libavcodec/wavpackenc.c
93f42777
 /*
  * WavPack lossless audio encoder
  *
  * This file is part of FFmpeg.
  *
  * FFmpeg is free software; you can redistribute it and/or
  * modify it under the terms of the GNU Lesser General Public
  * License as published by the Free Software Foundation; either
  * version 2.1 of the License, or (at your option) any later version.
  *
  * FFmpeg is distributed in the hope that it will be useful,
  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  * Lesser General Public License for more details.
  *
  * You should have received a copy of the GNU Lesser General Public
  * License along with FFmpeg; if not, write to the Free Software
  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  */
 
 #define BITSTREAM_WRITER_LE
 
 #include "libavutil/intreadwrite.h"
 #include "libavutil/opt.h"
 #include "avcodec.h"
 #include "internal.h"
 #include "put_bits.h"
 #include "bytestream.h"
 #include "wavpackenc.h"
 #include "wavpack.h"
 
 #define UPDATE_WEIGHT(weight, delta, source, result) \
     if (source && result) { \
         int32_t s = (int32_t) (source ^ result) >> 31; \
         weight = (delta ^ s) + (weight - s); \
     }
 
 #define APPLY_WEIGHT_F(weight, sample) (((((sample & 0xffff) * weight) >> 9) + \
     (((sample & ~0xffff) >> 9) * weight) + 1) >> 1)
 
 #define APPLY_WEIGHT_I(weight, sample) ((weight * sample + 512) >> 10)
 
 #define APPLY_WEIGHT(weight, sample) (sample != (short) sample ? \
     APPLY_WEIGHT_F(weight, sample) : APPLY_WEIGHT_I (weight, sample))
 
 #define CLEAR(destin) memset(&destin, 0, sizeof(destin));
 
 #define SHIFT_LSB       13
 #define SHIFT_MASK      (0x1FU << SHIFT_LSB)
 
 #define MAG_LSB         18
 #define MAG_MASK        (0x1FU << MAG_LSB)
 
 #define SRATE_LSB       23
 #define SRATE_MASK      (0xFU << SRATE_LSB)
 
 #define EXTRA_TRY_DELTAS     1
 #define EXTRA_ADJUST_DELTAS  2
 #define EXTRA_SORT_FIRST     4
 #define EXTRA_BRANCHES       8
 #define EXTRA_SORT_LAST     16
 
 typedef struct WavPackExtraInfo {
     struct Decorr dps[MAX_TERMS];
     int nterms, log_limit, gt16bit;
     uint32_t best_bits;
 } WavPackExtraInfo;
 
 typedef struct WavPackWords {
     int pend_data, holding_one, zeros_acc;
     int holding_zero, pend_count;
     WvChannel c[2];
 } WavPackWords;
 
 typedef struct WavPackEncodeContext {
     AVClass *class;
     AVCodecContext *avctx;
     PutBitContext pb;
     int block_samples;
     int buffer_size;
     int sample_index;
     int stereo, stereo_in;
     int ch_offset;
 
     int32_t *samples[2];
     int samples_size[2];
 
     int32_t *sampleptrs[MAX_TERMS+2][2];
     int sampleptrs_size[MAX_TERMS+2][2];
 
     int32_t *temp_buffer[2][2];
     int temp_buffer_size[2][2];
 
     int32_t *best_buffer[2];
     int best_buffer_size[2];
 
     int32_t *js_left, *js_right;
     int js_left_size, js_right_size;
 
     int32_t *orig_l, *orig_r;
     int orig_l_size, orig_r_size;
 
     unsigned extra_flags;
     int optimize_mono;
     int decorr_filter;
     int joint;
     int num_branches;
 
     uint32_t flags;
     uint32_t crc_x;
     WavPackWords w;
 
     uint8_t int32_sent_bits, int32_zeros, int32_ones, int32_dups;
     uint8_t float_flags, float_shift, float_max_exp, max_exp;
     int32_t shifted_ones, shifted_zeros, shifted_both;
     int32_t false_zeros, neg_zeros, ordata;
 
     int num_terms, shift, joint_stereo, false_stereo;
     int num_decorrs, num_passes, best_decorr, mask_decorr;
     struct Decorr decorr_passes[MAX_TERMS];
     const WavPackDecorrSpec *decorr_specs;
     float delta_decay;
 } WavPackEncodeContext;
 
 static av_cold int wavpack_encode_init(AVCodecContext *avctx)
 {
     WavPackEncodeContext *s = avctx->priv_data;
 
     s->avctx = avctx;
 
     if (!avctx->frame_size) {
         int block_samples;
         if (!(avctx->sample_rate & 1))
             block_samples = avctx->sample_rate / 2;
         else
             block_samples = avctx->sample_rate;
 
         while (block_samples * avctx->channels > 150000)
             block_samples /= 2;
 
         while (block_samples * avctx->channels < 40000)
             block_samples *= 2;
         avctx->frame_size = block_samples;
     } else if (avctx->frame_size && (avctx->frame_size < 128 ||
                               avctx->frame_size > WV_MAX_SAMPLES)) {
         av_log(avctx, AV_LOG_ERROR, "invalid block size: %d\n", avctx->frame_size);
         return AVERROR(EINVAL);
     }
 
     if (avctx->compression_level != FF_COMPRESSION_DEFAULT) {
         if (avctx->compression_level >= 3) {
             s->decorr_filter = 3;
             s->num_passes = 9;
             if      (avctx->compression_level >= 8) {
                 s->num_branches = 4;
                 s->extra_flags = EXTRA_TRY_DELTAS|EXTRA_ADJUST_DELTAS|EXTRA_SORT_FIRST|EXTRA_SORT_LAST|EXTRA_BRANCHES;
             } else if (avctx->compression_level >= 7) {
                 s->num_branches = 3;
                 s->extra_flags = EXTRA_TRY_DELTAS|EXTRA_ADJUST_DELTAS|EXTRA_SORT_FIRST|EXTRA_BRANCHES;
             } else if (avctx->compression_level >= 6) {
                 s->num_branches = 2;
                 s->extra_flags = EXTRA_TRY_DELTAS|EXTRA_ADJUST_DELTAS|EXTRA_SORT_FIRST|EXTRA_BRANCHES;
             } else if (avctx->compression_level >= 5) {
                 s->num_branches = 1;
                 s->extra_flags = EXTRA_TRY_DELTAS|EXTRA_ADJUST_DELTAS|EXTRA_SORT_FIRST|EXTRA_BRANCHES;
             } else if (avctx->compression_level >= 4) {
                 s->num_branches = 1;
                 s->extra_flags = EXTRA_TRY_DELTAS|EXTRA_ADJUST_DELTAS|EXTRA_BRANCHES;
             }
         } else if (avctx->compression_level == 2) {
             s->decorr_filter = 2;
             s->num_passes = 4;
         } else if (avctx->compression_level == 1) {
             s->decorr_filter = 1;
             s->num_passes = 2;
         } else if (avctx->compression_level < 1) {
             s->decorr_filter = 0;
             s->num_passes = 0;
         }
     }
 
     s->num_decorrs = decorr_filter_sizes[s->decorr_filter];
     s->decorr_specs = decorr_filters[s->decorr_filter];
 
     s->delta_decay = 2.0;
 
     return 0;
 }
 
 static void shift_mono(int32_t *samples, int nb_samples, int shift)
 {
     int i;
     for (i = 0; i < nb_samples; i++)
         samples[i] >>= shift;
 }
 
 static void shift_stereo(int32_t *left, int32_t *right,
                          int nb_samples, int shift)
 {
     int i;
     for (i = 0; i < nb_samples; i++) {
         left [i] >>= shift;
         right[i] >>= shift;
     }
 }
 
 #define FLOAT_SHIFT_ONES 1
 #define FLOAT_SHIFT_SAME 2
 #define FLOAT_SHIFT_SENT 4
 #define FLOAT_ZEROS_SENT 8
 #define FLOAT_NEG_ZEROS  0x10
 #define FLOAT_EXCEPTIONS 0x20
 
 #define get_mantissa(f)     ((f) & 0x7fffff)
 #define get_exponent(f)     (((f) >> 23) & 0xff)
 #define get_sign(f)         (((f) >> 31) & 0x1)
 
 static void process_float(WavPackEncodeContext *s, int32_t *sample)
 {
     int32_t shift_count, value, f = *sample;
 
     if (get_exponent(f) == 255) {
         s->float_flags |= FLOAT_EXCEPTIONS;
         value = 0x1000000;
         shift_count = 0;
     } else if (get_exponent(f)) {
         shift_count = s->max_exp - get_exponent(f);
         value = 0x800000 + get_mantissa(f);
     } else {
         shift_count = s->max_exp ? s->max_exp - 1 : 0;
         value = get_mantissa(f);
     }
 
     if (shift_count < 25)
         value >>= shift_count;
     else
         value = 0;
 
     if (!value) {
         if (get_exponent(f) || get_mantissa(f))
             s->false_zeros++;
         else if (get_sign(f))
             s->neg_zeros++;
     } else if (shift_count) {
         int32_t mask = (1 << shift_count) - 1;
 
         if (!(get_mantissa(f) & mask))
             s->shifted_zeros++;
         else if ((get_mantissa(f) & mask) == mask)
             s->shifted_ones++;
         else
             s->shifted_both++;
     }
 
     s->ordata |= value;
     *sample = get_sign(f) ? -value : value;
 }
 
 static int scan_float(WavPackEncodeContext *s,
                       int32_t *samples_l, int32_t *samples_r,
                       int nb_samples)
 {
     uint32_t crc = 0xffffffffu;
     int i;
 
     s->shifted_ones = s->shifted_zeros = s->shifted_both = s->ordata = 0;
     s->float_shift = s->float_flags = 0;
     s->false_zeros = s->neg_zeros = 0;
     s->max_exp = 0;
 
     if (s->flags & WV_MONO_DATA) {
         for (i = 0; i < nb_samples; i++) {
             int32_t f = samples_l[i];
             crc = crc * 27 + get_mantissa(f) * 9 + get_exponent(f) * 3 + get_sign(f);
 
             if (get_exponent(f) > s->max_exp && get_exponent(f) < 255)
                 s->max_exp = get_exponent(f);
         }
     } else {
         for (i = 0; i < nb_samples; i++) {
             int32_t f;
 
             f = samples_l[i];
             crc = crc * 27 + get_mantissa(f) * 9 + get_exponent(f) * 3 + get_sign(f);
             if (get_exponent(f) > s->max_exp && get_exponent(f) < 255)
                 s->max_exp = get_exponent(f);
 
             f = samples_r[i];
             crc = crc * 27 + get_mantissa(f) * 9 + get_exponent(f) * 3 + get_sign(f);
 
             if (get_exponent(f) > s->max_exp && get_exponent(f) < 255)
                 s->max_exp = get_exponent(f);
         }
     }
 
     s->crc_x = crc;
 
     if (s->flags & WV_MONO_DATA) {
         for (i = 0; i < nb_samples; i++)
             process_float(s, &samples_l[i]);
     } else {
         for (i = 0; i < nb_samples; i++) {
             process_float(s, &samples_l[i]);
             process_float(s, &samples_r[i]);
         }
     }
 
     s->float_max_exp = s->max_exp;
 
     if (s->shifted_both)
         s->float_flags |= FLOAT_SHIFT_SENT;
     else if (s->shifted_ones && !s->shifted_zeros)
         s->float_flags |= FLOAT_SHIFT_ONES;
     else if (s->shifted_ones && s->shifted_zeros)
         s->float_flags |= FLOAT_SHIFT_SAME;
     else if (s->ordata && !(s->ordata & 1)) {
         do {
             s->float_shift++;
             s->ordata >>= 1;
         } while (!(s->ordata & 1));
 
         if (s->flags & WV_MONO_DATA)
             shift_mono(samples_l, nb_samples, s->float_shift);
         else
             shift_stereo(samples_l, samples_r, nb_samples, s->float_shift);
     }
 
     s->flags &= ~MAG_MASK;
 
     while (s->ordata) {
         s->flags += 1 << MAG_LSB;
         s->ordata >>= 1;
     }
 
     if (s->false_zeros || s->neg_zeros)
         s->float_flags |= FLOAT_ZEROS_SENT;
 
     if (s->neg_zeros)
         s->float_flags |= FLOAT_NEG_ZEROS;
 
     return s->float_flags & (FLOAT_EXCEPTIONS | FLOAT_ZEROS_SENT |
                              FLOAT_SHIFT_SENT | FLOAT_SHIFT_SAME);
 }
 
 static void scan_int23(WavPackEncodeContext *s,
                        int32_t *samples_l, int32_t *samples_r,
                        int nb_samples)
 {
     uint32_t magdata = 0, ordata = 0, xordata = 0, anddata = ~0;
     int i, total_shift = 0;
 
     s->int32_sent_bits = s->int32_zeros = s->int32_ones = s->int32_dups = 0;
 
     if (s->flags & WV_MONO_DATA) {
         for (i = 0; i < nb_samples; i++) {
             int32_t M = samples_l[i];
 
             magdata |= (M < 0) ? ~M : M;
             xordata |= M ^ -(M & 1);
             anddata &= M;
             ordata  |= M;
 
             if ((ordata & 1) && !(anddata & 1) && (xordata & 2))
                 return;
         }
     } else {
         for (i = 0; i < nb_samples; i++) {
             int32_t L = samples_l[i];
             int32_t R = samples_r[i];
 
             magdata |= (L < 0) ? ~L : L;
             magdata |= (R < 0) ? ~R : R;
             xordata |= L ^ -(L & 1);
             xordata |= R ^ -(R & 1);
             anddata &= L & R;
             ordata  |= L | R;
 
             if ((ordata & 1) && !(anddata & 1) && (xordata & 2))
                 return;
         }
     }
 
     s->flags &= ~MAG_MASK;
 
     while (magdata) {
         s->flags += 1 << MAG_LSB;
         magdata >>= 1;
     }
 
     if (!(s->flags & MAG_MASK))
         return;
 
     if (!(ordata & 1)) {
         do {
             s->flags -= 1 << MAG_LSB;
             s->int32_zeros++;
             total_shift++;
             ordata >>= 1;
         } while (!(ordata & 1));
     } else if (anddata & 1) {
         do {
             s->flags -= 1 << MAG_LSB;
             s->int32_ones++;
             total_shift++;
             anddata >>= 1;
         } while (anddata & 1);
     } else if (!(xordata & 2)) {
         do {
             s->flags -= 1 << MAG_LSB;
             s->int32_dups++;
             total_shift++;
             xordata >>= 1;
         } while (!(xordata & 2));
     }
 
     if (total_shift) {
         s->flags |= WV_INT32_DATA;
 
