libavcodec/cook.c
e0f7e329
 /*
  * COOK compatible decoder
  * Copyright (c) 2003 Sascha Sommer
  * Copyright (c) 2005 Benjamin Larsson
  *
b78e7197
  * This file is part of FFmpeg.
  *
  * FFmpeg is free software; you can redistribute it and/or
e0f7e329
  * modify it under the terms of the GNU Lesser General Public
  * License as published by the Free Software Foundation; either
b78e7197
  * version 2.1 of the License, or (at your option) any later version.
e0f7e329
  *
b78e7197
  * FFmpeg is distributed in the hope that it will be useful,
e0f7e329
  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  * Lesser General Public License for more details.
  *
  * You should have received a copy of the GNU Lesser General Public
b78e7197
  * License along with FFmpeg; if not, write to the Free Software
5509bffa
  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
e0f7e329
  */
 
 /**
ba87f080
  * @file
940d8f76
  * Cook compatible decoder. Bastardization of the G.722.1 standard.
e0f7e329
  * This decoder handles RealNetworks, RealAudio G2 data.
  * Cook is identified by the codec name cook in RM files.
  *
  * To use this decoder, a calling application must supply the extradata
  * bytes provided from the RM container; 8+ bytes for mono streams and
  * 16+ for stereo streams (maybe more).
  *
  * Codec technicalities (all this assume a buffer length of 1024):
  * Cook works with several different techniques to achieve its compression.
  * In the timedomain the buffer is divided into 8 pieces and quantized. If
  * two neighboring pieces have different quantization index a smooth
  * quantization curve is used to get a smooth overlap between the different
  * pieces.
  * To get to the transformdomain Cook uses a modulated lapped transform.
  * The transform domain has 50 subbands with 20 elements each. This
  * means only a maximum of 50*20=1000 coefficients are used out of the 1024
  * available.
  */
 
a903f8f0
 #include "libavutil/channel_layout.h"
39b60944
 #include "libavutil/lfg.h"
e0f7e329
 #include "avcodec.h"
9106a698
 #include "get_bits.h"
e0f7e329
 #include "dsputil.h"
862be28b
 #include "bytestream.h"
1429224b
 #include "fft.h"
594d4d5d
 #include "internal.h"
4538729a
 #include "sinewin.h"
65988b99
 #include "unary.h"
e0f7e329
 
 #include "cookdata.h"
 
 /* the different Cook versions */
d7973906
 #define MONO            0x1000001
 #define STEREO          0x1000002
e0f7e329
 #define JOINT_STEREO    0x1000003
c3513477
 #define MC_COOK         0x2000000   // multichannel Cook, not supported
e0f7e329
 
 #define SUBBAND_SIZE    20
0eec2875
 #define MAX_SUBPACKETS   5
e0f7e329
 
 typedef struct {
d0429b4f
     int *now;
     int *previous;
 } cook_gains;
e0f7e329
 
4a291c90
 typedef struct {
     int                 ch_idx;
bdb8d996
     int                 size;
4a291c90
     int                 num_channels;
     int                 cookversion;
     int                 subbands;
     int                 js_subband_start;
     int                 js_vlc_bits;
     int                 samples_per_channel;
     int                 log2_numvector_size;
     unsigned int        channel_mask;
20015379
     VLC                 channel_coupling;
4a291c90
     int                 joint_stereo;
     int                 bits_per_subpacket;
     int                 bits_per_subpdiv;
     int                 total_subbands;
707f58f5
     int                 numvector_size;       // 1 << log2_numvector_size;
4a291c90
 
     float               mono_previous_buffer1[1024];
     float               mono_previous_buffer2[1024];
707f58f5
 
4a291c90
     cook_gains          gains1;
     cook_gains          gains2;
     int                 gain_1[9];
     int                 gain_2[9];
     int                 gain_3[9];
     int                 gain_4[9];
 } COOKSubpacket;
 
28d997f9
 typedef struct cook {
     /*
      * The following 5 functions provide the lowlevel arithmetic on
      * the internal audio buffers.
      */
c3513477
     void (*scalar_dequant)(struct cook *q, int index, int quant_index,
                            int *subband_coef_index, int *subband_coef_sign,
                            float *mlt_p);
28d997f9
 
c3513477
     void (*decouple)(struct cook *q,
                      COOKSubpacket *p,
                      int subband,
                      float f1, float f2,
                      float *decode_buffer,
                      float *mlt_buffer1, float *mlt_buffer2);
28d997f9
 
c3513477
     void (*imlt_window)(struct cook *q, float *buffer1,
                         cook_gains *gains_ptr, float *previous_buffer);
28d997f9
 
c3513477
     void (*interpolate)(struct cook *q, float *buffer,
                         int gain_index, int gain_index_next);
28d997f9
 
cbf6ee78
     void (*saturate_output)(struct cook *q, float *out);
28d997f9
 
d4b3d040
     AVCodecContext*     avctx;
cbf6ee78
     DSPContext          dsp;
e0f7e329
     GetBitContext       gb;
     /* stream data */
     int                 num_vectors;
4a291c90
     int                 samples_per_channel;
e0f7e329
     /* states */
39b60944
     AVLFG               random_state;
0eea2129
     int                 discarded_packets;
e0f7e329
 
     /* transform data */
01b22147
     FFTContext          mdct_ctx;
e0f7e329
     float*              mlt_window;
 
     /* VLC data */
     VLC                 envelope_quant_index[13];
c3513477
     VLC                 sqvh[7];          // scalar quantization
e0f7e329
 
     /* generatable tables and related variables */
     int                 gain_size_factor;
     float               gain_table[23];
 
     /* data buffers */
 
     uint8_t*            decoded_bytes_buffer;
9d35fa52
     DECLARE_ALIGNED(32, float, mono_mdct_output)[2048];
e0f7e329
     float               decode_buffer_1[1024];
     float               decode_buffer_2[1024];
8c9d2954
     float               decode_buffer_0[1060]; /* static allocation for joint decode */
dae92b62
 
29e15adc
     const float         *cplscales[5];
4a291c90
     int                 num_subpackets;
     COOKSubpacket       subpacket[MAX_SUBPACKETS];
e0f7e329
 } COOKContext;
 
0c542158
 static float     pow2tab[127];
 static float rootpow2tab[127];
 
e0f7e329
 /*************** init functions ***************/
 
 /* table generator */
c3513477
 static av_cold void init_pow2table(void)
 {
e0f7e329
     int i;
c3513477
     for (i = -63; i < 64; i++) {
         pow2tab[63 + i] = pow(2, i);
         rootpow2tab[63 + i] = sqrt(pow(2, i));
e0f7e329
     }
 }
 
