libavformat/hevc.c
c7613798
 /*
  * Copyright (c) 2014 Tim Walker <tdskywalker@gmail.com>
  *
3faebed6
  * This file is part of FFmpeg.
c7613798
  *
3faebed6
  * FFmpeg is free software; you can redistribute it and/or
c7613798
  * modify it under the terms of the GNU Lesser General Public
  * License as published by the Free Software Foundation; either
  * version 2.1 of the License, or (at your option) any later version.
  *
3faebed6
  * FFmpeg is distributed in the hope that it will be useful,
c7613798
  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  * Lesser General Public License for more details.
  *
  * You should have received a copy of the GNU Lesser General Public
3faebed6
  * License along with FFmpeg; if not, write to the Free Software
c7613798
  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  */
 
 #include "libavcodec/get_bits.h"
 #include "libavcodec/golomb.h"
 #include "libavcodec/hevc.h"
 #include "libavutil/intreadwrite.h"
 #include "avc.h"
 #include "avio.h"
 #include "hevc.h"
 
 #define MAX_SPATIAL_SEGMENTATION 4096 // max. value of u(12) field
 
 typedef struct HVCCNALUnitArray {
     uint8_t  array_completeness;
     uint8_t  NAL_unit_type;
     uint16_t numNalus;
     uint16_t *nalUnitLength;
     uint8_t  **nalUnit;
 } HVCCNALUnitArray;
 
 typedef struct HEVCDecoderConfigurationRecord {
     uint8_t  configurationVersion;
     uint8_t  general_profile_space;
     uint8_t  general_tier_flag;
     uint8_t  general_profile_idc;
     uint32_t general_profile_compatibility_flags;
     uint64_t general_constraint_indicator_flags;
     uint8_t  general_level_idc;
     uint16_t min_spatial_segmentation_idc;
     uint8_t  parallelismType;
     uint8_t  chromaFormat;
     uint8_t  bitDepthLumaMinus8;
     uint8_t  bitDepthChromaMinus8;
     uint16_t avgFrameRate;
     uint8_t  constantFrameRate;
     uint8_t  numTemporalLayers;
     uint8_t  temporalIdNested;
     uint8_t  lengthSizeMinusOne;
     uint8_t  numOfArrays;
     HVCCNALUnitArray *array;
 } HEVCDecoderConfigurationRecord;
 
 typedef struct HVCCProfileTierLevel {
     uint8_t  profile_space;
     uint8_t  tier_flag;
     uint8_t  profile_idc;
     uint32_t profile_compatibility_flags;
     uint64_t constraint_indicator_flags;
     uint8_t  level_idc;
 } HVCCProfileTierLevel;
 
 static void hvcc_update_ptl(HEVCDecoderConfigurationRecord *hvcc,
                             HVCCProfileTierLevel *ptl)
 {
     /*
      * The value of general_profile_space in all the parameter sets must be
      * identical.
      */
     hvcc->general_profile_space = ptl->profile_space;
 
     /*
      * The level indication general_level_idc must indicate a level of
      * capability equal to or greater than the highest level indicated for the
      * highest tier in all the parameter sets.
      */
     if (hvcc->general_tier_flag < ptl->tier_flag)
         hvcc->general_level_idc = ptl->level_idc;
     else
         hvcc->general_level_idc = FFMAX(hvcc->general_level_idc, ptl->level_idc);
 
     /*
      * The tier indication general_tier_flag must indicate a tier equal to or
      * greater than the highest tier indicated in all the parameter sets.
      */
     hvcc->general_tier_flag = FFMAX(hvcc->general_tier_flag, ptl->tier_flag);
 
     /*
      * The profile indication general_profile_idc must indicate a profile to
      * which the stream associated with this configuration record conforms.
      *
      * If the sequence parameter sets are marked with different profiles, then
      * the stream may need examination to determine which profile, if any, the
      * entire stream conforms to. If the entire stream is not examined, or the
      * examination reveals that there is no profile to which the entire stream
      * conforms, then the entire stream must be split into two or more
      * sub-streams with separate configuration records in which these rules can
      * be met.
      *
      * Note: set the profile to the highest value for the sake of simplicity.
      */
     hvcc->general_profile_idc = FFMAX(hvcc->general_profile_idc, ptl->profile_idc);
 
     /*
      * Each bit in general_profile_compatibility_flags may only be set if all
      * the parameter sets set that bit.
      */
     hvcc->general_profile_compatibility_flags &= ptl->profile_compatibility_flags;
 
     /*
      * Each bit in general_constraint_indicator_flags may only be set if all
      * the parameter sets set that bit.
      */
     hvcc->general_constraint_indicator_flags &= ptl->constraint_indicator_flags;
 }
 
 static void hvcc_parse_ptl(GetBitContext *gb,
                            HEVCDecoderConfigurationRecord *hvcc,
                            unsigned int max_sub_layers_minus1)
 {
     unsigned int i;
     HVCCProfileTierLevel general_ptl;
     uint8_t sub_layer_profile_present_flag[MAX_SUB_LAYERS];
     uint8_t sub_layer_level_present_flag[MAX_SUB_LAYERS];
 
     general_ptl.profile_space               = get_bits(gb, 2);
     general_ptl.tier_flag                   = get_bits1(gb);
     general_ptl.profile_idc                 = get_bits(gb, 5);
     general_ptl.profile_compatibility_flags = get_bits_long(gb, 32);
     general_ptl.constraint_indicator_flags  = get_bits64(gb, 48);
     general_ptl.level_idc                   = get_bits(gb, 8);
     hvcc_update_ptl(hvcc, &general_ptl);
 