         if (s->flags & WV_MONO_DATA)
             shift_mono(samples_l, nb_samples, total_shift);
         else
             shift_stereo(samples_l, samples_r, nb_samples, total_shift);
     }
 }
 
 static int scan_int32(WavPackEncodeContext *s,
                       int32_t *samples_l, int32_t *samples_r,
                       int nb_samples)
 {
     uint32_t magdata = 0, ordata = 0, xordata = 0, anddata = ~0;
     uint32_t crc = 0xffffffffu;
     int i, total_shift = 0;
 
     s->int32_sent_bits = s->int32_zeros = s->int32_ones = s->int32_dups = 0;
 
     if (s->flags & WV_MONO_DATA) {
         for (i = 0; i < nb_samples; i++) {
             int32_t M = samples_l[i];
 
             crc = crc * 9 + (M & 0xffff) * 3 + ((M >> 16) & 0xffff);
             magdata |= (M < 0) ? ~M : M;
             xordata |= M ^ -(M & 1);
             anddata &= M;
             ordata  |= M;
         }
     } else {
         for (i = 0; i < nb_samples; i++) {
             int32_t L = samples_l[i];
             int32_t R = samples_r[i];
 
             crc = crc * 9 + (L & 0xffff) * 3 + ((L >> 16) & 0xffff);
             crc = crc * 9 + (R & 0xffff) * 3 + ((R >> 16) & 0xffff);
             magdata |= (L < 0) ? ~L : L;
             magdata |= (R < 0) ? ~R : R;
             xordata |= L ^ -(L & 1);
             xordata |= R ^ -(R & 1);
             anddata &= L & R;
             ordata  |= L | R;
         }
     }
 
     s->crc_x = crc;
     s->flags &= ~MAG_MASK;
 
     while (magdata) {
         s->flags += 1 << MAG_LSB;
         magdata >>= 1;
     }
 
     if (!((s->flags & MAG_MASK) >> MAG_LSB)) {
         s->flags &= ~WV_INT32_DATA;
         return 0;
     }
 
     if (!(ordata & 1))
         do {
             s->flags -= 1 << MAG_LSB;
             s->int32_zeros++;
             total_shift++;
             ordata >>= 1;
         } while (!(ordata & 1));
     else if (anddata & 1)
         do {
             s->flags -= 1 << MAG_LSB;
             s->int32_ones++;
             total_shift++;
             anddata >>= 1;
         } while (anddata & 1);
     else if (!(xordata & 2))
         do {
             s->flags -= 1 << MAG_LSB;
             s->int32_dups++;
             total_shift++;
             xordata >>= 1;
         } while (!(xordata & 2));
 
     if (((s->flags & MAG_MASK) >> MAG_LSB) > 23) {
         s->int32_sent_bits = (uint8_t)(((s->flags & MAG_MASK) >> MAG_LSB) - 23);
         total_shift += s->int32_sent_bits;
         s->flags &= ~MAG_MASK;
         s->flags += 23 << MAG_LSB;
     }
 
     if (total_shift) {
         s->flags |= WV_INT32_DATA;
 
         if (s->flags & WV_MONO_DATA)
             shift_mono(samples_l, nb_samples, total_shift);
         else
             shift_stereo(samples_l, samples_r, nb_samples, total_shift);
     }
 
     return s->int32_sent_bits;
 }
 
 static int8_t store_weight(int weight)
 {
     weight = av_clip(weight, -1024, 1024);
     if (weight > 0)
         weight -= (weight + 64) >> 7;
 
     return (weight + 4) >> 3;
 }
 
 static int restore_weight(int8_t weight)
 {
     int result;
 
     if ((result = (int) weight << 3) > 0)
         result += (result + 64) >> 7;
 
     return result;
 }
 
 static int log2s(int32_t value)
 {
     return (value < 0) ? -wp_log2(-value) : wp_log2(value);
 }
 
 static void decorr_mono(int32_t *in_samples, int32_t *out_samples,
                         int nb_samples, struct Decorr *dpp, int dir)
 {
     int m = 0, i;
 
     dpp->sumA = 0;
 
     if (dir < 0) {
         out_samples += (nb_samples - 1);
         in_samples  += (nb_samples - 1);
     }
 
     dpp->weightA = restore_weight(store_weight(dpp->weightA));
 
     for (i = 0; i < MAX_TERM; i++)
         dpp->samplesA[i] = wp_exp2(log2s(dpp->samplesA[i]));
 
     if (dpp->value > MAX_TERM) {
         while (nb_samples--) {
             int32_t left, sam_A;
 
             sam_A = ((3 - (dpp->value & 1)) * dpp->samplesA[0] - dpp->samplesA[1]) >> !(dpp->value & 1);
 
             dpp->samplesA[1] = dpp->samplesA[0];
             dpp->samplesA[0] = left = in_samples[0];
 
             left -= APPLY_WEIGHT(dpp->weightA, sam_A);
             UPDATE_WEIGHT(dpp->weightA, dpp->delta, sam_A, left);
             dpp->sumA += dpp->weightA;
             out_samples[0] = left;
             in_samples += dir;
             out_samples += dir;
         }
     } else if (dpp->value > 0) {
         while (nb_samples--) {
             int k = (m + dpp->value) & (MAX_TERM - 1);
             int32_t left, sam_A;
 
             sam_A = dpp->samplesA[m];
             dpp->samplesA[k] = left = in_samples[0];
             m = (m + 1) & (MAX_TERM - 1);
 
             left -= APPLY_WEIGHT(dpp->weightA, sam_A);
             UPDATE_WEIGHT(dpp->weightA, dpp->delta, sam_A, left);
             dpp->sumA += dpp->weightA;
             out_samples[0] = left;
             in_samples += dir;
             out_samples += dir;
         }
     }
 
     if (m && dpp->value > 0 && dpp->value <= MAX_TERM) {
         int32_t temp_A[MAX_TERM];
 
         memcpy(temp_A, dpp->samplesA, sizeof(dpp->samplesA));
 
         for (i = 0; i < MAX_TERM; i++) {
             dpp->samplesA[i] = temp_A[m];
             m = (m + 1) & (MAX_TERM - 1);
         }
     }
 }
 
 static void reverse_mono_decorr(struct Decorr *dpp)
 {
     if (dpp->value > MAX_TERM) {
         int32_t sam_A;
 
         if (dpp->value & 1)
             sam_A = 2 * dpp->samplesA[0] - dpp->samplesA[1];
         else
             sam_A = (3 * dpp->samplesA[0] - dpp->samplesA[1]) >> 1;
 
         dpp->samplesA[1] = dpp->samplesA[0];
         dpp->samplesA[0] = sam_A;
 
         if (dpp->value & 1)
             sam_A = 2 * dpp->samplesA[0] - dpp->samplesA[1];
         else
             sam_A = (3 * dpp->samplesA[0] - dpp->samplesA[1]) >> 1;
 
         dpp->samplesA[1] = sam_A;
     } else if (dpp->value > 1) {
         int i, j, k;
 
         for (i = 0, j = dpp->value - 1, k = 0; k < dpp->value / 2; i++, j--, k++) {
             i &= (MAX_TERM - 1);
             j &= (MAX_TERM - 1);
             dpp->samplesA[i] ^= dpp->samplesA[j];
             dpp->samplesA[j] ^= dpp->samplesA[i];
             dpp->samplesA[i] ^= dpp->samplesA[j];
         }
     }
 }
 
 static uint32_t log2sample(uint32_t v, int limit, uint32_t *result)
 {
     uint32_t dbits;
 
     if ((v += v >> 9) < (1 << 8)) {
         dbits = nbits_table[v];
c13e38ba
         *result += (dbits << 8) + wp_log2_table[(v << (9 - dbits)) & 0xff];
93f42777
     } else {
         if (v < (1L << 16))
             dbits = nbits_table[v >> 8] + 8;
         else if (v < (1L << 24))
             dbits = nbits_table[v >> 16] + 16;
         else
             dbits = nbits_table[v >> 24] + 24;
 
c13e38ba
         *result += dbits = (dbits << 8) + wp_log2_table[(v >> (dbits - 9)) & 0xff];
93f42777
 
         if (limit && dbits >= limit)
             return 1;
     }
 
     return 0;
 }
 
 static uint32_t log2mono(int32_t *samples, int nb_samples, int limit)
 {
     uint32_t result = 0;
     while (nb_samples--) {
         if (log2sample(abs(*samples++), limit, &result))
             return UINT32_MAX;
     }
     return result;
 }
 
 static uint32_t log2stereo(int32_t *samples_l, int32_t *samples_r,
                            int nb_samples, int limit)
 {
     uint32_t result = 0;
     while (nb_samples--) {
         if (log2sample(abs(*samples_l++), limit, &result) ||
             log2sample(abs(*samples_r++), limit, &result))
             return UINT32_MAX;
     }
     return result;
 }
 
 static void decorr_mono_buffer(int32_t *samples, int32_t *outsamples,
                                int nb_samples, struct Decorr *dpp,
                                int tindex)
 {
     struct Decorr dp, *dppi = dpp + tindex;
     int delta = dppi->delta, pre_delta, term = dppi->value;
 
     if (delta == 7)
         pre_delta = 7;
     else if (delta < 2)
         pre_delta = 3;
     else
         pre_delta = delta + 1;
 
     CLEAR(dp);
     dp.value = term;
     dp.delta = pre_delta;
     decorr_mono(samples, outsamples, FFMIN(2048, nb_samples), &dp, -1);
     dp.delta = delta;
 
     if (tindex == 0)
         reverse_mono_decorr(&dp);
     else
         CLEAR(dp.samplesA);
 
     memcpy(dppi->samplesA, dp.samplesA, sizeof(dp.samplesA));
     dppi->weightA = dp.weightA;
 
     if (delta == 0) {
         dp.delta = 1;
         decorr_mono(samples, outsamples, nb_samples, &dp, 1);
         dp.delta = 0;
         memcpy(dp.samplesA, dppi->samplesA, sizeof(dp.samplesA));
         dppi->weightA = dp.weightA = dp.sumA / nb_samples;
     }
 
     decorr_mono(samples, outsamples, nb_samples, &dp, 1);
 }
 
 static void recurse_mono(WavPackEncodeContext *s, WavPackExtraInfo *info,
                          int depth, int delta, uint32_t input_bits)
 {
     int term, branches = s->num_branches - depth;
     int32_t *samples, *outsamples;
     uint32_t term_bits[22], bits;
 
     if (branches < 1 || depth + 1 == info->nterms)
         branches = 1;
 
     CLEAR(term_bits);
     samples = s->sampleptrs[depth][0];
     outsamples = s->sampleptrs[depth + 1][0];
 
     for (term = 1; term <= 18; term++) {
         if (term == 17 && branches == 1 && depth + 1 < info->nterms)
             continue;
 
         if (term > 8 && term < 17)
             continue;
 
         if (!s->extra_flags && (term > 4 && term < 17))
             continue;
 
         info->dps[depth].value = term;
         info->dps[depth].delta = delta;
         decorr_mono_buffer(samples, outsamples, s->block_samples, info->dps, depth);
         bits = log2mono(outsamples, s->block_samples, info->log_limit);
 
         if (bits < info->best_bits) {
             info->best_bits = bits;
             CLEAR(s->decorr_passes);
             memcpy(s->decorr_passes, info->dps, sizeof(info->dps[0]) * (depth + 1));
             memcpy(s->sampleptrs[info->nterms + 1][0],
                    s->sampleptrs[depth + 1][0], s->block_samples * 4);
         }
 
         term_bits[term + 3] = bits;
     }
 
     while (depth + 1 < info->nterms && branches--) {
         uint32_t local_best_bits = input_bits;
         int best_term = 0, i;
 
         for (i = 0; i < 22; i++)
             if (term_bits[i] && term_bits[i] < local_best_bits) {
                 local_best_bits = term_bits[i];
                 best_term = i - 3;
             }
 
         if (!best_term)
             break;
 
         term_bits[best_term + 3] = 0;
 
         info->dps[depth].value = best_term;
         info->dps[depth].delta = delta;
         decorr_mono_buffer(samples, outsamples, s->block_samples, info->dps, depth);
 
         recurse_mono(s, info, depth + 1, delta, local_best_bits);
     }
 }
 
 static void sort_mono(WavPackEncodeContext *s, WavPackExtraInfo *info)
 {
     int reversed = 1;
     uint32_t bits;
 
     while (reversed) {
         int ri, i;
 
         memcpy(info->dps, s->decorr_passes, sizeof(s->decorr_passes));
         reversed = 0;
 
         for (ri = 0; ri < info->nterms && s->decorr_passes[ri].value; ri++) {
 
             if (ri + 1 >= info->nterms || !s->decorr_passes[ri+1].value)
                 break;
 
             if (s->decorr_passes[ri].value == s->decorr_passes[ri+1].value) {
                 decorr_mono_buffer(s->sampleptrs[ri][0], s->sampleptrs[ri+1][0],
                                    s->block_samples, info->dps, ri);
                 continue;
             }
 
             info->dps[ri  ] = s->decorr_passes[ri+1];
             info->dps[ri+1] = s->decorr_passes[ri  ];
 
             for (i = ri; i < info->nterms && s->decorr_passes[i].value; i++)
                 decorr_mono_buffer(s->sampleptrs[i][0], s->sampleptrs[i+1][0],
                                    s->block_samples, info->dps, i);
 
             bits = log2mono(s->sampleptrs[i][0], s->block_samples, info->log_limit);
             if (bits < info->best_bits) {
                 reversed = 1;
                 info->best_bits = bits;
                 CLEAR(s->decorr_passes);
                 memcpy(s->decorr_passes, info->dps, sizeof(info->dps[0]) * i);
                 memcpy(s->sampleptrs[info->nterms + 1][0], s->sampleptrs[i][0],
                        s->block_samples * 4);
             } else {
                 info->dps[ri  ] = s->decorr_passes[ri];
                 info->dps[ri+1] = s->decorr_passes[ri+1];
                 decorr_mono_buffer(s->sampleptrs[ri][0], s->sampleptrs[ri+1][0],
                                    s->block_samples, info->dps, ri);
             }
         }
     }
 }
 
 static void delta_mono(WavPackEncodeContext *s, WavPackExtraInfo *info)
 {
     int lower = 0, delta, d;
     uint32_t bits;
 
     if (!s->decorr_passes[0].value)
         return;
     delta = s->decorr_passes[0].delta;
 
     for (d = delta - 1; d >= 0; d--) {
         int i;
 