 /* table generator */
c3513477
 static av_cold void init_gain_table(COOKContext *q)
 {
e0f7e329
     int i;
c3513477
     q->gain_size_factor = q->samples_per_channel / 8;
     for (i = 0; i < 23; i++)
         q->gain_table[i] = pow(pow2tab[i + 52],
                                (1.0 / (double) q->gain_size_factor));
e0f7e329
 }
 
 
c3513477
 static av_cold int init_cook_vlc_tables(COOKContext *q)
 {
e0f7e329
     int i, result;
 
     result = 0;
c3513477
     for (i = 0; i < 13; i++) {
         result |= init_vlc(&q->envelope_quant_index[i], 9, 24,
                            envelope_quant_index_huffbits[i], 1, 1,
                            envelope_quant_index_huffcodes[i], 2, 2, 0);
e0f7e329
     }
c3513477
     av_log(q->avctx, AV_LOG_DEBUG, "sqvh VLC init\n");
     for (i = 0; i < 7; i++) {
         result |= init_vlc(&q->sqvh[i], vhvlcsize_tab[i], vhsize_tab[i],
                            cvh_huffbits[i], 1, 1,
                            cvh_huffcodes[i], 2, 2, 0);
e0f7e329
     }
 
c3513477
     for (i = 0; i < q->num_subpackets; i++) {
         if (q->subpacket[i].joint_stereo == 1) {
20015379
             result |= init_vlc(&q->subpacket[i].channel_coupling, 6,
                                (1 << q->subpacket[i].js_vlc_bits) - 1,
c3513477
                                ccpl_huffbits[q->subpacket[i].js_vlc_bits - 2], 1, 1,
                                ccpl_huffcodes[q->subpacket[i].js_vlc_bits - 2], 2, 2, 0);
             av_log(q->avctx, AV_LOG_DEBUG, "subpacket %i Joint-stereo VLC used.\n", i);
4a291c90
         }
e0f7e329
     }
 
c3513477
     av_log(q->avctx, AV_LOG_DEBUG, "VLC tables initialized.\n");
e0f7e329
     return result;
 }
 
c3513477
 static av_cold int init_cook_mlt(COOKContext *q)
 {
f193c96f
     int j, ret;
e7485bf3
     int mlt_size = q->samples_per_channel;
e0f7e329
 
e694831f
     if ((q->mlt_window = av_malloc(mlt_size * sizeof(*q->mlt_window))) == 0)
f193c96f
         return AVERROR(ENOMEM);
e0f7e329
 
     /* Initialize the MLT window: simple sine window. */
9146e4d6
     ff_sine_window_init(q->mlt_window, mlt_size);
c3513477
     for (j = 0; j < mlt_size; j++)
9146e4d6
         q->mlt_window[j] *= sqrt(2.0 / q->samples_per_channel);
e7485bf3
 
     /* Initialize the MDCT. */
c3513477
     if ((ret = ff_mdct_init(&q->mdct_ctx, av_log2(mlt_size) + 1, 1, 1.0 / 32768.0))) {
66518f6f
         av_freep(&q->mlt_window);
f193c96f
         return ret;
e0f7e329
     }
c3513477
     av_log(q->avctx, AV_LOG_DEBUG, "MDCT initialized, order = %d.\n",
            av_log2(mlt_size) + 1);
e0f7e329
 
e7485bf3
     return 0;
e0f7e329
 }
 
c3513477
 static av_cold void init_cplscales_table(COOKContext *q)
 {
dae92b62
     int i;
c3513477
     for (i = 0; i < 5; i++)
8a61ba0e
         q->cplscales[i] = cplscales[i];
dae92b62
 }
 
e0f7e329
 /*************** init functions end ***********/
 
c3513477
 #define DECODE_BYTES_PAD1(bytes) (3 - ((bytes) + 3) % 4)
34630b93
 #define DECODE_BYTES_PAD2(bytes) ((bytes) % 4 + DECODE_BYTES_PAD1(2 * (bytes)))
 
e0f7e329
 /**
  * Cook indata decoding, every 32 bits are XORed with 0x37c511f2.
  * Why? No idea, some checksum/error detection method maybe.
70ab75eb
  *
  * Out buffer size: extra bytes are needed to cope with
df3a80b5
  * padding/misalignment.
70ab75eb
  * Subpackets passed to the decoder can contain two, consecutive
  * half-subpackets, of identical but arbitrary size.
  *          1234 1234 1234 1234  extraA extraB
  * Case 1:  AAAA BBBB              0      0
  * Case 2:  AAAA ABBB BB--         3      3
  * Case 3:  AAAA AABB BBBB         2      2
  * Case 4:  AAAA AAAB BBBB BB--    1      5
  *
e0f7e329
  * Nice way to waste CPU cycles.
  *
70ab75eb
  * @param inbuffer  pointer to byte array of indata
  * @param out       pointer to byte array of outdata
  * @param bytes     number of bytes
e0f7e329
  */
c3513477
 static inline int decode_bytes(const uint8_t *inbuffer, uint8_t *out, int bytes)
 {
b7581b5c
     static const uint32_t tab[4] = {
b5d2bf96
         AV_BE2NE32C(0x37c511f2u), AV_BE2NE32C(0xf237c511u),
         AV_BE2NE32C(0x11f237c5u), AV_BE2NE32C(0xc511f237u),
b7581b5c
     };
70ab75eb
     int i, off;
     uint32_t c;
c3513477
     const uint32_t *buf;
     uint32_t *obuf = (uint32_t *) out;
e0f7e329
     /* FIXME: 64 bit platforms would be able to do 64 bits at a time.
      * I'm too lazy though, should be something like
c3513477
      * for (i = 0; i < bitamount / 64; i++)
      *     (int64_t) out[i] = 0x37c511f237c511f2 ^ av_be2ne64(int64_t) in[i]);
e0f7e329
      * Buffer alignment needs to be checked. */
 
c3513477
     off = (intptr_t) inbuffer & 3;
     buf = (const uint32_t *) (inbuffer - off);
b7581b5c
     c = tab[off];
70ab75eb
     bytes += 3 + off;
c3513477
     for (i = 0; i < bytes / 4; i++)
70ab75eb
         obuf[i] = c ^ buf[i];
e0f7e329
 
70ab75eb
     return off;
e0f7e329
 }
 
5ef251e5
 static av_cold int cook_decode_close(AVCodecContext *avctx)
e0f7e329
 {
     int i;
     COOKContext *q = avctx->priv_data;
c3513477
     av_log(avctx, AV_LOG_DEBUG, "Deallocating memory.\n");
e0f7e329
 
     /* Free allocated memory buffers. */
66518f6f
     av_freep(&q->mlt_window);
     av_freep(&q->decoded_bytes_buffer);
e0f7e329
 
     /* Free the transform. */
e7485bf3
     ff_mdct_end(&q->mdct_ctx);
e0f7e329
 
     /* Free the VLC tables. */
c3513477
     for (i = 0; i < 13; i++)
e96b4a53
         ff_free_vlc(&q->envelope_quant_index[i]);
c3513477
     for (i = 0; i < 7; i++)
e96b4a53
         ff_free_vlc(&q->sqvh[i]);
c3513477
     for (i = 0; i < q->num_subpackets; i++)
20015379
         ff_free_vlc(&q->subpacket[i].channel_coupling);
e0f7e329
 
c3513477
     av_log(avctx, AV_LOG_DEBUG, "Memory deallocated.\n");
e0f7e329
 
     return 0;
 }
 
 /**
d0429b4f
  * Fill the gain array for the timedomain quantization.
e0f7e329
  *
e51f0496
  * @param gb          pointer to the GetBitContext
ff993cd7
  * @param gaininfo    array[9] of gain indexes
e0f7e329
  */
d0429b4f
 static void decode_gain_info(GetBitContext *gb, int *gaininfo)
 {
     int i, n;
e0f7e329
 
65988b99
     n = get_unary(gb, 0, get_bits_left(gb));     // amount of elements*2 to update
e0f7e329
 
d0429b4f
     i = 0;
     while (n--) {
         int index = get_bits(gb, 3);
         int gain = get_bits1(gb) ? get_bits(gb, 4) - 7 : -1;
e0f7e329
 
c3513477
         while (i <= index)
             gaininfo[i++] = gain;
e0f7e329
     }
c3513477
     while (i <= 8)
         gaininfo[i++] = 0;
e0f7e329
 }
 
