];
         memset(sce->zeroes + win*16 + start, !stackcb[i], count);
         //XXX: memset when band_type is also uint8_t
         for (j = 0; j < count; j++) {
             sce->band_type[win*16 + start] =  stackcb[i];
             start++;
         }
         while (count >= run_esc) {
             put_bits(&s->pb, run_bits, run_esc);
             count -= run_esc;
         }
         put_bits(&s->pb, run_bits, count);
     }
 }
 
04d72abf
 /** Return the minimum scalefactor where the quantized coef does not clip. */
 static av_always_inline uint8_t coef2minsf(float coef) {
51ffd3a6
     return av_clip_uint8(log2f(coef)*4 - 69 + SCALE_ONE_POS - SCALE_DIV_512);
04d72abf
 }
 
 /** Return the maximum scalefactor where the quantized coef is not zero. */
 static av_always_inline uint8_t coef2maxsf(float coef) {
51ffd3a6
     return av_clip_uint8(log2f(coef)*4 +  6 + SCALE_ONE_POS - SCALE_DIV_512);
04d72abf
 }
 
78e65cd7
 typedef struct TrellisPath {
     float cost;
     int prev;
 } TrellisPath;
 
f5e82fec
 #define TRELLIS_STAGES 121
144c5e3d
 #define TRELLIS_STATES (SCALE_MAX_DIFF+1)
f5e82fec
 
78e65cd7
 static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s,
99d61d34
                                        SingleChannelElement *sce,
                                        const float lambda)
78e65cd7
 {
     int q, w, w2, g, start = 0;
9072c29e
     int i, j;
78e65cd7
     int idx;
f5e82fec
     TrellisPath paths[TRELLIS_STAGES][TRELLIS_STATES];
     int bandaddr[TRELLIS_STAGES];
78e65cd7
     int minq;
     float mincost;
144c5e3d
     float q0f = FLT_MAX, q1f = 0.0f, qnrgf = 0.0f;
     int q0, q1, qcnt = 0;
 
     for (i = 0; i < 1024; i++) {
         float t = fabsf(sce->coeffs[i]);
         if (t > 0.0f) {
             q0f = FFMIN(q0f, t);
             q1f = FFMAX(q1f, t);
             qnrgf += t*t;
             qcnt++;
         }
     }
 
     if (!qcnt) {
         memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
         memset(sce->zeroes, 1, sizeof(sce->zeroes));
         return;
     }
 
     //minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped
04d72abf
     q0 = coef2minsf(q0f);
144c5e3d
     //maximum scalefactor index is when maximum coefficient after quantizing is still not zero
04d72abf
     q1 = coef2maxsf(q1f);
144c5e3d
     if (q1 - q0 > 60) {
         int q0low  = q0;
         int q1high = q1;
         //minimum scalefactor index is when maximum nonzero coefficient after quantizing is not clipped
51ffd3a6
         int qnrg = av_clip_uint8(log2f(sqrtf(qnrgf/qcnt))*4 - 31 + SCALE_ONE_POS - SCALE_DIV_512);
144c5e3d
         q1 = qnrg + 30;
         q0 = qnrg - 30;
         if (q0 < q0low) {
             q1 += q0low - q0;
             q0  = q0low;
         } else if (q1 > q1high) {
             q0 -= q1 - q1high;
             q1  = q1high;
         }
     }
78e65cd7
 
f5e82fec
     for (i = 0; i < TRELLIS_STATES; i++) {
9072c29e
         paths[0][i].cost    = 0.0f;
         paths[0][i].prev    = -1;
78e65cd7
     }
f5e82fec
     for (j = 1; j < TRELLIS_STAGES; j++) {
         for (i = 0; i < TRELLIS_STATES; i++) {
9072c29e
             paths[j][i].cost    = INFINITY;
             paths[j][i].prev    = -2;
         }
78e65cd7
     }
9072c29e
     idx = 1;
78e65cd7
     abs_pow34_v(s->scoefs, sce->coeffs, 1024);
fd257dc4
     for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
78e65cd7
         start = w*128;
fd257dc4
         for (g = 0; g < sce->ics.num_swb; g++) {
78e65cd7
             const float *coefs = sce->coeffs + start;
             float qmin, qmax;
             int nz = 0;
 