         for (i = 0; i < info->nterms && s->decorr_passes[i].value; i++) {
             info->dps[i].value = s->decorr_passes[i].value;
             info->dps[i].delta = d;
             decorr_mono_buffer(s->sampleptrs[i][0], s->sampleptrs[i+1][0],
                                s->block_samples, info->dps, i);
         }
 
         bits = log2mono(s->sampleptrs[i][0], s->block_samples, info->log_limit);
         if (bits >= info->best_bits)
             break;
 
         lower = 1;
         info->best_bits = bits;
         CLEAR(s->decorr_passes);
         memcpy(s->decorr_passes, info->dps, sizeof(info->dps[0]) * i);
         memcpy(s->sampleptrs[info->nterms + 1][0],  s->sampleptrs[i][0],
                s->block_samples * 4);
     }
 
     for (d = delta + 1; !lower && d <= 7; d++) {
         int i;
 
         for (i = 0; i < info->nterms && s->decorr_passes[i].value; i++) {
             info->dps[i].value = s->decorr_passes[i].value;
             info->dps[i].delta = d;
             decorr_mono_buffer(s->sampleptrs[i][0], s->sampleptrs[i+1][0],
                                s->block_samples, info->dps, i);
         }
 
         bits = log2mono(s->sampleptrs[i][0], s->block_samples, info->log_limit);
         if (bits >= info->best_bits)
             break;
 
         info->best_bits = bits;
         CLEAR(s->decorr_passes);
         memcpy(s->decorr_passes, info->dps, sizeof(info->dps[0]) * i);
         memcpy(s->sampleptrs[info->nterms + 1][0], s->sampleptrs[i][0],
                s->block_samples * 4);
     }
 }
 
 static int allocate_buffers2(WavPackEncodeContext *s, int nterms)
 {
     int i;
 
     for (i = 0; i < nterms + 2; i++) {
         av_fast_padded_malloc(&s->sampleptrs[i][0], &s->sampleptrs_size[i][0],
                               s->block_samples * 4);
         if (!s->sampleptrs[i][0])
             return AVERROR(ENOMEM);
         if (!(s->flags & WV_MONO_DATA)) {
             av_fast_padded_malloc(&s->sampleptrs[i][1], &s->sampleptrs_size[i][1],
                                   s->block_samples * 4);
             if (!s->sampleptrs[i][1])
                 return AVERROR(ENOMEM);
         }
     }
 
     return 0;
 }
 
 static int allocate_buffers(WavPackEncodeContext *s)
 {
     int i;
 
     for (i = 0; i < 2; i++) {
         av_fast_padded_malloc(&s->best_buffer[0], &s->best_buffer_size[0],
                               s->block_samples * 4);
         if (!s->best_buffer[0])
             return AVERROR(ENOMEM);
 
         av_fast_padded_malloc(&s->temp_buffer[i][0], &s->temp_buffer_size[i][0],
                               s->block_samples * 4);
         if (!s->temp_buffer[i][0])
             return AVERROR(ENOMEM);
         if (!(s->flags & WV_MONO_DATA)) {
             av_fast_padded_malloc(&s->best_buffer[1], &s->best_buffer_size[1],
                                   s->block_samples * 4);
             if (!s->best_buffer[1])
                 return AVERROR(ENOMEM);
 
             av_fast_padded_malloc(&s->temp_buffer[i][1], &s->temp_buffer_size[i][1],
                                   s->block_samples * 4);
             if (!s->temp_buffer[i][1])
                 return AVERROR(ENOMEM);
         }
     }
 
     return 0;
 }
 
 static void analyze_mono(WavPackEncodeContext *s, int32_t *samples, int do_samples)
 {
     WavPackExtraInfo info;
     int i;
 
     info.log_limit = (((s->flags & MAG_MASK) >> MAG_LSB) + 4) * 256;
     info.log_limit = FFMIN(6912, info.log_limit);
 
     info.nterms = s->num_terms;
 
     if (allocate_buffers2(s, s->num_terms))
         return;
 
     memcpy(info.dps, s->decorr_passes, sizeof(info.dps));
     memcpy(s->sampleptrs[0][0], samples, s->block_samples * 4);
 
     for (i = 0; i < info.nterms && info.dps[i].value; i++)
         decorr_mono(s->sampleptrs[i][0], s->sampleptrs[i + 1][0],
                     s->block_samples, info.dps + i, 1);
 
     info.best_bits = log2mono(s->sampleptrs[info.nterms][0], s->block_samples, 0) * 1;
     memcpy(s->sampleptrs[info.nterms + 1][0], s->sampleptrs[i][0], s->block_samples * 4);
 
     if (s->extra_flags & EXTRA_BRANCHES)
         recurse_mono(s, &info, 0, (int) floor(s->delta_decay + 0.5),
                      log2mono(s->sampleptrs[0][0], s->block_samples, 0));
 
     if (s->extra_flags & EXTRA_SORT_FIRST)
         sort_mono(s, &info);
 
     if (s->extra_flags & EXTRA_TRY_DELTAS) {
         delta_mono(s, &info);
 
         if ((s->extra_flags & EXTRA_ADJUST_DELTAS) && s->decorr_passes[0].value)
             s->delta_decay = (float)((s->delta_decay * 2.0 + s->decorr_passes[0].delta) / 3.0);
         else
             s->delta_decay = 2.0;
     }
 
     if (s->extra_flags & EXTRA_SORT_LAST)
         sort_mono(s, &info);
 
     if (do_samples)
         memcpy(samples, s->sampleptrs[info.nterms + 1][0], s->block_samples * 4);
 
     for (i = 0; i < info.nterms; i++)
         if (!s->decorr_passes[i].value)
             break;
 
     s->num_terms = i;
 }
 
 static void scan_word(WavPackEncodeContext *s, WvChannel *c,
                       int32_t *samples, int nb_samples, int dir)
 {
     if (dir < 0)
         samples += nb_samples - 1;
 
     while (nb_samples--) {
         uint32_t low, value = labs(samples[0]);
 
         if (value < GET_MED(0)) {
             DEC_MED(0);
         } else {
             low = GET_MED(0);
             INC_MED(0);
 
             if (value - low < GET_MED(1)) {
                 DEC_MED(1);
             } else {
                 low += GET_MED(1);
                 INC_MED(1);
 
                 if (value - low < GET_MED(2)) {
                     DEC_MED(2);
                 } else {
                     INC_MED(2);
                 }
             }
         }
         samples += dir;
     }
 }
 
 static int wv_mono(WavPackEncodeContext *s, int32_t *samples,
                    int no_history, int do_samples)
 {
     struct Decorr temp_decorr_pass, save_decorr_passes[MAX_TERMS] = {{0}};
     int nb_samples = s->block_samples;
     int buf_size = sizeof(int32_t) * nb_samples;
     uint32_t best_size = UINT32_MAX, size;
     int log_limit, pi, i, ret;
 
     for (i = 0; i < nb_samples; i++)
         if (samples[i])
             break;
 
     if (i == nb_samples) {
         CLEAR(s->decorr_passes);
         CLEAR(s->w);
         s->num_terms = 0;
         return 0;
     }
 
     log_limit = (((s->flags & MAG_MASK) >> MAG_LSB) + 4) * 256;
     log_limit = FFMIN(6912, log_limit);
 
     if ((ret = allocate_buffers(s)) < 0)
         return ret;
 
     if (no_history || s->num_passes >= 7)
         s->best_decorr = s->mask_decorr = 0;
 
     for (pi = 0; pi < s->num_passes;) {
         const WavPackDecorrSpec *wpds;
         int nterms, c, j;
 
         if (!pi) {
             c = s->best_decorr;
         } else {
             if (s->mask_decorr == 0)
                 c = 0;
             else
                 c = (s->best_decorr & (s->mask_decorr - 1)) | s->mask_decorr;
 
             if (c == s->best_decorr) {
                 s->mask_decorr = s->mask_decorr ? ((s->mask_decorr << 1) & (s->num_decorrs - 1)) : 1;
                 continue;
             }
         }
 
         wpds = &s->decorr_specs[c];
         nterms = decorr_filter_nterms[s->decorr_filter];
 
         while (1) {
         memcpy(s->temp_buffer[0][0], samples, buf_size);
         CLEAR(save_decorr_passes);
 
         for (j = 0; j < nterms; j++) {
             CLEAR(temp_decorr_pass);
             temp_decorr_pass.delta = wpds->delta;
             temp_decorr_pass.value = wpds->terms[j];
 
             if (temp_decorr_pass.value < 0)
                 temp_decorr_pass.value = 1;
 
             decorr_mono(s->temp_buffer[j&1][0], s->temp_buffer[~j&1][0],
                         FFMIN(nb_samples, 2048), &temp_decorr_pass, -1);
 
             if (j) {
                 CLEAR(temp_decorr_pass.samplesA);
             } else {
                 reverse_mono_decorr(&temp_decorr_pass);
             }
 
             memcpy(save_decorr_passes + j, &temp_decorr_pass, sizeof(struct Decorr));
             decorr_mono(s->temp_buffer[j&1][0], s->temp_buffer[~j&1][0],
                         nb_samples, &temp_decorr_pass, 1);
         }
 
         size = log2mono(s->temp_buffer[j&1][0], nb_samples, log_limit);
         if (size != UINT32_MAX || !nterms)
             break;
         nterms >>= 1;
         }
 
         if (size < best_size) {
             memcpy(s->best_buffer[0], s->temp_buffer[j&1][0], buf_size);
             memcpy(s->decorr_passes, save_decorr_passes, sizeof(struct Decorr) * MAX_TERMS);
             s->num_terms = nterms;
             s->best_decorr = c;
             best_size = size;
         }
 
         if (pi++)
             s->mask_decorr = s->mask_decorr ? ((s->mask_decorr << 1) & (s->num_decorrs - 1)) : 1;
     }
 
     if (s->extra_flags)
         analyze_mono(s, samples, do_samples);
     else if (do_samples)
         memcpy(samples, s->best_buffer[0], buf_size);
 
     if (no_history || s->extra_flags) {
         CLEAR(s->w);
         scan_word(s, &s->w.c[0], s->best_buffer[0], nb_samples, -1);
     }
     return 0;
 }
 
 static void decorr_stereo(int32_t *in_left, int32_t *in_right,
                           int32_t *out_left, int32_t *out_right,
                           int nb_samples, struct Decorr *dpp, int dir)
 {
     int m = 0, i;
 
     dpp->sumA = dpp->sumB = 0;
 
     if (dir < 0) {
         out_left  += nb_samples - 1;
         out_right += nb_samples - 1;
         in_left   += nb_samples - 1;
         in_right  += nb_samples - 1;
     }
 
     dpp->weightA = restore_weight(store_weight(dpp->weightA));
     dpp->weightB = restore_weight(store_weight(dpp->weightB));
 
     for (i = 0; i < MAX_TERM; i++) {
         dpp->samplesA[i] = wp_exp2(log2s(dpp->samplesA[i]));
         dpp->samplesB[i] = wp_exp2(log2s(dpp->samplesB[i]));
     }
 
     switch (dpp->value) {
     case 2:
         while (nb_samples--) {
             int32_t sam, tmp;
 
             sam = dpp->samplesA[0];
             dpp->samplesA[0] = dpp->samplesA[1];
             out_left[0] = tmp = (dpp->samplesA[1] = in_left[0]) - APPLY_WEIGHT(dpp->weightA, sam);
             UPDATE_WEIGHT(dpp->weightA, dpp->delta, sam, tmp);
             dpp->sumA += dpp->weightA;
 
             sam = dpp->samplesB[0];
             dpp->samplesB[0] = dpp->samplesB[1];
             out_right[0] = tmp = (dpp->samplesB[1] = in_right[0]) - APPLY_WEIGHT(dpp->weightB, sam);
             UPDATE_WEIGHT(dpp->weightB, dpp->delta, sam, tmp);
             dpp->sumB += dpp->weightB;
 
             in_left   += dir;
             out_left  += dir;
             in_right  += dir;
             out_right += dir;
         }
         break;
     case 17:
         while (nb_samples--) {
             int32_t sam, tmp;
 
             sam = 2 * dpp->samplesA[0] - dpp->samplesA[1];
             dpp->samplesA[1] = dpp->samplesA[0];
             out_left[0] = tmp = (dpp->samplesA[0] = in_left[0]) - APPLY_WEIGHT(dpp->weightA, sam);
             UPDATE_WEIGHT(dpp->weightA, dpp->delta, sam, tmp);
             dpp->sumA += dpp->weightA;
 
             sam = 2 * dpp->samplesB[0] - dpp->samplesB[1];
             dpp->samplesB[1] = dpp->samplesB[0];
             out_right[0] = tmp = (dpp->samplesB[0] = in_right[0]) - APPLY_WEIGHT (dpp->weightB, sam);
             UPDATE_WEIGHT(dpp->weightB, dpp->delta, sam, tmp);
             dpp->sumB += dpp->weightB;
 
             in_left   += dir;
             out_left  += dir;
             in_right  += dir;
             out_right += dir;
         }
         break;
     case 18:
         while (nb_samples--) {
             int32_t sam, tmp;
 
             sam = dpp->samplesA[0] + ((dpp->samplesA[0] - dpp->samplesA[1]) >> 1);
             dpp->samplesA[1] = dpp->samplesA[0];
             out_left[0] = tmp = (dpp->samplesA[0] = in_left[0]) - APPLY_WEIGHT(dpp->weightA, sam);
             UPDATE_WEIGHT(dpp->weightA, dpp->delta, sam, tmp);
             dpp->sumA += dpp->weightA;
 
             sam = dpp->samplesB[0] + ((dpp->samplesB[0] - dpp->samplesB[1]) >> 1);
             dpp->samplesB[1] = dpp->samplesB[0];
             out_right[0] = tmp = (dpp->samplesB[0] = in_right[0]) - APPLY_WEIGHT(dpp->weightB, sam);
             UPDATE_WEIGHT(dpp->weightB, dpp->delta, sam, tmp);
             dpp->sumB += dpp->weightB;
 
             in_left   += dir;
             out_left  += dir;
             in_right  += dir;
             out_right += dir;
         }
         break;
     default: {
         int k = dpp->value & (MAX_TERM - 1);
 
         while (nb_samples--) {
             int32_t sam, tmp;
 
             sam = dpp->samplesA[m];
             out_left[0] = tmp = (dpp->samplesA[k] = in_left[0]) - APPLY_WEIGHT(dpp->weightA, sam);
             UPDATE_WEIGHT(dpp->weightA, dpp->delta, sam, tmp);
             dpp->sumA += dpp->weightA;
 
             sam = dpp->samplesB[m];
             out_right[0] = tmp = (dpp->samplesB[k] = in_right[0]) - APPLY_WEIGHT(dpp->weightB, sam);
             UPDATE_WEIGHT(dpp->weightB, dpp->delta, sam, tmp);
             dpp->sumB += dpp->weightB;
 