 /**
  * Create the quant index table needed for the envelope.
  *
  * @param q                 pointer to the COOKContext
  * @param quant_index_table pointer to the array
  */
51defefa
 static int decode_envelope(COOKContext *q, COOKSubpacket *p,
97e48b2f
                            int *quant_index_table)
c3513477
 {
     int i, j, vlc_index;
e0f7e329
 
c3513477
     quant_index_table[0] = get_bits(&q->gb, 6) - 6; // This is used later in categorize
e0f7e329
 
c3513477
     for (i = 1; i < p->total_subbands; i++) {
         vlc_index = i;
4a291c90
         if (i >= p->js_subband_start * 2) {
c3513477
             vlc_index -= p->js_subband_start;
e0f7e329
         } else {
c3513477
             vlc_index /= 2;
             if (vlc_index < 1)
                 vlc_index = 1;
e0f7e329
         }
c3513477
         if (vlc_index > 13)
             vlc_index = 13; // the VLC tables >13 are identical to No. 13
e0f7e329
 
c3513477
         j = get_vlc2(&q->gb, q->envelope_quant_index[vlc_index - 1].table,
                      q->envelope_quant_index[vlc_index - 1].bits, 2);
         quant_index_table[i] = quant_index_table[i - 1] + j - 12; // differential encoding
97e48b2f
         if (quant_index_table[i] > 63 || quant_index_table[i] < -63) {
             av_log(q->avctx, AV_LOG_ERROR,
                    "Invalid quantizer %d at position %d, outside [-63, 63] range\n",
                    quant_index_table[i], i);
51defefa
             return AVERROR_INVALIDDATA;
         }
e0f7e329
     }
51defefa
 
     return 0;
e0f7e329
 }
 
 /**
  * Calculate the category and category_index vector.
  *
  * @param q                     pointer to the COOKContext
  * @param quant_index_table     pointer to the array
  * @param category              pointer to the category array
  * @param category_index        pointer to the category_index array
  */
bf72c041
 static void categorize(COOKContext *q, COOKSubpacket *p, const int *quant_index_table,
c3513477
                        int *category, int *category_index)
 {
6b019970
     int exp_idx, bias, tmpbias1, tmpbias2, bits_left, num_bits, index, v, i, j;
a92be9b8
     int exp_index2[102] = { 0 };
     int exp_index1[102] = { 0 };
e0f7e329
 
a92be9b8
     int tmp_categorize_array[128 * 2] = { 0 };
c3513477
     int tmp_categorize_array1_idx = p->numvector_size;
     int tmp_categorize_array2_idx = p->numvector_size;
e0f7e329
 
c3513477
     bits_left = p->bits_per_subpacket - get_bits_count(&q->gb);
e0f7e329
 
6f6b0311
     if (bits_left > q->samples_per_channel)
e0f7e329
         bits_left = q->samples_per_channel +
c3513477
                     ((bits_left - q->samples_per_channel) * 5) / 8;
e0f7e329
 
c3513477
     bias = -32;
e0f7e329
 
     /* Estimate bias. */
c3513477
     for (i = 32; i > 0; i = i / 2) {
e0f7e329
         num_bits = 0;
c3513477
         index    = 0;
         for (j = p->total_subbands; j > 0; j--) {
a31978e9
             exp_idx = av_clip((i - quant_index_table[index] + bias) / 2, 0, 7);
e0f7e329
             index++;
c3513477
             num_bits += expbits_tab[exp_idx];
e0f7e329
         }
c3513477
         if (num_bits >= bits_left - 32)
             bias += i;
e0f7e329
     }
 
     /* Calculate total number of bits. */
c3513477
     num_bits = 0;
     for (i = 0; i < p->total_subbands; i++) {
a31978e9
         exp_idx = av_clip((bias - quant_index_table[i]) / 2, 0, 7);
e0f7e329
         num_bits += expbits_tab[exp_idx];
         exp_index1[i] = exp_idx;
         exp_index2[i] = exp_idx;
     }
6b019970
     tmpbias1 = tmpbias2 = num_bits;
e0f7e329
 
c3513477
     for (j = 1; j < p->numvector_size; j++) {
         if (tmpbias1 + tmpbias2 > 2 * bits_left) {  /* ---> */
e0f7e329
             int max = -999999;
c3513477
             index = -1;
             for (i = 0; i < p->total_subbands; i++) {
e0f7e329
                 if (exp_index1[i] < 7) {
c3513477
                     v = (-2 * exp_index1[i]) - quant_index_table[i] + bias;
                     if (v >= max) {
                         max   = v;
e0f7e329
                         index = i;
                     }
                 }
             }
c3513477
             if (index == -1)
                 break;
de8e2c1d
             tmp_categorize_array[tmp_categorize_array1_idx++] = index;
6b019970
             tmpbias1 -= expbits_tab[exp_index1[index]] -
c3513477
                         expbits_tab[exp_index1[index] + 1];
e0f7e329
             ++exp_index1[index];
         } else {  /* <--- */
             int min = 999999;
c3513477
             index = -1;
             for (i = 0; i < p->total_subbands; i++) {
                 if (exp_index2[i] > 0) {
                     v = (-2 * exp_index2[i]) - quant_index_table[i] + bias;
                     if (v < min) {
                         min   = v;
e0f7e329
                         index = i;
                     }
                 }
             }
c3513477
             if (index == -1)
                 break;
de8e2c1d
             tmp_categorize_array[--tmp_categorize_array2_idx] = index;
6b019970
             tmpbias2 -= expbits_tab[exp_index2[index]] -
c3513477
                         expbits_tab[exp_index2[index] - 1];
e0f7e329
             --exp_index2[index];
         }
     }
 
c3513477
     for (i = 0; i < p->total_subbands; i++)
e0f7e329
         category[i] = exp_index2[i];
 
c3513477
     for (i = 0; i < p->numvector_size - 1; i++)
de8e2c1d
         category_index[i] = tmp_categorize_array[tmp_categorize_array2_idx++];
e0f7e329
 }
 
 
 /**
  * Expand the category vector.
  *
  * @param q                     pointer to the COOKContext
  * @param category              pointer to the category array
  * @param category_index        pointer to the category_index array
  */
c3513477
 static inline void expand_category(COOKContext *q, int *category,
                                    int *category_index)
 {
e0f7e329
     int i;
c3513477
     for (i = 0; i < q->num_vectors; i++)
442c3a8c
     {
         int idx = category_index[i];
         if (++category[idx] >= FF_ARRAY_ELEMS(dither_tab))
             --category[idx];
     }
e0f7e329
 }
 