9072c29e
             bandaddr[idx] = w * 16 + g;
78e65cd7
             qmin = INT_MAX;
             qmax = 0.0f;
fd257dc4
             for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
0bc01cc9
                 FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
fd257dc4
                 if (band->energy <= band->threshold || band->threshold == 0.0f) {
78e65cd7
                     sce->zeroes[(w+w2)*16+g] = 1;
                     continue;
                 }
                 sce->zeroes[(w+w2)*16+g] = 0;
                 nz = 1;
fd257dc4
                 for (i = 0; i < sce->ics.swb_sizes[g]; i++) {
78e65cd7
                     float t = fabsf(coefs[w2*128+i]);
c8f47d8b
                     if (t > 0.0f)
988c1705
                         qmin = FFMIN(qmin, t);
                     qmax = FFMAX(qmax, t);
78e65cd7
                 }
             }
fd257dc4
             if (nz) {
78e65cd7
                 int minscale, maxscale;
                 float minrd = INFINITY;
9069b7d3
                 float maxval;
78e65cd7
                 //minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped
04d72abf
                 minscale = coef2minsf(qmin);
78e65cd7
                 //maximum scalefactor index is when maximum coefficient after quantizing is still not zero
04d72abf
                 maxscale = coef2maxsf(qmax);
144c5e3d
                 minscale = av_clip(minscale - q0, 0, TRELLIS_STATES - 1);
                 maxscale = av_clip(maxscale - q0, 0, TRELLIS_STATES);
9069b7d3
                 maxval = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], s->scoefs+start);
fd257dc4
                 for (q = minscale; q < maxscale; q++) {
acc9f51f
                     float dist = 0;
0ecfa7b7
                     int cb = find_min_book(maxval, sce->sf_idx[w*16+g]);
fd257dc4
                     for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
0bc01cc9
                         FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
acc9f51f
                         dist += quantize_band_cost(s, coefs + w2*128, s->scoefs + start + w2*128, sce->ics.swb_sizes[g],
911fbc45
                                                    q + q0, cb, lambda / band->threshold, INFINITY, NULL);
78e65cd7
                     }
988c1705
                     minrd = FFMIN(minrd, dist);
78e65cd7
 
144c5e3d
                     for (i = 0; i < q1 - q0; i++) {
78e65cd7
                         float cost;
9072c29e
                         cost = paths[idx - 1][i].cost + dist
78e65cd7
                                + ff_aac_scalefactor_bits[q - i + SCALE_DIFF_ZERO];
144c5e3d
                         if (cost < paths[idx][q].cost) {
9072c29e
                             paths[idx][q].cost    = cost;
                             paths[idx][q].prev    = i;
78e65cd7
                         }
                     }
                 }
fd257dc4
             } else {
144c5e3d
                 for (q = 0; q < q1 - q0; q++) {
911fbc45
                     paths[idx][q].cost = paths[idx - 1][q].cost + 1;
                     paths[idx][q].prev = q;
78e65cd7
                 }
             }
             sce->zeroes[w*16+g] = !nz;
             start += sce->ics.swb_sizes[g];
9072c29e
             idx++;
78e65cd7
         }
     }
9072c29e
     idx--;
     mincost = paths[idx][0].cost;
     minq    = 0;
f5e82fec
     for (i = 1; i < TRELLIS_STATES; i++) {
9072c29e
         if (paths[idx][i].cost < mincost) {
             mincost = paths[idx][i].cost;
             minq = i;
78e65cd7
         }
     }
9072c29e
     while (idx) {
144c5e3d
         sce->sf_idx[bandaddr[idx]] = minq + q0;
9072c29e
         minq = paths[idx][minq].prev;
         idx--;
78e65cd7
     }
     //set the same quantizers inside window groups
fd257dc4
     for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
         for (g = 0;  g < sce->ics.num_swb; g++)
             for (w2 = 1; w2 < sce->ics.group_len[w]; w2++)
78e65cd7
                 sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
 }
 