             in_left   += dir;
             out_left  += dir;
             in_right  += dir;
             out_right += dir;
             m = (m + 1) & (MAX_TERM - 1);
             k = (k + 1) & (MAX_TERM - 1);
         }
 
         if (m) {
             int32_t temp_A[MAX_TERM], temp_B[MAX_TERM];
             int k;
 
             memcpy(temp_A, dpp->samplesA, sizeof(dpp->samplesA));
             memcpy(temp_B, dpp->samplesB, sizeof(dpp->samplesB));
 
             for (k = 0; k < MAX_TERM; k++) {
                 dpp->samplesA[k] = temp_A[m];
                 dpp->samplesB[k] = temp_B[m];
                 m = (m + 1) & (MAX_TERM - 1);
             }
         }
         break;
         }
     case -1:
         while (nb_samples--) {
             int32_t sam_A, sam_B, tmp;
 
             sam_A = dpp->samplesA[0];
             out_left[0] = tmp = (sam_B = in_left[0]) - APPLY_WEIGHT(dpp->weightA, sam_A);
             UPDATE_WEIGHT_CLIP(dpp->weightA, dpp->delta, sam_A, tmp);
             dpp->sumA += dpp->weightA;
 
             out_right[0] = tmp = (dpp->samplesA[0] = in_right[0]) - APPLY_WEIGHT(dpp->weightB, sam_B);
             UPDATE_WEIGHT_CLIP(dpp->weightB, dpp->delta, sam_B, tmp);
             dpp->sumB += dpp->weightB;
 
             in_left   += dir;
             out_left  += dir;
             in_right  += dir;
             out_right += dir;
         }
         break;
     case -2:
         while (nb_samples--) {
             int32_t sam_A, sam_B, tmp;
 
             sam_B = dpp->samplesB[0];
             out_right[0] = tmp = (sam_A = in_right[0]) - APPLY_WEIGHT(dpp->weightB, sam_B);
             UPDATE_WEIGHT_CLIP(dpp->weightB, dpp->delta, sam_B, tmp);
             dpp->sumB += dpp->weightB;
 
             out_left[0] = tmp = (dpp->samplesB[0] = in_left[0]) - APPLY_WEIGHT(dpp->weightA, sam_A);
             UPDATE_WEIGHT_CLIP(dpp->weightA, dpp->delta, sam_A, tmp);
             dpp->sumA += dpp->weightA;
 
             in_left   += dir;
             out_left  += dir;
             in_right  += dir;
             out_right += dir;
         }
         break;
     case -3:
         while (nb_samples--) {
             int32_t sam_A, sam_B, tmp;
 
             sam_A = dpp->samplesA[0];
             sam_B = dpp->samplesB[0];
 
             dpp->samplesA[0] = tmp = in_right[0];
             out_right[0] = tmp -= APPLY_WEIGHT(dpp->weightB, sam_B);
             UPDATE_WEIGHT_CLIP(dpp->weightB, dpp->delta, sam_B, tmp);
             dpp->sumB += dpp->weightB;
 
             dpp->samplesB[0] = tmp = in_left[0];
             out_left[0] = tmp -= APPLY_WEIGHT(dpp->weightA, sam_A);
             UPDATE_WEIGHT_CLIP(dpp->weightA, dpp->delta, sam_A, tmp);
             dpp->sumA += dpp->weightA;
 
             in_left   += dir;
             out_left  += dir;
             in_right  += dir;
             out_right += dir;
         }
         break;
     }
 }
 
 static void reverse_decorr(struct Decorr *dpp)
 {
     if (dpp->value > MAX_TERM) {
         int32_t sam_A, sam_B;
 
         if (dpp->value & 1) {
             sam_A = 2 * dpp->samplesA[0] - dpp->samplesA[1];
             sam_B = 2 * dpp->samplesB[0] - dpp->samplesB[1];
         } else {
             sam_A = (3 * dpp->samplesA[0] - dpp->samplesA[1]) >> 1;
             sam_B = (3 * dpp->samplesB[0] - dpp->samplesB[1]) >> 1;
         }
 
         dpp->samplesA[1] = dpp->samplesA[0];
         dpp->samplesB[1] = dpp->samplesB[0];
         dpp->samplesA[0] = sam_A;
         dpp->samplesB[0] = sam_B;
 
         if (dpp->value & 1) {
             sam_A = 2 * dpp->samplesA[0] - dpp->samplesA[1];
             sam_B = 2 * dpp->samplesB[0] - dpp->samplesB[1];
         } else {
             sam_A = (3 * dpp->samplesA[0] - dpp->samplesA[1]) >> 1;
             sam_B = (3 * dpp->samplesB[0] - dpp->samplesB[1]) >> 1;
         }
 
         dpp->samplesA[1] = sam_A;
         dpp->samplesB[1] = sam_B;
     } else if (dpp->value > 1) {
         int i, j, k;
 
         for (i = 0, j = dpp->value - 1, k = 0; k < dpp->value / 2; i++, j--, k++) {
             i &= (MAX_TERM - 1);
             j &= (MAX_TERM - 1);
             dpp->samplesA[i] ^= dpp->samplesA[j];
             dpp->samplesA[j] ^= dpp->samplesA[i];
             dpp->samplesA[i] ^= dpp->samplesA[j];
             dpp->samplesB[i] ^= dpp->samplesB[j];
             dpp->samplesB[j] ^= dpp->samplesB[i];
             dpp->samplesB[i] ^= dpp->samplesB[j];
         }
     }
 }
 
 static void decorr_stereo_quick(int32_t *in_left,  int32_t *in_right,
                                 int32_t *out_left, int32_t *out_right,
                                 int nb_samples, struct Decorr *dpp)
 {
     int m = 0, i;
 
     dpp->weightA = restore_weight(store_weight(dpp->weightA));
     dpp->weightB = restore_weight(store_weight(dpp->weightB));
 
     for (i = 0; i < MAX_TERM; i++) {
         dpp->samplesA[i] = wp_exp2(log2s(dpp->samplesA[i]));
         dpp->samplesB[i] = wp_exp2(log2s(dpp->samplesB[i]));
     }
 
     switch (dpp->value) {
     case 2:
         for (i = 0; i < nb_samples; i++) {
             int32_t sam, tmp;
 
             sam = dpp->samplesA[0];
             dpp->samplesA[0] = dpp->samplesA[1];
             out_left[i] = tmp = (dpp->samplesA[1] = in_left[i]) - APPLY_WEIGHT_I(dpp->weightA, sam);
             UPDATE_WEIGHT(dpp->weightA, dpp->delta, sam, tmp);
 
             sam = dpp->samplesB[0];
             dpp->samplesB[0] = dpp->samplesB[1];
             out_right[i] = tmp = (dpp->samplesB[1] = in_right[i]) - APPLY_WEIGHT_I(dpp->weightB, sam);
             UPDATE_WEIGHT(dpp->weightB, dpp->delta, sam, tmp);
         }
         break;
     case 17:
         for (i = 0; i < nb_samples; i++) {
             int32_t sam, tmp;
 
             sam = 2 * dpp->samplesA[0] - dpp->samplesA[1];
             dpp->samplesA[1] = dpp->samplesA[0];
             out_left[i] = tmp = (dpp->samplesA[0] = in_left[i]) - APPLY_WEIGHT_I(dpp->weightA, sam);
             UPDATE_WEIGHT(dpp->weightA, dpp->delta, sam, tmp);
 
             sam = 2 * dpp->samplesB[0] - dpp->samplesB[1];
             dpp->samplesB[1] = dpp->samplesB[0];
             out_right[i] = tmp = (dpp->samplesB[0] = in_right[i]) - APPLY_WEIGHT_I(dpp->weightB, sam);
             UPDATE_WEIGHT(dpp->weightB, dpp->delta, sam, tmp);
         }
         break;
     case 18:
         for (i = 0; i < nb_samples; i++) {
             int32_t sam, tmp;
 
             sam = dpp->samplesA[0] + ((dpp->samplesA[0] - dpp->samplesA[1]) >> 1);
             dpp->samplesA[1] = dpp->samplesA[0];
             out_left[i] = tmp = (dpp->samplesA[0] = in_left[i]) - APPLY_WEIGHT_I(dpp->weightA, sam);
             UPDATE_WEIGHT(dpp->weightA, dpp->delta, sam, tmp);
 
             sam = dpp->samplesB[0] + ((dpp->samplesB[0] - dpp->samplesB[1]) >> 1);
             dpp->samplesB[1] = dpp->samplesB[0];
             out_right[i] = tmp = (dpp->samplesB[0] = in_right[i]) - APPLY_WEIGHT_I(dpp->weightB, sam);
             UPDATE_WEIGHT(dpp->weightB, dpp->delta, sam, tmp);
         }
         break;
     default: {
         int k = dpp->value & (MAX_TERM - 1);
 
         for (i = 0; i < nb_samples; i++) {
             int32_t sam, tmp;
 
             sam = dpp->samplesA[m];
             out_left[i] = tmp = (dpp->samplesA[k] = in_left[i]) - APPLY_WEIGHT_I(dpp->weightA, sam);
             UPDATE_WEIGHT(dpp->weightA, dpp->delta, sam, tmp);
 
             sam = dpp->samplesB[m];
             out_right[i] = tmp = (dpp->samplesB[k] = in_right[i]) - APPLY_WEIGHT_I(dpp->weightB, sam);
             UPDATE_WEIGHT(dpp->weightB, dpp->delta, sam, tmp);
 
             m = (m + 1) & (MAX_TERM - 1);
             k = (k + 1) & (MAX_TERM - 1);
         }
 
         if (m) {
             int32_t temp_A[MAX_TERM], temp_B[MAX_TERM];
             int k;
 
             memcpy(temp_A, dpp->samplesA, sizeof(dpp->samplesA));
             memcpy(temp_B, dpp->samplesB, sizeof(dpp->samplesB));
 
             for (k = 0; k < MAX_TERM; k++) {
                 dpp->samplesA[k] = temp_A[m];
                 dpp->samplesB[k] = temp_B[m];
                 m = (m + 1) & (MAX_TERM - 1);
             }
         }
         break;
     }
     case -1:
         for (i = 0; i < nb_samples; i++) {
             int32_t sam_A, sam_B, tmp;
 
             sam_A = dpp->samplesA[0];
             out_left[i] = tmp = (sam_B = in_left[i]) - APPLY_WEIGHT_I(dpp->weightA, sam_A);
             UPDATE_WEIGHT_CLIP(dpp->weightA, dpp->delta, sam_A, tmp);
 
             out_right[i] = tmp = (dpp->samplesA[0] = in_right[i]) - APPLY_WEIGHT_I(dpp->weightB, sam_B);
             UPDATE_WEIGHT_CLIP(dpp->weightB, dpp->delta, sam_B, tmp);
         }
         break;
     case -2:
         for (i = 0; i < nb_samples; i++) {
             int32_t sam_A, sam_B, tmp;
 
             sam_B = dpp->samplesB[0];
             out_right[i] = tmp = (sam_A = in_right[i]) - APPLY_WEIGHT_I(dpp->weightB, sam_B);
             UPDATE_WEIGHT_CLIP(dpp->weightB, dpp->delta, sam_B, tmp);
 
             out_left[i] = tmp = (dpp->samplesB[0] = in_left[i]) - APPLY_WEIGHT_I(dpp->weightA, sam_A);
             UPDATE_WEIGHT_CLIP(dpp->weightA, dpp->delta, sam_A, tmp);
         }
         break;
     case -3:
         for (i = 0; i < nb_samples; i++) {
             int32_t sam_A, sam_B, tmp;
 
             sam_A = dpp->samplesA[0];
             sam_B = dpp->samplesB[0];
 
             dpp->samplesA[0] = tmp = in_right[i];
             out_right[i] = tmp -= APPLY_WEIGHT_I(dpp->weightB, sam_B);
             UPDATE_WEIGHT_CLIP(dpp->weightB, dpp->delta, sam_B, tmp);
 
             dpp->samplesB[0] = tmp = in_left[i];
             out_left[i] = tmp -= APPLY_WEIGHT_I(dpp->weightA, sam_A);
             UPDATE_WEIGHT_CLIP(dpp->weightA, dpp->delta, sam_A, tmp);
         }
         break;
     }
 }
 
 static void decorr_stereo_buffer(WavPackExtraInfo *info,
                                  int32_t *in_left,  int32_t *in_right,
                                  int32_t *out_left, int32_t *out_right,
                                  int nb_samples, int tindex)
 {
     struct Decorr dp = {0}, *dppi = info->dps + tindex;
     int delta = dppi->delta, pre_delta;
     int term = dppi->value;
 
     if (delta == 7)
         pre_delta = 7;
     else if (delta < 2)
         pre_delta = 3;
     else
         pre_delta = delta + 1;
 
     dp.value = term;
     dp.delta = pre_delta;
     decorr_stereo(in_left, in_right, out_left, out_right,
                   FFMIN(2048, nb_samples), &dp, -1);
     dp.delta = delta;
 
     if (tindex == 0) {
         reverse_decorr(&dp);
     } else {
         CLEAR(dp.samplesA);
         CLEAR(dp.samplesB);
     }
 
     memcpy(dppi->samplesA, dp.samplesA, sizeof(dp.samplesA));
     memcpy(dppi->samplesB, dp.samplesB, sizeof(dp.samplesB));
     dppi->weightA = dp.weightA;
     dppi->weightB = dp.weightB;
 
     if (delta == 0) {
         dp.delta = 1;
         decorr_stereo(in_left, in_right, out_left, out_right, nb_samples, &dp, 1);
         dp.delta = 0;
         memcpy(dp.samplesA, dppi->samplesA, sizeof(dp.samplesA));
         memcpy(dp.samplesB, dppi->samplesB, sizeof(dp.samplesB));
         dppi->weightA = dp.weightA = dp.sumA / nb_samples;
         dppi->weightB = dp.weightB = dp.sumB / nb_samples;
     }
 
     if (info->gt16bit)
         decorr_stereo(in_left, in_right, out_left, out_right,
                            nb_samples, &dp, 1);
     else
         decorr_stereo_quick(in_left, in_right, out_left, out_right,
                             nb_samples, &dp);
 }
 
 static void sort_stereo(WavPackEncodeContext *s, WavPackExtraInfo *info)
 {
     int reversed = 1;
     uint32_t bits;
 
     while (reversed) {
         int ri, i;
 
         memcpy(info->dps, s->decorr_passes, sizeof(s->decorr_passes));
         reversed = 0;
 