 /**
  * The real requantization of the mltcoefs
  *
  * @param q                     pointer to the COOKContext
  * @param index                 index
058ee0cf
  * @param quant_index           quantisation index
e0f7e329
  * @param subband_coef_index    array of indexes to quant_centroid_tab
baab2957
  * @param subband_coef_sign     signs of coefficients
058ee0cf
  * @param mlt_p                 pointer into the mlt buffer
e0f7e329
  */
b5f3f2b8
 static void scalar_dequant_float(COOKContext *q, int index, int quant_index,
c3513477
                                  int *subband_coef_index, int *subband_coef_sign,
                                  float *mlt_p)
 {
e0f7e329
     int i;
     float f1;
 
c3513477
     for (i = 0; i < SUBBAND_SIZE; i++) {
e0f7e329
         if (subband_coef_index[i]) {
058ee0cf
             f1 = quant_centroid_tab[index][subband_coef_index[i]];
c3513477
             if (subband_coef_sign[i])
                 f1 = -f1;
e0f7e329
         } else {
baab2957
             /* noise coding if subband_coef_index[i] == 0 */
058ee0cf
             f1 = dither_tab[index];
c3513477
             if (av_lfg_get(&q->random_state) < 0x80000000)
                 f1 = -f1;
e0f7e329
         }
c3513477
         mlt_p[i] = f1 * rootpow2tab[quant_index + 63];
e0f7e329
     }
 }
 /**
baab2957
  * Unpack the subband_coef_index and subband_coef_sign vectors.
e0f7e329
  *
  * @param q                     pointer to the COOKContext
  * @param category              pointer to the category array
  * @param subband_coef_index    array of indexes to quant_centroid_tab
baab2957
  * @param subband_coef_sign     signs of coefficients
e0f7e329
  */
c3513477
 static int unpack_SQVH(COOKContext *q, COOKSubpacket *p, int category,
                        int *subband_coef_index, int *subband_coef_sign)
 {
     int i, j;
     int vlc, vd, tmp, result;
e0f7e329
 
     vd = vd_tab[category];
     result = 0;
c3513477
     for (i = 0; i < vpr_tab[category]; i++) {
e0f7e329
         vlc = get_vlc2(&q->gb, q->sqvh[category].table, q->sqvh[category].bits, 3);
c3513477
         if (p->bits_per_subpacket < get_bits_count(&q->gb)) {
e0f7e329
             vlc = 0;
             result = 1;
         }
c3513477
         for (j = vd - 1; j >= 0; j--) {
             tmp = (vlc * invradix_tab[category]) / 0x100000;
             subband_coef_index[vd * i + j] = vlc - tmp * (kmax_tab[category] + 1);
e0f7e329
             vlc = tmp;
         }
c3513477
         for (j = 0; j < vd; j++) {
             if (subband_coef_index[i * vd + j]) {
                 if (get_bits_count(&q->gb) < p->bits_per_subpacket) {
                     subband_coef_sign[i * vd + j] = get_bits1(&q->gb);
e0f7e329
                 } else {
c3513477
                     result = 1;
                     subband_coef_sign[i * vd + j] = 0;
e0f7e329
                 }
             } else {
c3513477
                 subband_coef_sign[i * vd + j] = 0;
e0f7e329
             }
         }
     }
     return result;
 }
 
 
 /**
  * Fill the mlt_buffer with mlt coefficients.
  *
  * @param q                 pointer to the COOKContext
  * @param category          pointer to the category array
058ee0cf
  * @param quant_index_table pointer to the array
e0f7e329
  * @param mlt_buffer        pointer to mlt coefficients
  */
c3513477
 static void decode_vectors(COOKContext *q, COOKSubpacket *p, int *category,
                            int *quant_index_table, float *mlt_buffer)
 {
e0f7e329
     /* A zero in this table means that the subband coefficient is
        random noise coded. */
baab2957
     int subband_coef_index[SUBBAND_SIZE];
e0f7e329
     /* A zero in this table means that the subband coefficient is a
        positive multiplicator. */
baab2957
     int subband_coef_sign[SUBBAND_SIZE];
e0f7e329
     int band, j;
c3513477
     int index = 0;
e0f7e329
 
c3513477
     for (band = 0; band < p->total_subbands; band++) {
e0f7e329
         index = category[band];
c3513477
         if (category[band] < 7) {
             if (unpack_SQVH(q, p, category[band], subband_coef_index, subband_coef_sign)) {
                 index = 7;
                 for (j = 0; j < p->total_subbands; j++)
                     category[band + j] = 7;
e0f7e329
             }
         }
c3513477
         if (index >= 7) {
e0f7e329
             memset(subband_coef_index, 0, sizeof(subband_coef_index));
c3513477
             memset(subband_coef_sign,  0, sizeof(subband_coef_sign));
e0f7e329
         }
28d997f9
         q->scalar_dequant(q, index, quant_index_table[band],
f1639f69
                           subband_coef_index, subband_coef_sign,
                           &mlt_buffer[band * SUBBAND_SIZE]);
e0f7e329
     }
 
c3513477
     /* FIXME: should this be removed, or moved into loop above? */
     if (p->total_subbands * SUBBAND_SIZE >= q->samples_per_channel)
e0f7e329
         return;
 }
 
 
51defefa
 static int mono_decode(COOKContext *q, COOKSubpacket *p, float *mlt_buffer)
c3513477
 {
a92be9b8
     int category_index[128] = { 0 };
     int category[128]       = { 0 };
e0f7e329
     int quant_index_table[102];
1c273598
     int res, i;
e0f7e329
 
97e48b2f
     if ((res = decode_envelope(q, p, quant_index_table)) < 0)
         return res;
c3513477
     q->num_vectors = get_bits(&q->gb, p->log2_numvector_size);
4a291c90
     categorize(q, p, quant_index_table, category, category_index);
e0f7e329
     expand_category(q, category, category_index);
d629f3ed
     for (i=0; i<p->total_subbands; i++) {
         if (category[i] > 7)
             return AVERROR_INVALIDDATA;
     }
4a291c90
     decode_vectors(q, p, category, quant_index_table, mlt_buffer);
51defefa
 
     return 0;
e0f7e329
 }
 
 
 /**
  * the actual requantization of the timedomain samples
  *
  * @param q                 pointer to the COOKContext
  * @param buffer            pointer to the timedomain buffer
  * @param gain_index        index for the block multiplier
  * @param gain_index_next   index for the next block multiplier
  */
c3513477
 static void interpolate_float(COOKContext *q, float *buffer,
                               int gain_index, int gain_index_next)
 {
e0f7e329
     int i;
     float fc1, fc2;
c3513477
     fc1 = pow2tab[gain_index + 63];
 
     if (gain_index == gain_index_next) {             // static gain
         for (i = 0; i < q->gain_size_factor; i++)
             buffer[i] *= fc1;
     } else {                                        // smooth gain
         fc2 = q->gain_table[11 + (gain_index_next - gain_index)];
         for (i = 0; i < q->gain_size_factor; i++) {
             buffer[i] *= fc1;
             fc1       *= fc2;
e0f7e329
         }
     }
 }
 
e66442f4
 /**
  * Apply transform window, overlap buffers.
  *
  * @param q                 pointer to the COOKContext
65e3f89f
  * @param inbuffer          pointer to the mltcoefficients
e66442f4
  * @param gains_ptr         current and previous gains
  * @param previous_buffer   pointer to the previous buffer to be used for overlapping
  */
c3513477
 static void imlt_window_float(COOKContext *q, float *inbuffer,
                               cook_gains *gains_ptr, float *previous_buffer)
e66442f4
 {
0c542158
     const float fc = pow2tab[gains_ptr->previous[0] + 63];
e66442f4
     int i;
     /* The weird thing here, is that the two halves of the time domain
      * buffer are swapped. Also, the newest data, that we save away for
      * next frame, has the wrong sign. Hence the subtraction below.
      * Almost sounds like a complex conjugate/reverse data/FFT effect.
      */
 