 /**
  * two-loop quantizers search taken from ISO 13818-7 Appendix C
  */
99d61d34
 static void search_for_quantizers_twoloop(AVCodecContext *avctx,
                                           AACEncContext *s,
                                           SingleChannelElement *sce,
                                           const float lambda)
78e65cd7
 {
     int start = 0, i, w, w2, g;
1ef82cc6
     int destbits = avctx->bit_rate * 1024.0 / avctx->sample_rate / avctx->channels * (lambda / 120.f);
a92be9b8
     float dists[128] = { 0 }, uplims[128];
63e1278d
     float maxvals[128];
78e65cd7
     int fflag, minscaler;
99d61d34
     int its  = 0;
78e65cd7
     int allz = 0;
     float minthr = INFINITY;
 
ecd7455e
     // for values above this the decoder might end up in an endless loop
     // due to always having more bits than what can be encoded.
     destbits = FFMIN(destbits, 5800);
78e65cd7
     //XXX: some heuristic to determine initial quantizers will reduce search time
     //determine zero bands and upper limits
fd257dc4
     for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
         for (g = 0;  g < sce->ics.num_swb; g++) {
78e65cd7
             int nz = 0;
             float uplim = 0.0f;
fd257dc4
             for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
0bc01cc9
                 FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
78e65cd7
                 uplim += band->threshold;
fd257dc4
                 if (band->energy <= band->threshold || band->threshold == 0.0f) {
78e65cd7
                     sce->zeroes[(w+w2)*16+g] = 1;
                     continue;
                 }
                 nz = 1;
             }
             uplims[w*16+g] = uplim *512;
             sce->zeroes[w*16+g] = !nz;
fd257dc4
             if (nz)
988c1705
                 minthr = FFMIN(minthr, uplim);
f578854e
             allz |= nz;
78e65cd7
         }
     }
fd257dc4
     for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
         for (g = 0;  g < sce->ics.num_swb; g++) {
             if (sce->zeroes[w*16+g]) {
78e65cd7
                 sce->sf_idx[w*16+g] = SCALE_ONE_POS;
                 continue;
             }
51ffd3a6
             sce->sf_idx[w*16+g] = SCALE_ONE_POS + FFMIN(log2f(uplims[w*16+g]/minthr)*4,59);
78e65cd7
         }
     }
 
fd257dc4
     if (!allz)
78e65cd7
         return;
     abs_pow34_v(s->scoefs, sce->coeffs, 1024);
63e1278d
 
     for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
         start = w*128;
         for (g = 0;  g < sce->ics.num_swb; g++) {
             const float *scaled = s->scoefs + start;
             maxvals[w*16+g] = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], scaled);
             start += sce->ics.swb_sizes[g];
         }
     }
 
78e65cd7
     //perform two-loop search
     //outer loop - improve quality
99d61d34
     do {
78e65cd7
         int tbits, qstep;
         minscaler = sce->sf_idx[0];
         //inner loop - quantize spectrum to fit into given number of bits
         qstep = its ? 1 : 32;
99d61d34
         do {
78e65cd7
             int prev = -1;
             tbits = 0;
             fflag = 0;
fd257dc4
             for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
78e65cd7
                 start = w*128;
fd257dc4
                 for (g = 0;  g < sce->ics.num_swb; g++) {
78e65cd7
                     const float *coefs = sce->coeffs + start;
                     const float *scaled = s->scoefs + start;
                     int bits = 0;
                     int cb;
04d6a54e
                     float dist = 0.0f;
78e65cd7
 