         for (ri = 0; ri < info->nterms && s->decorr_passes[ri].value; ri++) {
 
             if (ri + 1 >= info->nterms || !s->decorr_passes[ri+1].value)
                 break;
 
             if (s->decorr_passes[ri].value == s->decorr_passes[ri+1].value) {
                 decorr_stereo_buffer(info,
                                      s->sampleptrs[ri  ][0], s->sampleptrs[ri  ][1],
                                      s->sampleptrs[ri+1][0], s->sampleptrs[ri+1][1],
                                      s->block_samples, ri);
                 continue;
             }
 
             info->dps[ri  ] = s->decorr_passes[ri+1];
             info->dps[ri+1] = s->decorr_passes[ri  ];
 
             for (i = ri; i < info->nterms && s->decorr_passes[i].value; i++)
                 decorr_stereo_buffer(info,
                                      s->sampleptrs[i  ][0], s->sampleptrs[i  ][1],
                                      s->sampleptrs[i+1][0], s->sampleptrs[i+1][1],
                                      s->block_samples, i);
 
             bits = log2stereo(s->sampleptrs[i][0], s->sampleptrs[i][1],
                               s->block_samples, info->log_limit);
 
             if (bits < info->best_bits) {
                 reversed = 1;
                 info->best_bits = bits;
                 CLEAR(s->decorr_passes);
                 memcpy(s->decorr_passes, info->dps, sizeof(info->dps[0]) * i);
                 memcpy(s->sampleptrs[info->nterms + 1][0],
                        s->sampleptrs[i][0], s->block_samples * 4);
                 memcpy(s->sampleptrs[info->nterms + 1][1],
                        s->sampleptrs[i][1], s->block_samples * 4);
             } else {
                 info->dps[ri  ] = s->decorr_passes[ri  ];
                 info->dps[ri+1] = s->decorr_passes[ri+1];
                 decorr_stereo_buffer(info,
                                      s->sampleptrs[ri  ][0], s->sampleptrs[ri  ][1],
                                      s->sampleptrs[ri+1][0], s->sampleptrs[ri+1][1],
                                      s->block_samples, ri);
             }
         }
     }
 }
 
 static void delta_stereo(WavPackEncodeContext *s, WavPackExtraInfo *info)
 {
     int lower = 0, delta, d, i;
     uint32_t bits;
 
     if (!s->decorr_passes[0].value)
         return;
     delta = s->decorr_passes[0].delta;
 
     for (d = delta - 1; d >= 0; d--) {
         for (i = 0; i < info->nterms && s->decorr_passes[i].value; i++) {
             info->dps[i].value = s->decorr_passes[i].value;
             info->dps[i].delta = d;
             decorr_stereo_buffer(info,
                                  s->sampleptrs[i  ][0], s->sampleptrs[i  ][1],
                                  s->sampleptrs[i+1][0], s->sampleptrs[i+1][1],
                                  s->block_samples, i);
         }
 
         bits = log2stereo(s->sampleptrs[i][0], s->sampleptrs[i][1],
                           s->block_samples, info->log_limit);
         if (bits >= info->best_bits)
             break;
         lower = 1;
         info->best_bits = bits;
         CLEAR(s->decorr_passes);
         memcpy(s->decorr_passes, info->dps, sizeof(info->dps[0]) * i);
         memcpy(s->sampleptrs[info->nterms + 1][0], s->sampleptrs[i][0],
                s->block_samples * 4);
         memcpy(s->sampleptrs[info->nterms + 1][1], s->sampleptrs[i][1],
                s->block_samples * 4);
     }
 
     for (d = delta + 1; !lower && d <= 7; d++) {
         for (i = 0; i < info->nterms && s->decorr_passes[i].value; i++) {
             info->dps[i].value = s->decorr_passes[i].value;
             info->dps[i].delta = d;
             decorr_stereo_buffer(info,
                                  s->sampleptrs[i  ][0], s->sampleptrs[i  ][1],
                                  s->sampleptrs[i+1][0], s->sampleptrs[i+1][1],
                                  s->block_samples, i);
         }
 
         bits = log2stereo(s->sampleptrs[i][0], s->sampleptrs[i][1],
                           s->block_samples, info->log_limit);
 
         if (bits < info->best_bits) {
             info->best_bits = bits;
             CLEAR(s->decorr_passes);
             memcpy(s->decorr_passes, info->dps, sizeof(info->dps[0]) * i);
             memcpy(s->sampleptrs[info->nterms + 1][0],
                    s->sampleptrs[i][0], s->block_samples * 4);
             memcpy(s->sampleptrs[info->nterms + 1][1],
                    s->sampleptrs[i][1], s->block_samples * 4);
         }
         else
             break;
     }
 }
 
 static void recurse_stereo(WavPackEncodeContext *s, WavPackExtraInfo *info,
                            int depth, int delta, uint32_t input_bits)
 {
     int term, branches = s->num_branches - depth;
     int32_t *in_left, *in_right, *out_left, *out_right;
     uint32_t term_bits[22], bits;
 
     if (branches < 1 || depth + 1 == info->nterms)
         branches = 1;
 
     CLEAR(term_bits);
     in_left   = s->sampleptrs[depth    ][0];
     in_right  = s->sampleptrs[depth    ][1];
     out_left  = s->sampleptrs[depth + 1][0];
     out_right = s->sampleptrs[depth + 1][1];
 
     for (term = -3; term <= 18; term++) {
         if (!term || (term > 8 && term < 17))
             continue;
 
         if (term == 17 && branches == 1 && depth + 1 < info->nterms)
             continue;
 
         if (term == -1 || term == -2)
             if (!(s->flags & WV_CROSS_DECORR))
                 continue;
 
         if (!s->extra_flags && (term > 4 && term < 17))
             continue;
 
         info->dps[depth].value = term;
         info->dps[depth].delta = delta;
         decorr_stereo_buffer(info, in_left, in_right, out_left, out_right,
                              s->block_samples, depth);
         bits = log2stereo(out_left, out_right, s->block_samples, info->log_limit);
 
         if (bits < info->best_bits) {
             info->best_bits = bits;
             CLEAR(s->decorr_passes);
             memcpy(s->decorr_passes, info->dps, sizeof(info->dps[0]) * (depth + 1));
             memcpy(s->sampleptrs[info->nterms + 1][0], s->sampleptrs[depth + 1][0],
                    s->block_samples * 4);
             memcpy(s->sampleptrs[info->nterms + 1][1], s->sampleptrs[depth + 1][1],
                    s->block_samples * 4);
         }
 
         term_bits[term + 3] = bits;
     }
 
     while (depth + 1 < info->nterms && branches--) {
         uint32_t local_best_bits = input_bits;
         int best_term = 0, i;
 
         for (i = 0; i < 22; i++)
             if (term_bits[i] && term_bits[i] < local_best_bits) {
                 local_best_bits = term_bits[i];
                 best_term = i - 3;
             }
 
         if (!best_term)
             break;
 
         term_bits[best_term + 3] = 0;
 
         info->dps[depth].value = best_term;
         info->dps[depth].delta = delta;
         decorr_stereo_buffer(info, in_left, in_right, out_left, out_right,
                              s->block_samples, depth);
 
         recurse_stereo(s, info, depth + 1, delta, local_best_bits);
     }
 }
 
 static void analyze_stereo(WavPackEncodeContext *s,
                            int32_t *in_left, int32_t *in_right,
                            int do_samples)
 {
     WavPackExtraInfo info;
     int i;
 
     info.gt16bit = ((s->flags & MAG_MASK) >> MAG_LSB) >= 16;
 
     info.log_limit = (((s->flags & MAG_MASK) >> MAG_LSB) + 4) * 256;
     info.log_limit = FFMIN(6912, info.log_limit);
 
     info.nterms = s->num_terms;
 
     if (allocate_buffers2(s, s->num_terms))
         return;
 
     memcpy(info.dps, s->decorr_passes, sizeof(info.dps));
     memcpy(s->sampleptrs[0][0], in_left,  s->block_samples * 4);
     memcpy(s->sampleptrs[0][1], in_right, s->block_samples * 4);
 
     for (i = 0; i < info.nterms && info.dps[i].value; i++)
         if (info.gt16bit)
             decorr_stereo(s->sampleptrs[i    ][0], s->sampleptrs[i    ][1],
                           s->sampleptrs[i + 1][0], s->sampleptrs[i + 1][1],
                           s->block_samples, info.dps + i, 1);
         else
             decorr_stereo_quick(s->sampleptrs[i    ][0], s->sampleptrs[i    ][1],
                                 s->sampleptrs[i + 1][0], s->sampleptrs[i + 1][1],
                                 s->block_samples, info.dps + i);
 
     info.best_bits = log2stereo(s->sampleptrs[info.nterms][0], s->sampleptrs[info.nterms][1],
                                 s->block_samples, 0);
 
     memcpy(s->sampleptrs[info.nterms + 1][0], s->sampleptrs[i][0], s->block_samples * 4);
     memcpy(s->sampleptrs[info.nterms + 1][1], s->sampleptrs[i][1], s->block_samples * 4);
 
     if (s->extra_flags & EXTRA_BRANCHES)
         recurse_stereo(s, &info, 0, (int) floor(s->delta_decay + 0.5),
                        log2stereo(s->sampleptrs[0][0], s->sampleptrs[0][1],
                                   s->block_samples, 0));
 
     if (s->extra_flags & EXTRA_SORT_FIRST)
         sort_stereo(s, &info);
 
     if (s->extra_flags & EXTRA_TRY_DELTAS) {
         delta_stereo(s, &info);
 
         if ((s->extra_flags & EXTRA_ADJUST_DELTAS) && s->decorr_passes[0].value)
             s->delta_decay = (float)((s->delta_decay * 2.0 + s->decorr_passes[0].delta) / 3.0);
         else
             s->delta_decay = 2.0;
     }
 
     if (s->extra_flags & EXTRA_SORT_LAST)
         sort_stereo(s, &info);
 
     if (do_samples) {
         memcpy(in_left,  s->sampleptrs[info.nterms + 1][0], s->block_samples * 4);
         memcpy(in_right, s->sampleptrs[info.nterms + 1][1], s->block_samples * 4);
     }
 
     for (i = 0; i < info.nterms; i++)
         if (!s->decorr_passes[i].value)
             break;
 
     s->num_terms = i;
 }
 
 static int wv_stereo(WavPackEncodeContext *s,
                      int32_t *samples_l, int32_t *samples_r,
                      int no_history, int do_samples)
 {
     struct Decorr temp_decorr_pass, save_decorr_passes[MAX_TERMS] = {{0}};
     int nb_samples = s->block_samples, ret;
     int buf_size = sizeof(int32_t) * nb_samples;
     int log_limit, force_js = 0, force_ts = 0, got_js = 0, pi, i;
     uint32_t best_size = UINT32_MAX, size;
 
     for (i = 0; i < nb_samples; i++)
         if (samples_l[i] || samples_r[i])
             break;
 
     if (i == nb_samples) {
         s->flags &= ~((uint32_t) WV_JOINT_STEREO);
         CLEAR(s->decorr_passes);
         CLEAR(s->w);
         s->num_terms = 0;
         return 0;
     }
 
     log_limit = (((s->flags & MAG_MASK) >> MAG_LSB) + 4) * 256;
     log_limit = FFMIN(6912, log_limit);
 
     if (s->joint) {
         force_js = s->joint > 0;
         force_ts = s->joint < 0;
     }
 
     if ((ret = allocate_buffers(s)) < 0)
         return ret;
 
     if (no_history || s->num_passes >= 7)
         s->best_decorr = s->mask_decorr = 0;
 
     for (pi = 0; pi < s->num_passes;) {
         const WavPackDecorrSpec *wpds;
         int nterms, c, j;
 
         if (!pi)
             c = s->best_decorr;
         else {
             if (s->mask_decorr == 0)
                 c = 0;
             else
                 c = (s->best_decorr & (s->mask_decorr - 1)) | s->mask_decorr;
 
             if (c == s->best_decorr) {
                 s->mask_decorr = s->mask_decorr ? ((s->mask_decorr << 1) & (s->num_decorrs - 1)) : 1;
                 continue;
             }
         }
 
         wpds = &s->decorr_specs[c];
         nterms = decorr_filter_nterms[s->decorr_filter];
 
         while (1) {
             if (force_js || (wpds->joint_stereo && !force_ts)) {
                 if (!got_js) {
                     av_fast_padded_malloc(&s->js_left,  &s->js_left_size,  buf_size);
                     av_fast_padded_malloc(&s->js_right, &s->js_right_size, buf_size);
                     memcpy(s->js_left,  samples_l, buf_size);
                     memcpy(s->js_right, samples_r, buf_size);
 
                     for (i = 0; i < nb_samples; i++)
                         s->js_right[i] += ((s->js_left[i] -= s->js_right[i]) >> 1);
                     got_js = 1;
                 }
 
                 memcpy(s->temp_buffer[0][0], s->js_left,  buf_size);
                 memcpy(s->temp_buffer[0][1], s->js_right, buf_size);
             } else {
                 memcpy(s->temp_buffer[0][0], samples_l, buf_size);
                 memcpy(s->temp_buffer[0][1], samples_r, buf_size);
             }
 