     /* Apply window and overlap */
c3513477
     for (i = 0; i < q->samples_per_channel; i++)
65e3f89f
         inbuffer[i] = inbuffer[i] * fc * q->mlt_window[i] -
c3513477
                       previous_buffer[i] * q->mlt_window[q->samples_per_channel - 1 - i];
e66442f4
 }
e0f7e329
 
 /**
85e7386a
  * The modulated lapped transform, this takes transform coefficients
  * and transforms them into timedomain samples.
  * Apply transform window, overlap buffers, apply gain profile
  * and buffer management.
e0f7e329
  *
  * @param q                 pointer to the COOKContext
85e7386a
  * @param inbuffer          pointer to the mltcoefficients
d0429b4f
  * @param gains_ptr         current and previous gains
e0f7e329
  * @param previous_buffer   pointer to the previous buffer to be used for overlapping
  */
85e7386a
 static void imlt_gain(COOKContext *q, float *inbuffer,
c3513477
                       cook_gains *gains_ptr, float *previous_buffer)
d0429b4f
 {
85e7386a
     float *buffer0 = q->mono_mdct_output;
     float *buffer1 = q->mono_mdct_output + q->samples_per_channel;
e0f7e329
     int i;
 
85e7386a
     /* Inverse modified discrete cosine transform */
26f548bb
     q->mdct_ctx.imdct_calc(&q->mdct_ctx, q->mono_mdct_output, inbuffer);
85e7386a
 
c3513477
     q->imlt_window(q, buffer1, gains_ptr, previous_buffer);
d0429b4f
 
     /* Apply gain profile */
c3513477
     for (i = 0; i < 8; i++)
d0429b4f
         if (gains_ptr->now[i] || gains_ptr->now[i + 1])
28d997f9
             q->interpolate(q, &buffer1[q->gain_size_factor * i],
f1639f69
                            gains_ptr->now[i], gains_ptr->now[i + 1]);
e0f7e329
 
     /* Save away the current to be previous block. */
e694831f
     memcpy(previous_buffer, buffer0,
            q->samples_per_channel * sizeof(*previous_buffer));
e0f7e329
 }
 
 
 /**
  * function for getting the jointstereo coupling information
  *
  * @param q                 pointer to the COOKContext
  * @param decouple_tab      decoupling array
  */
ccb76ad9
 static int decouple_info(COOKContext *q, COOKSubpacket *p, int *decouple_tab)
c9c841e2
 {
     int i;
     int vlc    = get_bits1(&q->gb);
     int start  = cplband[p->js_subband_start];
c3513477
     int end    = cplband[p->subbands - 1];
c9c841e2
     int length = end - start + 1;
e0f7e329
 
c9c841e2
     if (start > end)
c7048036
         return 0;
e0f7e329
 
c3513477
     if (vlc)
c9c841e2
         for (i = 0; i < length; i++)
20015379
             decouple_tab[start + i] = get_vlc2(&q->gb,
                                                p->channel_coupling.table,
                                                p->channel_coupling.bits, 2);
c3513477
     else
ccb76ad9
         for (i = 0; i < length; i++) {
             int v = get_bits(&q->gb, p->js_vlc_bits);
             if (v == (1<<p->js_vlc_bits)-1) {
                 av_log(q->avctx, AV_LOG_ERROR, "decouple value too large\n");
                 return AVERROR_INVALIDDATA;
             }
             decouple_tab[start + i] = v;
         }
     return 0;
e0f7e329
 }
 
9ccc349f
 /**
dc0c20f9
  * function decouples a pair of signals from a single signal via multiplication.
  *
  * @param q                 pointer to the COOKContext
  * @param subband           index of the current subband
  * @param f1                multiplier for channel 1 extraction
  * @param f2                multiplier for channel 2 extraction
  * @param decode_buffer     input buffer
  * @param mlt_buffer1       pointer to left channel mlt coefficients
  * @param mlt_buffer2       pointer to right channel mlt coefficients
  */
c3513477
 static void decouple_float(COOKContext *q,
                            COOKSubpacket *p,
                            int subband,
                            float f1, float f2,
                            float *decode_buffer,
                            float *mlt_buffer1, float *mlt_buffer2)
dc0c20f9
 {
     int j, tmp_idx;
c3513477
     for (j = 0; j < SUBBAND_SIZE; j++) {
         tmp_idx = ((p->js_subband_start + subband) * SUBBAND_SIZE) + j;
         mlt_buffer1[SUBBAND_SIZE * subband + j] = f1 * decode_buffer[tmp_idx];
         mlt_buffer2[SUBBAND_SIZE * subband + j] = f2 * decode_buffer[tmp_idx];
dc0c20f9
     }
 }
e0f7e329
 
 /**
  * function for decoding joint stereo data
  *
  * @param q                 pointer to the COOKContext
  * @param mlt_buffer1       pointer to left channel mlt coefficients
  * @param mlt_buffer2       pointer to right channel mlt coefficients
  */
f23b4a06
 static int joint_decode(COOKContext *q, COOKSubpacket *p,
                         float *mlt_buffer_left, float *mlt_buffer_right)
c3513477
 {
97e48b2f
     int i, j, res;
a92be9b8
     int decouple_tab[SUBBAND_SIZE] = { 0 };
8c9d2954
     float *decode_buffer = q->decode_buffer_0;
31991973
     int idx, cpl_tmp;
c3513477
     float f1, f2;
     const float *cplscale;
e0f7e329
 
e694831f
     memset(decode_buffer, 0, sizeof(q->decode_buffer_0));
e0f7e329
 
     /* Make sure the buffers are zeroed out. */
f23b4a06
     memset(mlt_buffer_left,  0, 1024 * sizeof(*mlt_buffer_left));
     memset(mlt_buffer_right, 0, 1024 * sizeof(*mlt_buffer_right));
1c273598
     if ((res = decouple_info(q, p, decouple_tab)) < 0)
         return res;
97e48b2f
     if ((res = mono_decode(q, p, decode_buffer)) < 0)
         return res;
e0f7e329
     /* The two channels are stored interleaved in decode_buffer. */
c3513477
     for (i = 0; i < p->js_subband_start; i++) {
         for (j = 0; j < SUBBAND_SIZE; j++) {
f23b4a06
             mlt_buffer_left[i  * 20 + j] = decode_buffer[i * 40 + j];
             mlt_buffer_right[i * 20 + j] = decode_buffer[i * 40 + 20 + j];
e0f7e329
         }
     }
 
     /* When we reach js_subband_start (the higher frequencies)
        the coefficients are stored in a coupling scheme. */
4a291c90
     idx = (1 << p->js_vlc_bits) - 1;
c3513477
     for (i = p->js_subband_start; i < p->subbands; i++) {
70220035
         cpl_tmp = cplband[i];
c3513477
         idx -= decouple_tab[cpl_tmp];
         cplscale = q->cplscales[p->js_vlc_bits - 2];  // choose decoupler table
37cc8600
         f1 = cplscale[decouple_tab[cpl_tmp] + 1];
         f2 = cplscale[idx];
f23b4a06
         q->decouple(q, p, i, f1, f2, decode_buffer,
                     mlt_buffer_left, mlt_buffer_right);
4a291c90
         idx = (1 << p->js_vlc_bits) - 1;
e0f7e329
     }
97e48b2f
 