a62d6cfe
                     if (sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218) {
                         start += sce->ics.swb_sizes[g];
78e65cd7
                         continue;
a62d6cfe
                     }
78e65cd7
                     minscaler = FFMIN(minscaler, sce->sf_idx[w*16+g]);
63e1278d
                     cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
911fbc45
                     for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
                         int b;
                         dist += quantize_band_cost(s, coefs + w2*128,
                                                    scaled + w2*128,
                                                    sce->ics.swb_sizes[g],
                                                    sce->sf_idx[w*16+g],
                                                    cb,
c91dce99
                                                    1.0f,
911fbc45
                                                    INFINITY,
                                                    &b);
                         bits += b;
                     }
c91dce99
                     dists[w*16+g] = dist - bits;
fd257dc4
                     if (prev != -1) {
78e65cd7
                         bits += ff_aac_scalefactor_bits[sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO];
                     }
                     tbits += bits;
                     start += sce->ics.swb_sizes[g];
                     prev = sce->sf_idx[w*16+g];
                 }
             }
fd257dc4
             if (tbits > destbits) {
c8f47d8b
                 for (i = 0; i < 128; i++)
                     if (sce->sf_idx[i] < 218 - qstep)
78e65cd7
                         sce->sf_idx[i] += qstep;
fd257dc4
             } else {
c8f47d8b
                 for (i = 0; i < 128; i++)
                     if (sce->sf_idx[i] > 60 - qstep)
78e65cd7
                         sce->sf_idx[i] -= qstep;
             }
             qstep >>= 1;
c226fc5b
             if (!qstep && tbits > destbits*1.02 && sce->sf_idx[0] < 217)
78e65cd7
                 qstep = 1;
99d61d34
         } while (qstep);
78e65cd7
 
         fflag = 0;
         minscaler = av_clip(minscaler, 60, 255 - SCALE_MAX_DIFF);
fd257dc4
         for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
             for (g = 0; g < sce->ics.num_swb; g++) {
78e65cd7
                 int prevsc = sce->sf_idx[w*16+g];
fe461767
                 if (dists[w*16+g] > uplims[w*16+g] && sce->sf_idx[w*16+g] > 60) {
63e1278d
                     if (find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]-1))
00f0b4b9
                         sce->sf_idx[w*16+g]--;
fe461767
                     else //Try to make sure there is some energy in every band
                         sce->sf_idx[w*16+g]-=2;
                 }
78e65cd7
                 sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler, minscaler + SCALE_MAX_DIFF);
                 sce->sf_idx[w*16+g] = FFMIN(sce->sf_idx[w*16+g], 219);
fd257dc4
                 if (sce->sf_idx[w*16+g] != prevsc)
78e65cd7
                     fflag = 1;
63e1278d
                 sce->band_type[w*16+g] = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
78e65cd7
             }
         }
         its++;
99d61d34
     } while (fflag && its < 10);
78e65cd7
 }
 