             CLEAR(save_decorr_passes);
 
             for (j = 0; j < nterms; j++) {
                 CLEAR(temp_decorr_pass);
                 temp_decorr_pass.delta = wpds->delta;
                 temp_decorr_pass.value = wpds->terms[j];
 
                 if (temp_decorr_pass.value < 0 && !(s->flags & WV_CROSS_DECORR))
                     temp_decorr_pass.value = -3;
 
                 decorr_stereo(s->temp_buffer[ j&1][0], s->temp_buffer[ j&1][1],
                               s->temp_buffer[~j&1][0], s->temp_buffer[~j&1][1],
                               FFMIN(2048, nb_samples), &temp_decorr_pass, -1);
 
                 if (j) {
                     CLEAR(temp_decorr_pass.samplesA);
                     CLEAR(temp_decorr_pass.samplesB);
                 } else {
                     reverse_decorr(&temp_decorr_pass);
                 }
 
                 memcpy(save_decorr_passes + j, &temp_decorr_pass, sizeof(struct Decorr));
 
                 if (((s->flags & MAG_MASK) >> MAG_LSB) >= 16)
                     decorr_stereo(s->temp_buffer[ j&1][0], s->temp_buffer[ j&1][1],
                                   s->temp_buffer[~j&1][0], s->temp_buffer[~j&1][1],
                                   nb_samples, &temp_decorr_pass, 1);
                 else
                     decorr_stereo_quick(s->temp_buffer[ j&1][0], s->temp_buffer[ j&1][1],
                                         s->temp_buffer[~j&1][0], s->temp_buffer[~j&1][1],
                                         nb_samples, &temp_decorr_pass);
             }
 
             size = log2stereo(s->temp_buffer[j&1][0], s->temp_buffer[j&1][1],
                               nb_samples, log_limit);
             if (size != UINT32_MAX || !nterms)
                 break;
             nterms >>= 1;
         }
 
         if (size < best_size) {
             memcpy(s->best_buffer[0], s->temp_buffer[j&1][0], buf_size);
             memcpy(s->best_buffer[1], s->temp_buffer[j&1][1], buf_size);
             memcpy(s->decorr_passes, save_decorr_passes, sizeof(struct Decorr) * MAX_TERMS);
             s->num_terms = nterms;
             s->best_decorr = c;
             best_size = size;
         }
 
         if (pi++)
             s->mask_decorr = s->mask_decorr ? ((s->mask_decorr << 1) & (s->num_decorrs - 1)) : 1;
     }
 
     if (force_js || (s->decorr_specs[s->best_decorr].joint_stereo && !force_ts))
         s->flags |= WV_JOINT_STEREO;
     else
         s->flags &= ~((uint32_t) WV_JOINT_STEREO);
 
     if (s->extra_flags) {
         if (s->flags & WV_JOINT_STEREO) {
             analyze_stereo(s, s->js_left, s->js_right, do_samples);
 
             if (do_samples) {
                 memcpy(samples_l, s->js_left,  buf_size);
                 memcpy(samples_r, s->js_right, buf_size);
             }
         } else
             analyze_stereo(s, samples_l, samples_r, do_samples);
     } else if (do_samples) {
         memcpy(samples_l, s->best_buffer[0], buf_size);
         memcpy(samples_r, s->best_buffer[1], buf_size);
     }
 
     if (s->extra_flags || no_history ||
         s->joint_stereo != s->decorr_specs[s->best_decorr].joint_stereo) {
         s->joint_stereo = s->decorr_specs[s->best_decorr].joint_stereo;
         CLEAR(s->w);
         scan_word(s, &s->w.c[0], s->best_buffer[0], nb_samples, -1);
         scan_word(s, &s->w.c[1], s->best_buffer[1], nb_samples, -1);
     }
     return 0;
 }
 
 #define count_bits(av) ( \
  (av) < (1 << 8) ? nbits_table[av] : \
   ( \
    (av) < (1L << 16) ? nbits_table[(av) >> 8] + 8 : \
    ((av) < (1L << 24) ? nbits_table[(av) >> 16] + 16 : nbits_table[(av) >> 24] + 24) \
   ) \
 )
 
 static void encode_flush(WavPackEncodeContext *s)
 {
     WavPackWords *w = &s->w;
     PutBitContext *pb = &s->pb;
 
     if (w->zeros_acc) {
         int cbits = count_bits(w->zeros_acc);
 
         do {
             if (cbits > 31) {
                 put_bits(pb, 31, 0x7FFFFFFF);
                 cbits -= 31;
             } else {
                 put_bits(pb, cbits, (1 << cbits) - 1);
                 cbits = 0;
             }
         } while (cbits);
 
         put_bits(pb, 1, 0);
 
         while (w->zeros_acc > 1) {
             put_bits(pb, 1, w->zeros_acc & 1);
             w->zeros_acc >>= 1;
         }
 
         w->zeros_acc = 0;
     }
 
     if (w->holding_one) {
         if (w->holding_one >= 16) {
             int cbits;
 
             put_bits(pb, 16, (1 << 16) - 1);
             put_bits(pb, 1, 0);
             w->holding_one -= 16;
             cbits = count_bits(w->holding_one);
 
             do {
                 if (cbits > 31) {
                     put_bits(pb, 31, 0x7FFFFFFF);
                     cbits -= 31;
                 } else {
                     put_bits(pb, cbits, (1 << cbits) - 1);
                     cbits = 0;
                 }
             } while (cbits);
 
             put_bits(pb, 1, 0);
 
             while (w->holding_one > 1) {
                 put_bits(pb, 1, w->holding_one & 1);
                 w->holding_one >>= 1;
             }
 
             w->holding_zero = 0;
         } else {
             put_bits(pb, w->holding_one, (1 << w->holding_one) - 1);
         }
 
         w->holding_one = 0;
     }
 
     if (w->holding_zero) {
         put_bits(pb, 1, 0);
         w->holding_zero = 0;
     }
 
     if (w->pend_count) {
         put_bits(pb, w->pend_count, w->pend_data);
         w->pend_data = w->pend_count = 0;
     }
 }
 
 static void wavpack_encode_sample(WavPackEncodeContext *s, WvChannel *c, int32_t sample)
 {
     WavPackWords *w = &s->w;
     uint32_t ones_count, low, high;
bfbe0767
     int sign = sample < 0;
93f42777
 
     if (s->w.c[0].median[0] < 2 && !s->w.holding_zero && s->w.c[1].median[0] < 2) {
         if (w->zeros_acc) {
             if (sample)
                 encode_flush(s);
             else {
                 w->zeros_acc++;
                 return;
             }
         } else if (sample) {
             put_bits(&s->pb, 1, 0);
         } else {
             CLEAR(s->w.c[0].median);
             CLEAR(s->w.c[1].median);
             w->zeros_acc = 1;
             return;
         }
     }
 
     if (sign)
         sample = ~sample;
 
     if (sample < (int32_t) GET_MED(0)) {
         ones_count = low = 0;
         high = GET_MED(0) - 1;
         DEC_MED(0);
     } else {
         low = GET_MED(0);
         INC_MED(0);
 
         if (sample - low < GET_MED(1)) {
             ones_count = 1;
             high = low + GET_MED(1) - 1;
             DEC_MED(1);
         } else {
             low += GET_MED(1);
             INC_MED(1);
 
             if (sample - low < GET_MED(2)) {
                 ones_count = 2;
                 high = low + GET_MED(2) - 1;
                 DEC_MED(2);
             } else {
                 ones_count = 2 + (sample - low) / GET_MED(2);
                 low += (ones_count - 2) * GET_MED(2);
                 high = low + GET_MED(2) - 1;
                 INC_MED(2);
             }
         }
     }
 
     if (w->holding_zero) {
         if (ones_count)
             w->holding_one++;
 
         encode_flush(s);
 
         if (ones_count) {
             w->holding_zero = 1;
             ones_count--;
         } else
             w->holding_zero = 0;
     } else
         w->holding_zero = 1;
 
     w->holding_one = ones_count * 2;
 
     if (high != low) {
         uint32_t maxcode = high - low, code = sample - low;
         int bitcount = count_bits(maxcode);
         uint32_t extras = (1 << bitcount) - maxcode - 1;
 
         if (code < extras) {
             w->pend_data |= code << w->pend_count;
             w->pend_count += bitcount - 1;
         } else {
             w->pend_data |= ((code + extras) >> 1) << w->pend_count;
             w->pend_count += bitcount - 1;
             w->pend_data |= ((code + extras) & 1) << w->pend_count++;
         }
     }
 
     w->pend_data |= ((int32_t) sign << w->pend_count++);
 
     if (!w->holding_zero)
         encode_flush(s);
 }
 
 static void pack_int32(WavPackEncodeContext *s,
                        int32_t *samples_l, int32_t *samples_r,
                        int nb_samples)
 {
     const int sent_bits = s->int32_sent_bits;
     int32_t value, mask = (1 << sent_bits) - 1;
     PutBitContext *pb = &s->pb;
     int i, pre_shift;
 
     pre_shift = s->int32_zeros + s->int32_ones + s->int32_dups;
 
     if (!sent_bits)
         return;
 
     if (s->flags & WV_MONO_DATA) {
         for (i = 0; i < nb_samples; i++) {
             value = (samples_l[i] >> pre_shift) & mask;
             put_bits(pb, sent_bits, value);
         }
     } else {
         for (i = 0; i < nb_samples; i++) {
             value = (samples_l[i] >> pre_shift) & mask;
             put_bits(pb, sent_bits, value);
             value = (samples_r[i] >> pre_shift) & mask;
             put_bits(pb, sent_bits, value);
         }
     }
 }
 
 static void pack_float_sample(WavPackEncodeContext *s, int32_t *sample)
 {
     const int max_exp = s->float_max_exp;
     PutBitContext *pb = &s->pb;
     int32_t value, shift_count;
 
     if (get_exponent(*sample) == 255) {
         if (get_mantissa(*sample)) {
             put_bits(pb, 1, 1);
             put_bits(pb, 23, get_mantissa(*sample));
         } else {
             put_bits(pb, 1, 0);
         }
 
         value = 0x1000000;
         shift_count = 0;
     } else if (get_exponent(*sample)) {
         shift_count = max_exp - get_exponent(*sample);
         value = 0x800000 + get_mantissa(*sample);
     } else {
         shift_count = max_exp ? max_exp - 1 : 0;
         value = get_mantissa(*sample);
     }
 
     if (shift_count < 25)
         value >>= shift_count;
     else
         value = 0;
 
     if (!value) {
         if (s->float_flags & FLOAT_ZEROS_SENT) {
             if (get_exponent(*sample) || get_mantissa(*sample)) {
                 put_bits(pb, 1, 1);
                 put_bits(pb, 23, get_mantissa(*sample));
 
                 if (max_exp >= 25)
                     put_bits(pb, 8, get_exponent(*sample));
 
                 put_bits(pb, 1, get_sign(*sample));
             } else {
                 put_bits(pb, 1, 0);
 
                 if (s->float_flags & FLOAT_NEG_ZEROS)
                     put_bits(pb, 1, get_sign(*sample));
             }
         }
     } else if (shift_count) {
         if (s->float_flags & FLOAT_SHIFT_SENT) {
             int32_t data = get_mantissa(*sample) & ((1 << shift_count) - 1);
             put_bits(pb, shift_count, data);
         } else if (s->float_flags & FLOAT_SHIFT_SAME) {
             put_bits(pb, 1, get_mantissa(*sample) & 1);
         }
     }
 }
 
 static void pack_float(WavPackEncodeContext *s,
                        int32_t *samples_l, int32_t *samples_r,
                        int nb_samples)
 {
     int i;
 
     if (s->flags & WV_MONO_DATA) {
         for (i = 0; i < nb_samples; i++)
             pack_float_sample(s, &samples_l[i]);
     } else {
         for (i = 0; i < nb_samples; i++) {
             pack_float_sample(s, &samples_l[i]);
             pack_float_sample(s, &samples_r[i]);
         }
     }
 }
 
 static void decorr_stereo_pass2(struct Decorr *dpp,
                                 int32_t *samples_l, int32_t *samples_r,
                                 int nb_samples)
 {
     int i, m, k;
 
     switch (dpp->value) {
     case 17:
         for (i = 0; i < nb_samples; i++) {
             int32_t sam, tmp;
 
             sam = 2 * dpp->samplesA[0] - dpp->samplesA[1];
             dpp->samplesA[1] = dpp->samplesA[0];
             samples_l[i] = tmp = (dpp->samplesA[0] = samples_l[i]) - APPLY_WEIGHT(dpp->weightA, sam);
             UPDATE_WEIGHT(dpp->weightA, dpp->delta, sam, tmp);
 
             sam = 2 * dpp->samplesB[0] - dpp->samplesB[1];
             dpp->samplesB[1] = dpp->samplesB[0];
             samples_r[i] = tmp = (dpp->samplesB[0] = samples_r[i]) - APPLY_WEIGHT(dpp->weightB, sam);
             UPDATE_WEIGHT(dpp->weightB, dpp->delta, sam, tmp);
         }
         break;
     case 18:
         for (i = 0; i < nb_samples; i++) {
             int32_t sam, tmp;
 
             sam = dpp->samplesA[0] + ((dpp->samplesA[0] - dpp->samplesA[1]) >> 1);
             dpp->samplesA[1] = dpp->samplesA[0];
             samples_l[i] = tmp = (dpp->samplesA[0] = samples_l[i]) - APPLY_WEIGHT(dpp->weightA, sam);
             UPDATE_WEIGHT(dpp->weightA, dpp->delta, sam, tmp);
 
             sam = dpp->samplesB[0] + ((dpp->samplesB[0] - dpp->samplesB[1]) >> 1);
             dpp->samplesB[1] = dpp->samplesB[0];
             samples_r[i] = tmp = (dpp->samplesB[0] = samples_r[i]) - APPLY_WEIGHT(dpp->weightB, sam);
             UPDATE_WEIGHT(dpp->weightB, dpp->delta, sam, tmp);
         }
         break;
     default:
         for (m = 0, k = dpp->value & (MAX_TERM - 1), i = 0; i < nb_samples; i++) {
             int32_t sam, tmp;
 
             sam = dpp->samplesA[m];
             samples_l[i] = tmp = (dpp->samplesA[k] = samples_l[i]) - APPLY_WEIGHT(dpp->weightA, sam);
             UPDATE_WEIGHT(dpp->weightA, dpp->delta, sam, tmp);
 
             sam = dpp->samplesB[m];
             samples_r[i] = tmp = (dpp->samplesB[k] = samples_r[i]) - APPLY_WEIGHT(dpp->weightB, sam);
             UPDATE_WEIGHT(dpp->weightB, dpp->delta, sam, tmp);
 
             m = (m + 1) & (MAX_TERM - 1);
             k = (k + 1) & (MAX_TERM - 1);
         }
         if (m) {
             int32_t temp_A[MAX_TERM], temp_B[MAX_TERM];
 
             memcpy(temp_A, dpp->samplesA, sizeof (dpp->samplesA));
             memcpy(temp_B, dpp->samplesB, sizeof (dpp->samplesB));
 
             for (k = 0; k < MAX_TERM; k++) {
                 dpp->samplesA[k] = temp_A[m];
                 dpp->samplesB[k] = temp_B[m];
                 m = (m + 1) & (MAX_TERM - 1);
             }
         }
         break;
     case -1:
         for (i = 0; i < nb_samples; i++) {
             int32_t sam_A, sam_B, tmp;
 
             sam_A = dpp->samplesA[0];
             samples_l[i] = tmp = (sam_B = samples_l[i]) - APPLY_WEIGHT(dpp->weightA, sam_A);
             UPDATE_WEIGHT_CLIP(dpp->weightA, dpp->delta, sam_A, tmp);
 
             samples_r[i] = tmp = (dpp->samplesA[0] = samples_r[i]) - APPLY_WEIGHT(dpp->weightB, sam_B);
             UPDATE_WEIGHT_CLIP(dpp->weightB, dpp->delta, sam_B, tmp);
         }
         break;
     case -2:
         for (i = 0; i < nb_samples; i++) {
             int32_t sam_A, sam_B, tmp;
 
             sam_B = dpp->samplesB[0];
             samples_r[i] = tmp = (sam_A = samples_r[i]) - APPLY_WEIGHT(dpp->weightB, sam_B);
             UPDATE_WEIGHT_CLIP(dpp->weightB, dpp->delta, sam_B, tmp);
 
             samples_l[i] = tmp = (dpp->samplesB[0] = samples_l[i]) - APPLY_WEIGHT(dpp->weightA, sam_A);
             UPDATE_WEIGHT_CLIP(dpp->weightA, dpp->delta, sam_A, tmp);
         }
         break;
     case -3:
         for (i = 0; i < nb_samples; i++) {
             int32_t sam_A, sam_B, tmp;
 
             sam_A = dpp->samplesA[0];
             sam_B = dpp->samplesB[0];
 
             dpp->samplesA[0] = tmp = samples_r[i];
             samples_r[i] = tmp -= APPLY_WEIGHT(dpp->weightB, sam_B);
             UPDATE_WEIGHT_CLIP(dpp->weightB, dpp->delta, sam_B, tmp);
 
             dpp->samplesB[0] = tmp = samples_l[i];
             samples_l[i] = tmp -= APPLY_WEIGHT(dpp->weightA, sam_A);
             UPDATE_WEIGHT_CLIP(dpp->weightA, dpp->delta, sam_A, tmp);
         }
         break;
     }
 }
 