51defefa
     return 0;
e0f7e329
 }
 
 /**
70ab75eb
  * First part of subpacket decoding:
  *  decode raw stream bytes and read gain info.
  *
  * @param q                 pointer to the COOKContext
  * @param inbuffer          pointer to raw stream data
9a58234f
  * @param gains_ptr         array of current/prev gain pointers
70ab75eb
  */
c3513477
 static inline void decode_bytes_and_gain(COOKContext *q, COOKSubpacket *p,
                                          const uint8_t *inbuffer,
                                          cook_gains *gains_ptr)
70ab75eb
 {
     int offset;
 
     offset = decode_bytes(inbuffer, q->decoded_bytes_buffer,
c3513477
                           p->bits_per_subpacket / 8);
70ab75eb
     init_get_bits(&q->gb, q->decoded_bytes_buffer + offset,
4a291c90
                   p->bits_per_subpacket);
d0429b4f
     decode_gain_info(&q->gb, gains_ptr->now);
a5b8a69c
 
     /* Swap current and previous gains */
d0429b4f
     FFSWAP(int *, gains_ptr->now, gains_ptr->previous);
a5b8a69c
 }
 
c3513477
 /**
c25df223
  * Saturate the output signal and interleave.
29b4b835
  *
  * @param q                 pointer to the COOKContext
  * @param out               pointer to the output vector
  */
cbf6ee78
 static void saturate_output_float(COOKContext *q, float *out)
29b4b835
 {
cbf6ee78
     q->dsp.vector_clipf(out, q->mono_mdct_output + q->samples_per_channel,
                         -1.0f, 1.0f, FFALIGN(q->samples_per_channel, 8));
29b4b835
 }
 
cbf6ee78
 
a5b8a69c
 /**
  * Final part of subpacket decoding:
  *  Apply modulated lapped transform, gain compensation,
  *  clip and convert to integer.
  *
  * @param q                 pointer to the COOKContext
  * @param decode_buffer     pointer to the mlt coefficients
65e3f89f
  * @param gains_ptr         array of current/prev gain pointers
a5b8a69c
  * @param previous_buffer   pointer to the previous buffer to be used for overlapping
  * @param out               pointer to the output buffer
  */
c3513477
 static inline void mlt_compensate_output(COOKContext *q, float *decode_buffer,
                                          cook_gains *gains_ptr, float *previous_buffer,
cbf6ee78
                                          float *out)
a5b8a69c
 {
65e3f89f
     imlt_gain(q, decode_buffer, gains_ptr, previous_buffer);
0eea2129
     if (out)
cbf6ee78
         q->saturate_output(q, out);
70ab75eb
 }
 
 
 /**
e0f7e329
  * Cook subpacket decoding. This function returns one decoded subpacket,
  * usually 1024 samples per channel.
  *
  * @param q                 pointer to the COOKContext
  * @param inbuffer          pointer to the inbuffer
  * @param outbuffer         pointer to the outbuffer
  */
51defefa
 static int decode_subpacket(COOKContext *q, COOKSubpacket *p,
cbf6ee78
                             const uint8_t *inbuffer, float **outbuffer)
c25df223
 {
4a291c90
     int sub_packet_size = p->size;
97e48b2f
     int res;
6f6b0311
 
c3513477
     memset(q->decode_buffer_1, 0, sizeof(q->decode_buffer_1));
4a291c90
     decode_bytes_and_gain(q, p, inbuffer, &p->gains1);
e0f7e329
 
4a291c90
     if (p->joint_stereo) {
97e48b2f
         if ((res = joint_decode(q, p, q->decode_buffer_1, q->decode_buffer_2)) < 0)
             return res;
a5b8a69c
     } else {
97e48b2f
         if ((res = mono_decode(q, p, q->decode_buffer_1)) < 0)
             return res;
b7c24ff6
 
4a291c90
         if (p->num_channels == 2) {
c3513477
             decode_bytes_and_gain(q, p, inbuffer + sub_packet_size / 2, &p->gains2);
97e48b2f
             if ((res = mono_decode(q, p, q->decode_buffer_2)) < 0)
                 return res;
a5b8a69c
         }
     }
560b10a6
 
4a291c90
     mlt_compensate_output(q, q->decode_buffer_1, &p->gains1,
cbf6ee78
                           p->mono_previous_buffer1,
                           outbuffer ? outbuffer[p->ch_idx] : NULL);
4a291c90
 
4ce9312d
     if (p->num_channels == 2) {
c3513477
         if (p->joint_stereo)
4a291c90
             mlt_compensate_output(q, q->decode_buffer_2, &p->gains1,
cbf6ee78
                                   p->mono_previous_buffer2,
                                   outbuffer ? outbuffer[p->ch_idx + 1] : NULL);
c3513477
         else
4a291c90
             mlt_compensate_output(q, q->decode_buffer_2, &p->gains2,
cbf6ee78
                                   p->mono_previous_buffer2,
                                   outbuffer ? outbuffer[p->ch_idx + 1] : NULL);
4ce9312d
     }
97e48b2f
 
c7048036
     return 0;
e0f7e329
 }
 
 
0eea2129
 static int cook_decode_frame(AVCodecContext *avctx, void *data,
                              int *got_frame_ptr, AVPacket *avpkt)
 {
7b783215
     AVFrame *frame     = data;
7a00bbad
     const uint8_t *buf = avpkt->data;
     int buf_size = avpkt->size;
e0f7e329
     COOKContext *q = avctx->priv_data;
cbf6ee78
     float **samples = NULL;
0eea2129
     int i, ret;
4a291c90
     int offset = 0;
     int chidx = 0;
e0f7e329
 
     if (buf_size < avctx->block_align)
         return buf_size;
 
0eea2129
     /* get output buffer */
     if (q->discarded_packets >= 2) {
7b783215
         frame->nb_samples = q->samples_per_channel;
1ec94b0f
         if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
0eea2129
             return ret;
7b783215
         samples = (float **)frame->extended_data;
e34c6c97
     }
 
4a291c90
     /* estimate subpacket sizes */
     q->subpacket[0].size = avctx->block_align;
 
c3513477
     for (i = 1; i < q->num_subpackets; i++) {
da75426b
         q->subpacket[i].size = 2 * buf[avctx->block_align - q->num_subpackets + i];
bb1135c8
         q->subpacket[0].size -= q->subpacket[i].size + 1;
bdb8d996
         if (q->subpacket[0].size < 0) {
c3513477
             av_log(avctx, AV_LOG_DEBUG,
                    "frame subpacket size total > avctx->block_align!\n");
f193c96f
             return AVERROR_INVALIDDATA;
bdb8d996
         }
da75426b
     }
67da3182
 
4a291c90
     /* decode supbackets */
c3513477
     for (i = 0; i < q->num_subpackets; i++) {
         q->subpacket[i].bits_per_subpacket = (q->subpacket[i].size * 8) >>
                                               q->subpacket[i].bits_per_subpdiv;
4a291c90
         q->subpacket[i].ch_idx = chidx;
c3513477
         av_log(avctx, AV_LOG_DEBUG,
                "subpacket[%i] size %i js %i %i block_align %i\n",
                i, q->subpacket[i].size, q->subpacket[i].joint_stereo, offset,
                avctx->block_align);
 
51defefa
         if ((ret = decode_subpacket(q, &q->subpacket[i], buf + offset, samples)) < 0)
             return ret;
4a291c90
         offset += q->subpacket[i].size;
         chidx += q->subpacket[i].num_channels;
c3513477
         av_log(avctx, AV_LOG_DEBUG, "subpacket[%i] %i %i\n",
                i, q->subpacket[i].size * 8, get_bits_count(&q->gb));
4a291c90
     }
e0f7e329
 