 static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s,
99d61d34
                                        SingleChannelElement *sce,
                                        const float lambda)
78e65cd7
 {
     int start = 0, i, w, w2, g;
     float uplim[128], maxq[128];
     int minq, maxsf;
     float distfact = ((sce->ics.num_windows > 1) ? 85.80 : 147.84) / lambda;
     int last = 0, lastband = 0, curband = 0;
     float avg_energy = 0.0;
fd257dc4
     if (sce->ics.num_windows == 1) {
78e65cd7
         start = 0;
fd257dc4
         for (i = 0; i < 1024; i++) {
             if (i - start >= sce->ics.swb_sizes[curband]) {
78e65cd7
                 start += sce->ics.swb_sizes[curband];
                 curband++;
             }
fd257dc4
             if (sce->coeffs[i]) {
78e65cd7
                 avg_energy += sce->coeffs[i] * sce->coeffs[i];
                 last = i;
                 lastband = curband;
             }
         }
fd257dc4
     } else {
         for (w = 0; w < 8; w++) {
78e65cd7
             const float *coeffs = sce->coeffs + w*128;
33775c35
             curband = start = 0;
fd257dc4
             for (i = 0; i < 128; i++) {
                 if (i - start >= sce->ics.swb_sizes[curband]) {
78e65cd7
                     start += sce->ics.swb_sizes[curband];
                     curband++;
                 }
fd257dc4
                 if (coeffs[i]) {
78e65cd7
                     avg_energy += coeffs[i] * coeffs[i];
                     last = FFMAX(last, i);
                     lastband = FFMAX(lastband, curband);
                 }
             }
         }
     }
     last++;
     avg_energy /= last;
fd257dc4
     if (avg_energy == 0.0f) {
         for (i = 0; i < FF_ARRAY_ELEMS(sce->sf_idx); i++)
78e65cd7
             sce->sf_idx[i] = SCALE_ONE_POS;
         return;
     }
fd257dc4
     for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
78e65cd7
         start = w*128;
fd257dc4
         for (g = 0; g < sce->ics.num_swb; g++) {
99d61d34
             float *coefs   = sce->coeffs + start;
78e65cd7
             const int size = sce->ics.swb_sizes[g];
             int start2 = start, end2 = start + size, peakpos = start;
             float maxval = -1, thr = 0.0f, t;
             maxq[w*16+g] = 0.0f;
fd257dc4
             if (g > lastband) {
78e65cd7
                 maxq[w*16+g] = 0.0f;
                 start += size;
fd257dc4
                 for (w2 = 0; w2 < sce->ics.group_len[w]; w2++)
78e65cd7
                     memset(coefs + w2*128, 0, sizeof(coefs[0])*size);
                 continue;
             }
fd257dc4
             for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
                 for (i = 0; i < size; i++) {
78e65cd7
                     float t = coefs[w2*128+i]*coefs[w2*128+i];
988c1705
                     maxq[w*16+g] = FFMAX(maxq[w*16+g], fabsf(coefs[w2*128 + i]));
78e65cd7
                     thr += t;
fd257dc4
                     if (sce->ics.num_windows == 1 && maxval < t) {
99d61d34
                         maxval  = t;
78e65cd7
                         peakpos = start+i;
                     }
                 }
             }
fd257dc4
             if (sce->ics.num_windows == 1) {
78e65cd7
                 start2 = FFMAX(peakpos - 2, start2);
                 end2   = FFMIN(peakpos + 3, end2);
fd257dc4
             } else {
78e65cd7
                 start2 -= start;
                 end2   -= start;
             }
             start += size;
             thr = pow(thr / (avg_energy * (end2 - start2)), 0.3 + 0.1*(lastband - g) / lastband);
99d61d34
             t   = 1.0 - (1.0 * start2 / last);
78e65cd7
             uplim[w*16+g] = distfact / (1.4 * thr + t*t*t + 0.075);
         }
     }
     memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
     abs_pow34_v(s->scoefs, sce->coeffs, 1024);
fd257dc4
     for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
78e65cd7
         start = w*128;
fd257dc4
         for (g = 0;  g < sce->ics.num_swb; g++) {
99d61d34
             const float *coefs  = sce->coeffs + start;
             const float *scaled = s->scoefs   + start;
             const int size      = sce->ics.swb_sizes[g];
78e65cd7
             int scf, prev_scf, step;
32fa7725
             int min_scf = -1, max_scf = 256;
78e65cd7
             float curdiff;
fd257dc4
             if (maxq[w*16+g] < 21.544) {
78e65cd7
                 sce->zeroes[w*16+g] = 1;
                 start += size;
                 continue;
             }
             sce->zeroes[w*16+g] = 0;
51ffd3a6
             scf  = prev_scf = av_clip(SCALE_ONE_POS - SCALE_DIV_512 - log2f(1/maxq[w*16+g])*16/3, 60, 218);
78e65cd7
             step = 16;
fd257dc4
             for (;;) {
78e65cd7
                 float dist = 0.0f;
                 int quant_max;
 