 #define update_weight_d2(weight, delta, source, result) \
     if (source && result) \
         weight -= (((source ^ result) >> 29) & 4) - 2;
 
 #define update_weight_clip_d2(weight, delta, source, result) \
     if (source && result) { \
         const int32_t s = (source ^ result) >> 31; \
         if ((weight = (weight ^ s) + (2 - s)) > 1024) weight = 1024; \
         weight = (weight ^ s) - s; \
     }
 
 static void decorr_stereo_pass_id2(struct Decorr *dpp,
                                    int32_t *samples_l, int32_t *samples_r,
                                    int nb_samples)
 {
     int i, m, k;
 
     switch (dpp->value) {
     case 17:
         for (i = 0; i < nb_samples; i++) {
             int32_t sam, tmp;
 
             sam = 2 * dpp->samplesA[0] - dpp->samplesA[1];
             dpp->samplesA[1] = dpp->samplesA[0];
             samples_l[i] = tmp = (dpp->samplesA[0] = samples_l[i]) - APPLY_WEIGHT_I(dpp->weightA, sam);
             update_weight_d2(dpp->weightA, dpp->delta, sam, tmp);
 
             sam = 2 * dpp->samplesB[0] - dpp->samplesB[1];
             dpp->samplesB[1] = dpp->samplesB[0];
             samples_r[i] = tmp = (dpp->samplesB[0] = samples_r[i]) - APPLY_WEIGHT_I(dpp->weightB, sam);
             update_weight_d2(dpp->weightB, dpp->delta, sam, tmp);
         }
         break;
     case 18:
         for (i = 0; i < nb_samples; i++) {
             int32_t sam, tmp;
 
             sam = dpp->samplesA[0] + ((dpp->samplesA[0] - dpp->samplesA[1]) >> 1);
             dpp->samplesA[1] = dpp->samplesA[0];
             samples_l[i] = tmp = (dpp->samplesA[0] = samples_l[i]) - APPLY_WEIGHT_I(dpp->weightA, sam);
             update_weight_d2(dpp->weightA, dpp->delta, sam, tmp);
 
             sam = dpp->samplesB[0] + ((dpp->samplesB[0] - dpp->samplesB[1]) >> 1);
             dpp->samplesB[1] = dpp->samplesB[0];
             samples_r[i] = tmp = (dpp->samplesB[0] = samples_r[i]) - APPLY_WEIGHT_I(dpp->weightB, sam);
             update_weight_d2(dpp->weightB, dpp->delta, sam, tmp);
         }
         break;
     default:
         for (m = 0, k = dpp->value & (MAX_TERM - 1), i = 0; i < nb_samples; i++) {
             int32_t sam, tmp;
 
             sam = dpp->samplesA[m];
             samples_l[i] = tmp = (dpp->samplesA[k] = samples_l[i]) - APPLY_WEIGHT_I(dpp->weightA, sam);
             update_weight_d2(dpp->weightA, dpp->delta, sam, tmp);
 
             sam = dpp->samplesB[m];
             samples_r[i] = tmp = (dpp->samplesB[k] = samples_r[i]) - APPLY_WEIGHT_I(dpp->weightB, sam);
             update_weight_d2(dpp->weightB, dpp->delta, sam, tmp);
 
             m = (m + 1) & (MAX_TERM - 1);
             k = (k + 1) & (MAX_TERM - 1);
         }
 
         if (m) {
             int32_t temp_A[MAX_TERM], temp_B[MAX_TERM];
 
             memcpy(temp_A, dpp->samplesA, sizeof(dpp->samplesA));
             memcpy(temp_B, dpp->samplesB, sizeof(dpp->samplesB));
 
             for (k = 0; k < MAX_TERM; k++) {
                 dpp->samplesA[k] = temp_A[m];
                 dpp->samplesB[k] = temp_B[m];
                 m = (m + 1) & (MAX_TERM - 1);
             }
         }
         break;
     case -1:
         for (i = 0; i < nb_samples; i++) {
             int32_t sam_A, sam_B, tmp;
 
             sam_A = dpp->samplesA[0];
             samples_l[i] = tmp = (sam_B = samples_l[i]) - APPLY_WEIGHT_I(dpp->weightA, sam_A);
             update_weight_clip_d2(dpp->weightA, dpp->delta, sam_A, tmp);
 
             samples_r[i] = tmp = (dpp->samplesA[0] = samples_r[i]) - APPLY_WEIGHT_I(dpp->weightB, sam_B);
             update_weight_clip_d2(dpp->weightB, dpp->delta, sam_B, tmp);
         }
         break;
     case -2:
         for (i = 0; i < nb_samples; i++) {
             int32_t sam_A, sam_B, tmp;
 
             sam_B = dpp->samplesB[0];
             samples_r[i] = tmp = (sam_A = samples_r[i]) - APPLY_WEIGHT_I(dpp->weightB, sam_B);
             update_weight_clip_d2(dpp->weightB, dpp->delta, sam_B, tmp);
 
             samples_l[i] = tmp = (dpp->samplesB[0] = samples_l[i]) - APPLY_WEIGHT_I(dpp->weightA, sam_A);
             update_weight_clip_d2(dpp->weightA, dpp->delta, sam_A, tmp);
         }
         break;
     case -3:
         for (i = 0; i < nb_samples; i++) {
             int32_t sam_A, sam_B, tmp;
 
             sam_A = dpp->samplesA[0];
             sam_B = dpp->samplesB[0];
 
             dpp->samplesA[0] = tmp = samples_r[i];
             samples_r[i] = tmp -= APPLY_WEIGHT_I(dpp->weightB, sam_B);
             update_weight_clip_d2(dpp->weightB, dpp->delta, sam_B, tmp);
 
             dpp->samplesB[0] = tmp = samples_l[i];
             samples_l[i] = tmp -= APPLY_WEIGHT_I(dpp->weightA, sam_A);
             update_weight_clip_d2(dpp->weightA, dpp->delta, sam_A, tmp);
         }
         break;
     }
 }
 
 static void put_metadata_block(PutByteContext *pb, int flags, int size)
 {
     if (size & 1)
         flags |= WP_IDF_ODD;
 
     bytestream2_put_byte(pb, flags);
     bytestream2_put_byte(pb, (size + 1) >> 1);
 }
 
 static int wavpack_encode_block(WavPackEncodeContext *s,
                                 int32_t *samples_l, int32_t *samples_r,
                                 uint8_t *out, int out_size)
 {
     int block_size, start, end, data_size, tcount, temp, m = 0;
2e9b79fc
     int i, j, ret = 0, got_extra = 0, nb_samples = s->block_samples;
93f42777
     uint32_t crc = 0xffffffffu;
     struct Decorr *dpp;
     PutByteContext pb;
 
     if (!(s->flags & WV_MONO) && s->optimize_mono) {
         int32_t lor = 0, diff = 0;
 
         for (i = 0; i < nb_samples; i++) {
             lor  |= samples_l[i] | samples_r[i];
             diff |= samples_l[i] - samples_r[i];
 
             if (lor && diff)
                 break;
         }
 
         if (i == nb_samples && lor && !diff) {
             s->flags &= ~(WV_JOINT_STEREO | WV_CROSS_DECORR);
             s->flags |= WV_FALSE_STEREO;
 
             if (!s->false_stereo) {
                 s->false_stereo = 1;
                 s->num_terms = 0;
                 CLEAR(s->w);
             }
         } else if (s->false_stereo) {
             s->false_stereo = 0;
             s->num_terms = 0;
             CLEAR(s->w);
         }
     }
 
     if (s->flags & SHIFT_MASK) {
         int shift = (s->flags & SHIFT_MASK) >> SHIFT_LSB;
         int mag = (s->flags & MAG_MASK) >> MAG_LSB;
 
         if (s->flags & WV_MONO_DATA)
             shift_mono(samples_l, nb_samples, shift);
         else
             shift_stereo(samples_l, samples_r, nb_samples, shift);
 
         if ((mag -= shift) < 0)
             s->flags &= ~MAG_MASK;
         else
             s->flags -= (1 << MAG_LSB) * shift;
     }
 
     if ((s->flags & WV_FLOAT_DATA) || (s->flags & MAG_MASK) >> MAG_LSB >= 24) {
         av_fast_padded_malloc(&s->orig_l, &s->orig_l_size, sizeof(int32_t) * nb_samples);
         memcpy(s->orig_l, samples_l, sizeof(int32_t) * nb_samples);
02eb15a6
         if (!(s->flags & WV_MONO_DATA)) {
             av_fast_padded_malloc(&s->orig_r, &s->orig_r_size, sizeof(int32_t) * nb_samples);
             memcpy(s->orig_r, samples_r, sizeof(int32_t) * nb_samples);
         }
93f42777
 
         if (s->flags & WV_FLOAT_DATA)
             got_extra = scan_float(s, samples_l, samples_r, nb_samples);
         else
             got_extra = scan_int32(s, samples_l, samples_r, nb_samples);
         s->num_terms = 0;
     } else {
         scan_int23(s, samples_l, samples_r, nb_samples);
         if (s->shift != s->int32_zeros + s->int32_ones + s->int32_dups) {
             s->shift = s->int32_zeros + s->int32_ones + s->int32_dups;
             s->num_terms = 0;
         }
     }
 
     if (!s->num_passes && !s->num_terms) {
         s->num_passes = 1;
 
         if (s->flags & WV_MONO_DATA)
             ret = wv_mono(s, samples_l, 1, 0);
         else
             ret = wv_stereo(s, samples_l, samples_r, 1, 0);
 
         s->num_passes = 0;
     }
     if (s->flags & WV_MONO_DATA) {
         for (i = 0; i < nb_samples; i++)
             crc += (crc << 1) + samples_l[i];
 
         if (s->num_passes)
             ret = wv_mono(s, samples_l, !s->num_terms, 1);
     } else {
         for (i = 0; i < nb_samples; i++)
             crc += (crc << 3) + (samples_l[i] << 1) + samples_l[i] + samples_r[i];
 
         if (s->num_passes)
             ret = wv_stereo(s, samples_l, samples_r, !s->num_terms, 1);
     }
     if (ret < 0)
         return ret;
 
     if (!s->ch_offset)
         s->flags |= WV_INITIAL_BLOCK;
 
     s->ch_offset += 1 + !(s->flags & WV_MONO);
 
     if (s->ch_offset == s->avctx->channels)
         s->flags |= WV_FINAL_BLOCK;
 
     bytestream2_init_writer(&pb, out, out_size);
     bytestream2_put_le32(&pb, MKTAG('w', 'v', 'p', 'k'));
     bytestream2_put_le32(&pb, 0);
     bytestream2_put_le16(&pb, 0x410);
     bytestream2_put_le16(&pb, 0);
     bytestream2_put_le32(&pb, 0);
     bytestream2_put_le32(&pb, s->sample_index);
     bytestream2_put_le32(&pb, nb_samples);
     bytestream2_put_le32(&pb, s->flags);
     bytestream2_put_le32(&pb, crc);
 
     if (s->flags & WV_INITIAL_BLOCK &&
         s->avctx->channel_layout != AV_CH_LAYOUT_MONO &&
         s->avctx->channel_layout != AV_CH_LAYOUT_STEREO) {
         put_metadata_block(&pb, WP_ID_CHANINFO, 5);
         bytestream2_put_byte(&pb, s->avctx->channels);
         bytestream2_put_le32(&pb, s->avctx->channel_layout);
         bytestream2_put_byte(&pb, 0);
     }
 
     if ((s->flags & SRATE_MASK) == SRATE_MASK) {
         put_metadata_block(&pb, WP_ID_SAMPLE_RATE, 3);
         bytestream2_put_le24(&pb, s->avctx->sample_rate);
         bytestream2_put_byte(&pb, 0);
     }
 
     put_metadata_block(&pb, WP_ID_DECTERMS, s->num_terms);
     for (i = 0; i < s->num_terms; i++) {
         struct Decorr *dpp = &s->decorr_passes[i];
         bytestream2_put_byte(&pb, ((dpp->value + 5) & 0x1f) | ((dpp->delta << 5) & 0xe0));
     }
     if (s->num_terms & 1)
         bytestream2_put_byte(&pb, 0);
 
 #define WRITE_DECWEIGHT(type) do {            \
         temp = store_weight(type);    \
         bytestream2_put_byte(&pb, temp);      \
         type = restore_weight(temp);  \
     } while (0)
 
     bytestream2_put_byte(&pb, WP_ID_DECWEIGHTS);
     bytestream2_put_byte(&pb, 0);
     start = bytestream2_tell_p(&pb);
     for (i = s->num_terms - 1; i >= 0; --i) {
         struct Decorr *dpp = &s->decorr_passes[i];
 
         if (store_weight(dpp->weightA) ||
             (!(s->flags & WV_MONO_DATA) && store_weight(dpp->weightB)))
                 break;
     }
     tcount = i + 1;
     for (i = 0; i < s->num_terms; i++) {
         struct Decorr *dpp = &s->decorr_passes[i];
         if (i < tcount) {
             WRITE_DECWEIGHT(dpp->weightA);
             if (!(s->flags & WV_MONO_DATA))
                 WRITE_DECWEIGHT(dpp->weightB);
         } else {
             dpp->weightA = dpp->weightB = 0;
         }
     }
     end = bytestream2_tell_p(&pb);
     out[start - 2] = WP_ID_DECWEIGHTS | (((end - start) & 1) ? WP_IDF_ODD: 0);
     out[start - 1] = (end - start + 1) >> 1;
     if ((end - start) & 1)
         bytestream2_put_byte(&pb, 0);
 