4ff5e656
     /* Discard the first two frames: no valid audio. */
0eea2129
     if (q->discarded_packets < 2) {
         q->discarded_packets++;
         *got_frame_ptr = 0;
         return avctx->block_align;
     }
 
7b783215
     *got_frame_ptr = 1;
4ff5e656
 
e0f7e329
     return avctx->block_align;
 }
7f129a33
 
f190f676
 #ifdef DEBUG
862be28b
 static void dump_cook_context(COOKContext *q)
e0f7e329
 {
     //int i=0;
93e27f86
 #define PRINT(a, b) av_dlog(q->avctx, " %s = %d\n", a, b);
     av_dlog(q->avctx, "COOKextradata\n");
     av_dlog(q->avctx, "cookversion=%x\n", q->subpacket[0].cookversion);
7204850e
     if (q->subpacket[0].cookversion > STEREO) {
c3513477
         PRINT("js_subband_start", q->subpacket[0].js_subband_start);
         PRINT("js_vlc_bits", q->subpacket[0].js_vlc_bits);
e0f7e329
     }
93e27f86
     av_dlog(q->avctx, "COOKContext\n");
3509eee1
     PRINT("nb_channels", q->avctx->channels);
8aa5b8c5
     PRINT("bit_rate", q->avctx->bit_rate);
926e9d28
     PRINT("sample_rate", q->avctx->sample_rate);
c3513477
     PRINT("samples_per_channel", q->subpacket[0].samples_per_channel);
     PRINT("subbands", q->subpacket[0].subbands);
     PRINT("js_subband_start", q->subpacket[0].js_subband_start);
     PRINT("log2_numvector_size", q->subpacket[0].log2_numvector_size);
     PRINT("numvector_size", q->subpacket[0].numvector_size);
     PRINT("total_subbands", q->subpacket[0].total_subbands);
e0f7e329
 }
 #endif
7f129a33
 
e0f7e329
 /**
  * Cook initialization
  *
  * @param avctx     pointer to the AVCodecContext
  */
4b81366b
 static av_cold int cook_decode_init(AVCodecContext *avctx)
e0f7e329
 {
     COOKContext *q = avctx->priv_data;
21cc343d
     const uint8_t *edata_ptr = avctx->extradata;
4a291c90
     const uint8_t *edata_ptr_end = edata_ptr + avctx->extradata_size;
     int extradata_size = avctx->extradata_size;
     int s = 0;
67da3182
     unsigned int channel_mask = 0;
c9e45543
     int samples_per_frame = 0;
f193c96f
     int ret;
d4b3d040
     q->avctx = avctx;
e0f7e329
 
     /* Take care of the codec specific extradata. */
4a291c90
     if (extradata_size <= 0) {
c3513477
         av_log(avctx, AV_LOG_ERROR, "Necessary extradata missing!\n");
f193c96f
         return AVERROR_INVALIDDATA;
e0f7e329
     }
c3513477
     av_log(avctx, AV_LOG_DEBUG, "codecdata_length=%d\n", avctx->extradata_size);
e0f7e329
 
     /* Take data from the AVCodecContext (RM container). */
3509eee1
     if (!avctx->channels) {
941fc1ea
         av_log(avctx, AV_LOG_ERROR, "Invalid number of channels\n");
         return AVERROR_INVALIDDATA;
     }
e0f7e329
 
058ee0cf
     /* Initialize RNG. */
2d2e72b1
     av_lfg_init(&q->random_state, 0);
e0f7e329
 
cbf6ee78
     ff_dsputil_init(&q->dsp, avctx);
 
c3513477
     while (edata_ptr < edata_ptr_end) {
4a291c90
         /* 8 for mono, 16 for stereo, ? for multichannel
            Swap to right endianness so we don't need to care later on. */
c3513477
         if (extradata_size >= 8) {
4a291c90
             q->subpacket[s].cookversion = bytestream_get_be32(&edata_ptr);
8f173ef0
             samples_per_frame           = bytestream_get_be16(&edata_ptr);
4a291c90
             q->subpacket[s].subbands = bytestream_get_be16(&edata_ptr);
             extradata_size -= 8;
         }
51f316a9
         if (extradata_size >= 8) {
c3513477
             bytestream_get_be32(&edata_ptr);    // Unknown unused
4a291c90
             q->subpacket[s].js_subband_start = bytestream_get_be16(&edata_ptr);
c69315a5
             if (q->subpacket[s].js_subband_start >= 51) {
                 av_log(avctx, AV_LOG_ERROR, "js_subband_start %d is too large\n", q->subpacket[s].js_subband_start);
                 return AVERROR_INVALIDDATA;
             }
 
4a291c90
             q->subpacket[s].js_vlc_bits = bytestream_get_be16(&edata_ptr);
             extradata_size -= 8;
         }
 
         /* Initialize extradata related variables. */
8f173ef0
         q->subpacket[s].samples_per_channel = samples_per_frame / avctx->channels;
4a291c90
         q->subpacket[s].bits_per_subpacket = avctx->block_align * 8;
 
         /* Initialize default data states. */
         q->subpacket[s].log2_numvector_size = 5;
         q->subpacket[s].total_subbands = q->subpacket[s].subbands;
         q->subpacket[s].num_channels = 1;
 
         /* Initialize version-dependent variables */
 
c3513477
         av_log(avctx, AV_LOG_DEBUG, "subpacket[%i].cookversion=%x\n", s,
                q->subpacket[s].cookversion);
4a291c90
         q->subpacket[s].joint_stereo = 0;
         switch (q->subpacket[s].cookversion) {
c3513477
         case MONO:
3509eee1
             if (avctx->channels != 1) {
6d97484d
                 avpriv_request_sample(avctx, "Container channels != 1");
c3513477
                 return AVERROR_PATCHWELCOME;
             }
             av_log(avctx, AV_LOG_DEBUG, "MONO\n");
             break;
         case STEREO:
3509eee1
             if (avctx->channels != 1) {
c3513477
                 q->subpacket[s].bits_per_subpdiv = 1;
                 q->subpacket[s].num_channels = 2;
             }
             av_log(avctx, AV_LOG_DEBUG, "STEREO\n");
             break;
         case JOINT_STEREO:
3509eee1
             if (avctx->channels != 2) {
6d97484d
                 avpriv_request_sample(avctx, "Container channels != 2");
c3513477
                 return AVERROR_PATCHWELCOME;
             }
             av_log(avctx, AV_LOG_DEBUG, "JOINT_STEREO\n");
             if (avctx->extradata_size >= 16) {
                 q->subpacket[s].total_subbands = q->subpacket[s].subbands +
                                                  q->subpacket[s].js_subband_start;
                 q->subpacket[s].joint_stereo = 1;
                 q->subpacket[s].num_channels = 2;
             }
             if (q->subpacket[s].samples_per_channel > 256) {
                 q->subpacket[s].log2_numvector_size = 6;
             }
             if (q->subpacket[s].samples_per_channel > 512) {
                 q->subpacket[s].log2_numvector_size = 7;
             }
             break;
         case MC_COOK:
             av_log(avctx, AV_LOG_DEBUG, "MULTI_CHANNEL\n");
             if (extradata_size >= 4)
                 channel_mask |= q->subpacket[s].channel_mask = bytestream_get_be32(&edata_ptr);
 