fd257dc4
                 for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
78e65cd7
                     int b;
                     dist += quantize_band_cost(s, coefs + w2*128,
                                                scaled + w2*128,
                                                sce->ics.swb_sizes[g],
                                                scf,
                                                ESC_BT,
7a4eebcd
                                                lambda,
78e65cd7
                                                INFINITY,
                                                &b);
                     dist -= b;
                 }
7a4eebcd
                 dist *= 1.0f / 512.0f / lambda;
d70fa4c4
                 quant_max = quant(maxq[w*16+g], ff_aac_pow2sf_tab[POW_SF2_ZERO - scf + SCALE_ONE_POS - SCALE_DIV_512]);
fd257dc4
                 if (quant_max >= 8191) { // too much, return to the previous quantizer
78e65cd7
                     sce->sf_idx[w*16+g] = prev_scf;
                     break;
                 }
                 prev_scf = scf;
                 curdiff = fabsf(dist - uplim[w*16+g]);
32fa7725
                 if (curdiff <= 1.0f)
78e65cd7
                     step = 0;
                 else
51ffd3a6
                     step = log2f(curdiff);
fd257dc4
                 if (dist > uplim[w*16+g])
78e65cd7
                     step = -step;
32fa7725
                 scf += step;
46174079
                 scf = av_clip_uint8(scf);
32fa7725
                 step = scf - prev_scf;
fd257dc4
                 if (FFABS(step) <= 1 || (step > 0 && scf >= max_scf) || (step < 0 && scf <= min_scf)) {
32fa7725
                     sce->sf_idx[w*16+g] = av_clip(scf, min_scf, max_scf);
78e65cd7
                     break;
                 }
fd257dc4
                 if (step > 0)
32fa7725
                     min_scf = prev_scf;
78e65cd7
                 else
32fa7725
                     max_scf = prev_scf;
78e65cd7
             }
             start += size;
         }
     }
     minq = sce->sf_idx[0] ? sce->sf_idx[0] : INT_MAX;
fd257dc4
     for (i = 1; i < 128; i++) {
         if (!sce->sf_idx[i])
78e65cd7
             sce->sf_idx[i] = sce->sf_idx[i-1];
         else
             minq = FFMIN(minq, sce->sf_idx[i]);
     }
c8f47d8b
     if (minq == INT_MAX)
         minq = 0;
78e65cd7
     minq = FFMIN(minq, SCALE_MAX_POS);
     maxsf = FFMIN(minq + SCALE_MAX_DIFF, SCALE_MAX_POS);
fd257dc4
     for (i = 126; i >= 0; i--) {
         if (!sce->sf_idx[i])
78e65cd7
             sce->sf_idx[i] = sce->sf_idx[i+1];
         sce->sf_idx[i] = av_clip(sce->sf_idx[i], minq, maxsf);
     }
 }
 
 static void search_for_quantizers_fast(AVCodecContext *avctx, AACEncContext *s,
99d61d34
                                        SingleChannelElement *sce,
                                        const float lambda)
78e65cd7
 {
e65ab9d9
     int i, w, w2, g;
78e65cd7
     int minq = 255;
 
     memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
fd257dc4
     for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
         for (g = 0; g < sce->ics.num_swb; g++) {
             for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
0bc01cc9
                 FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
fd257dc4
                 if (band->energy <= band->threshold) {
78e65cd7
                     sce->sf_idx[(w+w2)*16+g] = 218;
                     sce->zeroes[(w+w2)*16+g] = 1;
fd257dc4
                 } else {
51ffd3a6
                     sce->sf_idx[(w+w2)*16+g] = av_clip(SCALE_ONE_POS - SCALE_DIV_512 + log2f(band->threshold), 80, 218);
78e65cd7
                     sce->zeroes[(w+w2)*16+g] = 0;
                 }
                 minq = FFMIN(minq, sce->sf_idx[(w+w2)*16+g]);
             }
         }
     }
fd257dc4
     for (i = 0; i < 128; i++) {
c8f47d8b
         sce->sf_idx[i] = 140;
         //av_clip(sce->sf_idx[i], minq, minq + SCALE_MAX_DIFF - 1);
78e65cd7
     }
     //set the same quantizers inside window groups
fd257dc4
     for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
         for (g = 0;  g < sce->ics.num_swb; g++)
             for (w2 = 1; w2 < sce->ics.group_len[w]; w2++)
78e65cd7
                 sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
 }
 