 #define WRITE_DECSAMPLE(type) do {        \
         temp = log2s(type);               \
         type = wp_exp2(temp);             \
         bytestream2_put_le16(&pb, temp);  \
     } while (0)
 
     bytestream2_put_byte(&pb, WP_ID_DECSAMPLES);
     bytestream2_put_byte(&pb, 0);
     start = bytestream2_tell_p(&pb);
     for (i = 0; i < s->num_terms; i++) {
         struct Decorr *dpp = &s->decorr_passes[i];
         if (i == 0) {
             if (dpp->value > MAX_TERM) {
                 WRITE_DECSAMPLE(dpp->samplesA[0]);
                 WRITE_DECSAMPLE(dpp->samplesA[1]);
                 if (!(s->flags & WV_MONO_DATA)) {
                     WRITE_DECSAMPLE(dpp->samplesB[0]);
                     WRITE_DECSAMPLE(dpp->samplesB[1]);
                 }
             } else if (dpp->value < 0) {
                 WRITE_DECSAMPLE(dpp->samplesA[0]);
                 WRITE_DECSAMPLE(dpp->samplesB[0]);
             } else {
                 for (j = 0; j < dpp->value; j++) {
                     WRITE_DECSAMPLE(dpp->samplesA[j]);
                     if (!(s->flags & WV_MONO_DATA))
                         WRITE_DECSAMPLE(dpp->samplesB[j]);
                 }
             }
         } else {
             CLEAR(dpp->samplesA);
             CLEAR(dpp->samplesB);
         }
     }
     end = bytestream2_tell_p(&pb);
     out[start - 1] = (end - start) >> 1;
 
 #define WRITE_CHAN_ENTROPY(chan) do {               \
         for (i = 0; i < 3; i++) {                   \
             temp = wp_log2(s->w.c[chan].median[i]); \
             bytestream2_put_le16(&pb, temp);        \
             s->w.c[chan].median[i] = wp_exp2(temp); \
         }                                           \
     } while (0)
 
     put_metadata_block(&pb, WP_ID_ENTROPY, 6 * (1 + (!(s->flags & WV_MONO_DATA))));
     WRITE_CHAN_ENTROPY(0);
     if (!(s->flags & WV_MONO_DATA))
         WRITE_CHAN_ENTROPY(1);
 
     if (s->flags & WV_FLOAT_DATA) {
         put_metadata_block(&pb, WP_ID_FLOATINFO, 4);
         bytestream2_put_byte(&pb, s->float_flags);
         bytestream2_put_byte(&pb, s->float_shift);
         bytestream2_put_byte(&pb, s->float_max_exp);
         bytestream2_put_byte(&pb, 127);
     }
 
     if (s->flags & WV_INT32_DATA) {
         put_metadata_block(&pb, WP_ID_INT32INFO, 4);
         bytestream2_put_byte(&pb, s->int32_sent_bits);
         bytestream2_put_byte(&pb, s->int32_zeros);
         bytestream2_put_byte(&pb, s->int32_ones);
         bytestream2_put_byte(&pb, s->int32_dups);
     }
 
     if (s->flags & WV_MONO_DATA && !s->num_passes) {
         for (i = 0; i < nb_samples; i++) {
             int32_t code = samples_l[i];
 
             for (tcount = s->num_terms, dpp = s->decorr_passes; tcount--; dpp++) {
                 int32_t sam;
 
                 if (dpp->value > MAX_TERM) {
                     if (dpp->value & 1)
                         sam = 2 * dpp->samplesA[0] - dpp->samplesA[1];
                     else
                         sam = (3 * dpp->samplesA[0] - dpp->samplesA[1]) >> 1;
 
                     dpp->samplesA[1] = dpp->samplesA[0];
                     dpp->samplesA[0] = code;
                 } else {
                     sam = dpp->samplesA[m];
                     dpp->samplesA[(m + dpp->value) & (MAX_TERM - 1)] = code;
                 }
 
                 code -= APPLY_WEIGHT(dpp->weightA, sam);
                 UPDATE_WEIGHT(dpp->weightA, dpp->delta, sam, code);
             }
 
             m = (m + 1) & (MAX_TERM - 1);
             samples_l[i] = code;
         }
         if (m) {
             for (tcount = s->num_terms, dpp = s->decorr_passes; tcount--; dpp++)
                 if (dpp->value > 0 && dpp->value <= MAX_TERM) {
                 int32_t temp_A[MAX_TERM], temp_B[MAX_TERM];
                 int k;
 
                 memcpy(temp_A, dpp->samplesA, sizeof(dpp->samplesA));
                 memcpy(temp_B, dpp->samplesB, sizeof(dpp->samplesB));
 
                 for (k = 0; k < MAX_TERM; k++) {
                     dpp->samplesA[k] = temp_A[m];
                     dpp->samplesB[k] = temp_B[m];
                     m = (m + 1) & (MAX_TERM - 1);
                 }
             }
         }
     } else if (!s->num_passes) {
         if (s->flags & WV_JOINT_STEREO) {
             for (i = 0; i < nb_samples; i++)
                 samples_r[i] += ((samples_l[i] -= samples_r[i]) >> 1);
         }
 
         for (i = 0; i < s->num_terms; i++) {
             struct Decorr *dpp = &s->decorr_passes[i];
             if (((s->flags & MAG_MASK) >> MAG_LSB) >= 16 || dpp->delta != 2)
                 decorr_stereo_pass2(dpp, samples_l, samples_r, nb_samples);
             else
                 decorr_stereo_pass_id2(dpp, samples_l, samples_r, nb_samples);
         }
     }
 
     bytestream2_put_byte(&pb, WP_ID_DATA | WP_IDF_LONG);
     init_put_bits(&s->pb, pb.buffer + 3, bytestream2_get_bytes_left_p(&pb));
     if (s->flags & WV_MONO_DATA) {
         for (i = 0; i < nb_samples; i++)
             wavpack_encode_sample(s, &s->w.c[0], s->samples[0][i]);
     } else {
         for (i = 0; i < nb_samples; i++) {
             wavpack_encode_sample(s, &s->w.c[0], s->samples[0][i]);
             wavpack_encode_sample(s, &s->w.c[1], s->samples[1][i]);
         }
     }
     encode_flush(s);
     flush_put_bits(&s->pb);
     data_size = put_bits_count(&s->pb) >> 3;
     bytestream2_put_le24(&pb, (data_size + 1) >> 1);
     bytestream2_skip_p(&pb, data_size);
     if (data_size & 1)
         bytestream2_put_byte(&pb, 0);
 
     if (got_extra) {
         bytestream2_put_byte(&pb, WP_ID_EXTRABITS | WP_IDF_LONG);
         init_put_bits(&s->pb, pb.buffer + 7, bytestream2_get_bytes_left_p(&pb));
         if (s->flags & WV_FLOAT_DATA)
             pack_float(s, s->orig_l, s->orig_r, nb_samples);
         else
             pack_int32(s, s->orig_l, s->orig_r, nb_samples);
         flush_put_bits(&s->pb);
         data_size = put_bits_count(&s->pb) >> 3;
         bytestream2_put_le24(&pb, (data_size + 5) >> 1);
         bytestream2_put_le32(&pb, s->crc_x);
         bytestream2_skip_p(&pb, data_size);
         if (data_size & 1)
             bytestream2_put_byte(&pb, 0);
     }
 
     block_size = bytestream2_tell_p(&pb);
     AV_WL32(out + 4, block_size - 8);
 
     return block_size;
 }
 
 static void fill_buffer(WavPackEncodeContext *s,
                         const int8_t *src, int32_t *dst,
                         int nb_samples)
 {
     int i;
 
 #define COPY_SAMPLES(type, offset, shift) do {            \
         const type *sptr = (const type *)src;             \
         for (i = 0; i < nb_samples; i++)                  \
             dst[i] = (sptr[i] - offset) >> shift;         \
     } while (0)
 
     switch (s->avctx->sample_fmt) {
     case AV_SAMPLE_FMT_U8P:
         COPY_SAMPLES(int8_t, 0x80, 0);
         break;
     case AV_SAMPLE_FMT_S16P:
         COPY_SAMPLES(int16_t, 0, 0);
         break;
     case AV_SAMPLE_FMT_S32P:
         if (s->avctx->bits_per_raw_sample <= 24) {
             COPY_SAMPLES(int32_t, 0, 8);
             break;
         }
     case AV_SAMPLE_FMT_FLTP:
         memcpy(dst, src, nb_samples * 4);
     }
 }
 
 static void set_samplerate(WavPackEncodeContext *s)
 {
     int i;
 
     for (i = 0; i < 15; i++) {
         if (wv_rates[i] == s->avctx->sample_rate)
             break;
     }
 
     s->flags = i << SRATE_LSB;
 }
 
 static int wavpack_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
                                 const AVFrame *frame, int *got_packet_ptr)
 {
     WavPackEncodeContext *s = avctx->priv_data;
     int buf_size, ret;
     uint8_t *buf;
 
     s->block_samples = frame->nb_samples;
     av_fast_padded_malloc(&s->samples[0], &s->samples_size[0],
                           sizeof(int32_t) * s->block_samples);
     if (!s->samples[0])
         return AVERROR(ENOMEM);
     if (avctx->channels > 1) {
         av_fast_padded_malloc(&s->samples[1], &s->samples_size[1],
                               sizeof(int32_t) * s->block_samples);
         if (!s->samples[1])
             return AVERROR(ENOMEM);
     }
 
da1a8191
     buf_size = s->block_samples * avctx->channels * 8
              + 200 /* for headers */;
     if ((ret = ff_alloc_packet2(avctx, avpkt, buf_size)) < 0)
93f42777
         return ret;
     buf = avpkt->data;
 
     for (s->ch_offset = 0; s->ch_offset < avctx->channels;) {
         set_samplerate(s);
 
         switch (s->avctx->sample_fmt) {
         case AV_SAMPLE_FMT_S16P: s->flags |= 1; break;
         case AV_SAMPLE_FMT_S32P: s->flags |= 3 - (s->avctx->bits_per_raw_sample <= 24); break;
         case AV_SAMPLE_FMT_FLTP: s->flags |= 3 | WV_FLOAT_DATA;
         }
 
         fill_buffer(s, frame->extended_data[s->ch_offset], s->samples[0], s->block_samples);
         if (avctx->channels - s->ch_offset == 1) {
             s->flags |= WV_MONO;
         } else {
             s->flags |= WV_CROSS_DECORR;
             fill_buffer(s, frame->extended_data[s->ch_offset + 1], s->samples[1], s->block_samples);
         }
 
         s->flags += (1 << MAG_LSB) * ((s->flags & 3) * 8 + 7);
 
         if ((ret = wavpack_encode_block(s, s->samples[0], s->samples[1],
                                         buf, buf_size)) < 0)
             return ret;
 
         buf      += ret;
         buf_size -= ret;
     }
     s->sample_index += frame->nb_samples;
 
     avpkt->pts      = frame->pts;
     avpkt->size     = buf - avpkt->data;
     avpkt->duration = ff_samples_to_time_base(avctx, frame->nb_samples);
     *got_packet_ptr = 1;
     return 0;
 }
 
 static av_cold int wavpack_encode_close(AVCodecContext *avctx)
 {
     WavPackEncodeContext *s = avctx->priv_data;
     int i;
 
     for (i = 0; i < MAX_TERMS + 2; i++) {
         av_freep(&s->sampleptrs[i][0]);
         av_freep(&s->sampleptrs[i][1]);
         s->sampleptrs_size[i][0] = s->sampleptrs_size[i][1] = 0;
     }
 
     for (i = 0; i < 2; i++) {
         av_freep(&s->samples[i]);
         s->samples_size[i] = 0;
 
         av_freep(&s->best_buffer[i]);
         s->best_buffer_size[i] = 0;
 
         av_freep(&s->temp_buffer[i][0]);
         av_freep(&s->temp_buffer[i][1]);
         s->temp_buffer_size[i][0] = s->temp_buffer_size[i][1] = 0;
     }
 
     av_freep(&s->js_left);
     av_freep(&s->js_right);
     s->js_left_size = s->js_right_size = 0;
 
     av_freep(&s->orig_l);
     av_freep(&s->orig_r);
     s->orig_l_size = s->orig_r_size = 0;
 
     return 0;
 }
 
 #define OFFSET(x) offsetof(WavPackEncodeContext, x)
 #define FLAGS AV_OPT_FLAG_ENCODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM
 static const AVOption options[] = {
     { "joint_stereo",  "", OFFSET(joint), AV_OPT_TYPE_INT, {.i64=0},-1, 1, FLAGS, "joint" },
     { "on",   "mid/side",   0, AV_OPT_TYPE_CONST, {.i64= 1}, 0, 0, FLAGS, "joint"},
     { "off",  "left/right", 0, AV_OPT_TYPE_CONST, {.i64=-1}, 0, 0, FLAGS, "joint"},
     { "auto", NULL, 0, AV_OPT_TYPE_CONST, {.i64= 0}, 0, 0, FLAGS, "joint"},
     { "optimize_mono",        "", OFFSET(optimize_mono), AV_OPT_TYPE_INT, {.i64=0}, 0, 1, FLAGS, "opt_mono" },
     { "on",   NULL, 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, FLAGS, "opt_mono"},
     { "off",  NULL, 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, FLAGS, "opt_mono"},
     { NULL },
 };
 
 static const AVClass wavpack_encoder_class = {
     .class_name = "WavPack encoder",
     .item_name  = av_default_item_name,
     .option     = options,
     .version    = LIBAVUTIL_VERSION_INT,
 };
 
 AVCodec ff_wavpack_encoder = {
     .name           = "wavpack",
     .long_name      = NULL_IF_CONFIG_SMALL("WavPack"),
     .type           = AVMEDIA_TYPE_AUDIO,
     .id             = AV_CODEC_ID_WAVPACK,
     .priv_data_size = sizeof(WavPackEncodeContext),
     .priv_class     = &wavpack_encoder_class,
     .init           = wavpack_encode_init,
     .encode2        = wavpack_encode_frame,
     .close          = wavpack_encode_close,
     .capabilities   = CODEC_CAP_SMALL_LAST_FRAME,
     .sample_fmts    = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_U8P,
                                                      AV_SAMPLE_FMT_S16P,
                                                      AV_SAMPLE_FMT_S32P,
                                                      AV_SAMPLE_FMT_FLTP,
                                                      AV_SAMPLE_FMT_NONE },
 };