7efbba2e
             if (av_get_channel_layout_nb_channels(q->subpacket[s].channel_mask) > 1) {
c3513477
                 q->subpacket[s].total_subbands = q->subpacket[s].subbands +
                                                  q->subpacket[s].js_subband_start;
                 q->subpacket[s].joint_stereo = 1;
                 q->subpacket[s].num_channels = 2;
8f173ef0
                 q->subpacket[s].samples_per_channel = samples_per_frame >> 1;
c3513477
 
4a291c90
                 if (q->subpacket[s].samples_per_channel > 256) {
c3513477
                     q->subpacket[s].log2_numvector_size = 6;
4a291c90
                 }
                 if (q->subpacket[s].samples_per_channel > 512) {
c3513477
                     q->subpacket[s].log2_numvector_size = 7;
4a291c90
                 }
c3513477
             } else
8f173ef0
                 q->subpacket[s].samples_per_channel = samples_per_frame;
67da3182
 
c3513477
             break;
         default:
6d97484d
             avpriv_request_sample(avctx, "Cook version %d",
                                   q->subpacket[s].cookversion);
c3513477
             return AVERROR_PATCHWELCOME;
4a291c90
         }
 
c3513477
         if (s > 1 && q->subpacket[s].samples_per_channel != q->samples_per_channel) {
             av_log(avctx, AV_LOG_ERROR, "different number of samples per channel!\n");
f193c96f
             return AVERROR_INVALIDDATA;
4a291c90
         } else
             q->samples_per_channel = q->subpacket[0].samples_per_channel;
 
 
         /* Initialize variable relations */
         q->subpacket[s].numvector_size = (1 << q->subpacket[s].log2_numvector_size);
 
         /* Try to catch some obviously faulty streams, othervise it might be exploitable */
         if (q->subpacket[s].total_subbands > 53) {
6d97484d
             avpriv_request_sample(avctx, "total_subbands > 53");
5c353eb8
             return AVERROR_PATCHWELCOME;
4a291c90
         }
 
c3513477
         if ((q->subpacket[s].js_vlc_bits > 6) ||
             (q->subpacket[s].js_vlc_bits < 2 * q->subpacket[s].joint_stereo)) {
             av_log(avctx, AV_LOG_ERROR, "js_vlc_bits = %d, only >= %d and <= 6 allowed!\n",
                    q->subpacket[s].js_vlc_bits, 2 * q->subpacket[s].joint_stereo);
f193c96f
             return AVERROR_INVALIDDATA;
4a291c90
         }
e0f7e329
 
4a291c90
         if (q->subpacket[s].subbands > 50) {
6d97484d
             avpriv_request_sample(avctx, "subbands > 50");
5c353eb8
             return AVERROR_PATCHWELCOME;
4a291c90
         }
77483005
         if (q->subpacket[s].subbands == 0) {
a9b42487
             avpriv_request_sample(avctx, "subbands = 0");
77483005
             return AVERROR_PATCHWELCOME;
         }
4a291c90
         q->subpacket[s].gains1.now      = q->subpacket[s].gain_1;
         q->subpacket[s].gains1.previous = q->subpacket[s].gain_2;
         q->subpacket[s].gains2.now      = q->subpacket[s].gain_3;
         q->subpacket[s].gains2.previous = q->subpacket[s].gain_4;
e0f7e329
 
db9f426c
         if (q->num_subpackets + q->subpacket[s].num_channels > q->avctx->channels) {
             av_log(avctx, AV_LOG_ERROR, "Too many subpackets %d for channels %d\n", q->num_subpackets, q->avctx->channels);
5a35bd92
             return AVERROR_INVALIDDATA;
         }
 
4a291c90
         q->num_subpackets++;
         s++;
f00ec330
         if (s > FFMIN(MAX_SUBPACKETS, avctx->block_align)) {
             avpriv_request_sample(avctx, "subpackets > %d", FFMIN(MAX_SUBPACKETS, avctx->block_align));
5c353eb8
             return AVERROR_PATCHWELCOME;
ec32cfd2
         }
4a291c90
     }
e0f7e329
     /* Generate tables */
0c542158
     init_pow2table();
e0f7e329
     init_gain_table(q);
dae92b62
     init_cplscales_table(q);
e0f7e329
 
f193c96f
     if ((ret = init_cook_vlc_tables(q)))
         return ret;
e0f7e329
 
3a1a7e32
 
c3513477
     if (avctx->block_align >= UINT_MAX / 2)
f193c96f
         return AVERROR(EINVAL);
3a1a7e32
 
70ab75eb
     /* Pad the databuffer with:
        DECODE_BYTES_PAD1 or DECODE_BYTES_PAD2 for decode_bytes(),
        FF_INPUT_BUFFER_PADDING_SIZE, for the bitstreamreader. */
c3513477
     q->decoded_bytes_buffer =
         av_mallocz(avctx->block_align
                    + DECODE_BYTES_PAD1(avctx->block_align)
                    + FF_INPUT_BUFFER_PADDING_SIZE);
70ab75eb
     if (q->decoded_bytes_buffer == NULL)
f193c96f
         return AVERROR(ENOMEM);
e0f7e329
 
     /* Initialize transform. */
f193c96f
     if ((ret = init_cook_mlt(q)))
         return ret;
560b10a6
 
28d997f9
     /* Initialize COOK signal arithmetic handling */
     if (1) {
b5f3f2b8
         q->scalar_dequant  = scalar_dequant_float;
28d997f9
         q->decouple        = decouple_float;
         q->imlt_window     = imlt_window_float;
b5f3f2b8
         q->interpolate     = interpolate_float;
28d997f9
         q->saturate_output = saturate_output_float;
     }
 
560b10a6
     /* Try to catch some obviously faulty streams, othervise it might be exploitable */
d21b2e47
     if (q->samples_per_channel != 256 && q->samples_per_channel != 512 &&
         q->samples_per_channel != 1024) {
6d97484d
         avpriv_request_sample(avctx, "samples_per_channel = %d",
d9dee728
                               q->samples_per_channel);
5c353eb8
         return AVERROR_PATCHWELCOME;
2e9c78d3
     }
560b10a6
 
cbf6ee78
     avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
67da3182
     if (channel_mask)
         avctx->channel_layout = channel_mask;
     else
c3513477
         avctx->channel_layout = (avctx->channels == 2) ? AV_CH_LAYOUT_STEREO : AV_CH_LAYOUT_MONO;
fd76c37f
 
f190f676
 #ifdef DEBUG
862be28b
     dump_cook_context(q);
70220035
 #endif
e0f7e329
     return 0;
 }
 
c3513477
 AVCodec ff_cook_decoder = {
     .name           = "cook",
b2bed932
     .long_name      = NULL_IF_CONFIG_SMALL("Cook / Cooker / Gecko (RealAudio G2)"),
c3513477
     .type           = AVMEDIA_TYPE_AUDIO,
36ef5369
     .id             = AV_CODEC_ID_COOK,
e0f7e329
     .priv_data_size = sizeof(COOKContext),
c3513477
     .init           = cook_decode_init,
     .close          = cook_decode_close,
     .decode         = cook_decode_frame,
     .capabilities   = CODEC_CAP_DR1,
cbf6ee78
     .sample_fmts    = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
                                                       AV_SAMPLE_FMT_NONE },
e0f7e329
 };