99d61d34
 static void search_for_ms(AACEncContext *s, ChannelElement *cpe,
                           const float lambda)
78e65cd7
 {
     int start = 0, i, w, w2, g;
     float M[128], S[128];
     float *L34 = s->scoefs, *R34 = s->scoefs + 128, *M34 = s->scoefs + 128*2, *S34 = s->scoefs + 128*3;
     SingleChannelElement *sce0 = &cpe->ch[0];
     SingleChannelElement *sce1 = &cpe->ch[1];
fd257dc4
     if (!cpe->common_window)
78e65cd7
         return;
fd257dc4
     for (w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]) {
         for (g = 0;  g < sce0->ics.num_swb; g++) {
             if (!cpe->ch[0].zeroes[w*16+g] && !cpe->ch[1].zeroes[w*16+g]) {
78e65cd7
                 float dist1 = 0.0f, dist2 = 0.0f;
fd257dc4
                 for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
0bc01cc9
                     FFPsyBand *band0 = &s->psy.ch[s->cur_channel+0].psy_bands[(w+w2)*16+g];
                     FFPsyBand *band1 = &s->psy.ch[s->cur_channel+1].psy_bands[(w+w2)*16+g];
988c1705
                     float minthr = FFMIN(band0->threshold, band1->threshold);
                     float maxthr = FFMAX(band0->threshold, band1->threshold);
fd257dc4
                     for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
78e65cd7
                         M[i] = (sce0->coeffs[start+w2*128+i]
99d61d34
                               + sce1->coeffs[start+w2*128+i]) * 0.5;
92efa2bd
                         S[i] =  M[i]
78e65cd7
                               - sce1->coeffs[start+w2*128+i];
                     }
                     abs_pow34_v(L34, sce0->coeffs+start+w2*128, sce0->ics.swb_sizes[g]);
                     abs_pow34_v(R34, sce1->coeffs+start+w2*128, sce0->ics.swb_sizes[g]);
                     abs_pow34_v(M34, M,                         sce0->ics.swb_sizes[g]);
                     abs_pow34_v(S34, S,                         sce0->ics.swb_sizes[g]);
                     dist1 += quantize_band_cost(s, sce0->coeffs + start + w2*128,
                                                 L34,
                                                 sce0->ics.swb_sizes[g],
                                                 sce0->sf_idx[(w+w2)*16+g],
                                                 sce0->band_type[(w+w2)*16+g],
                                                 lambda / band0->threshold, INFINITY, NULL);
                     dist1 += quantize_band_cost(s, sce1->coeffs + start + w2*128,
                                                 R34,
                                                 sce1->ics.swb_sizes[g],
                                                 sce1->sf_idx[(w+w2)*16+g],
                                                 sce1->band_type[(w+w2)*16+g],
                                                 lambda / band1->threshold, INFINITY, NULL);
                     dist2 += quantize_band_cost(s, M,
                                                 M34,
                                                 sce0->ics.swb_sizes[g],
                                                 sce0->sf_idx[(w+w2)*16+g],
                                                 sce0->band_type[(w+w2)*16+g],
                                                 lambda / maxthr, INFINITY, NULL);
                     dist2 += quantize_band_cost(s, S,
                                                 S34,
                                                 sce1->ics.swb_sizes[g],
                                                 sce1->sf_idx[(w+w2)*16+g],
                                                 sce1->band_type[(w+w2)*16+g],
                                                 lambda / minthr, INFINITY, NULL);
                 }
                 cpe->ms_mask[w*16+g] = dist2 < dist1;
             }
             start += sce0->ics.swb_sizes[g];
         }
     }
 }
 
1b122387
 AACCoefficientsEncoder ff_aac_coders[AAC_CODER_NB] = {
4bd910d8
     [AAC_CODER_FAAC] = {
78e65cd7
         search_for_quantizers_faac,
7a4eebcd
         encode_window_bands_info,
78e65cd7
         quantize_and_encode_band,
dd0e43e4
         search_for_ms,
78e65cd7
     },
4bd910d8
     [AAC_CODER_ANMR] = {
78e65cd7
         search_for_quantizers_anmr,
         encode_window_bands_info,
         quantize_and_encode_band,
dd0e43e4
         search_for_ms,
78e65cd7
     },
4bd910d8
     [AAC_CODER_TWOLOOP] = {
78e65cd7
         search_for_quantizers_twoloop,
759510e6
         codebook_trellis_rate,
78e65cd7
         quantize_and_encode_band,
dd0e43e4
         search_for_ms,
78e65cd7
     },
4bd910d8
     [AAC_CODER_FAST] = {
78e65cd7
         search_for_quantizers_fast,
         encode_window_bands_info,
         quantize_and_encode_band,
dd0e43e4
         search_for_ms,
78e65cd7
     },
 };