     for (i = 0; i < max_sub_layers_minus1; i++) {
         sub_layer_profile_present_flag[i] = get_bits1(gb);
         sub_layer_level_present_flag[i]   = get_bits1(gb);
     }
 
     if (max_sub_layers_minus1 > 0)
         for (i = max_sub_layers_minus1; i < 8; i++)
             skip_bits(gb, 2); // reserved_zero_2bits[i]
 
     for (i = 0; i < max_sub_layers_minus1; i++) {
         if (sub_layer_profile_present_flag[i]) {
             /*
              * sub_layer_profile_space[i]                     u(2)
              * sub_layer_tier_flag[i]                         u(1)
              * sub_layer_profile_idc[i]                       u(5)
              * sub_layer_profile_compatibility_flag[i][0..31] u(32)
              * sub_layer_progressive_source_flag[i]           u(1)
              * sub_layer_interlaced_source_flag[i]            u(1)
              * sub_layer_non_packed_constraint_flag[i]        u(1)
              * sub_layer_frame_only_constraint_flag[i]        u(1)
              * sub_layer_reserved_zero_44bits[i]              u(44)
              */
             skip_bits_long(gb, 32);
             skip_bits_long(gb, 32);
             skip_bits     (gb, 24);
         }
 
         if (sub_layer_level_present_flag[i])
             skip_bits(gb, 8);
     }
 }
 
 static void skip_sub_layer_hrd_parameters(GetBitContext *gb,
                                           unsigned int cpb_cnt_minus1,
                                           uint8_t sub_pic_hrd_params_present_flag)
 {
     unsigned int i;
 
     for (i = 0; i <= cpb_cnt_minus1; i++) {
         get_ue_golomb_long(gb); // bit_rate_value_minus1
         get_ue_golomb_long(gb); // cpb_size_value_minus1
 
         if (sub_pic_hrd_params_present_flag) {
             get_ue_golomb_long(gb); // cpb_size_du_value_minus1
             get_ue_golomb_long(gb); // bit_rate_du_value_minus1
         }
 
         skip_bits1(gb); // cbr_flag
     }
 }
 
 static void skip_hrd_parameters(GetBitContext *gb, uint8_t cprms_present_flag,
                                 unsigned int max_sub_layers_minus1)
 {
     unsigned int i;
     uint8_t sub_pic_hrd_params_present_flag = 0;
     uint8_t nal_hrd_parameters_present_flag = 0;
     uint8_t vcl_hrd_parameters_present_flag = 0;
 
     if (cprms_present_flag) {
         nal_hrd_parameters_present_flag = get_bits1(gb);
         vcl_hrd_parameters_present_flag = get_bits1(gb);
 
         if (nal_hrd_parameters_present_flag ||
             vcl_hrd_parameters_present_flag) {
             sub_pic_hrd_params_present_flag = get_bits1(gb);
 
             if (sub_pic_hrd_params_present_flag)
                 /*
                  * tick_divisor_minus2                          u(8)
                  * du_cpb_removal_delay_increment_length_minus1 u(5)
                  * sub_pic_cpb_params_in_pic_timing_sei_flag    u(1)
                  * dpb_output_delay_du_length_minus1            u(5)
                  */
                 skip_bits(gb, 19);
 
             /*
              * bit_rate_scale u(4)
              * cpb_size_scale u(4)
              */
             skip_bits(gb, 8);
 
             if (sub_pic_hrd_params_present_flag)
                 skip_bits(gb, 4); // cpb_size_du_scale
 
             /*
              * initial_cpb_removal_delay_length_minus1 u(5)
              * au_cpb_removal_delay_length_minus1      u(5)
              * dpb_output_delay_length_minus1          u(5)
              */
             skip_bits(gb, 15);
         }
     }
 
     for (i = 0; i <= max_sub_layers_minus1; i++) {
         unsigned int cpb_cnt_minus1            = 0;
         uint8_t low_delay_hrd_flag             = 0;
         uint8_t fixed_pic_rate_within_cvs_flag = 0;
         uint8_t fixed_pic_rate_general_flag    = get_bits1(gb);
 
         if (!fixed_pic_rate_general_flag)
             fixed_pic_rate_within_cvs_flag = get_bits1(gb);
 
         if (fixed_pic_rate_within_cvs_flag)
             get_ue_golomb_long(gb); // elemental_duration_in_tc_minus1
         else
             low_delay_hrd_flag = get_bits1(gb);
 
         if (!low_delay_hrd_flag)
             cpb_cnt_minus1 = get_ue_golomb_long(gb);
 
         if (nal_hrd_parameters_present_flag)
             skip_sub_layer_hrd_parameters(gb, cpb_cnt_minus1,
                                           sub_pic_hrd_params_present_flag);
 
         if (vcl_hrd_parameters_present_flag)
             skip_sub_layer_hrd_parameters(gb, cpb_cnt_minus1,
                                           sub_pic_hrd_params_present_flag);
     }
 }
 
 static void skip_timing_info(GetBitContext *gb)
 {
     skip_bits_long(gb, 32); // num_units_in_tick
     skip_bits_long(gb, 32); // time_scale
 
     if (get_bits1(gb))          // poc_proportional_to_timing_flag
         get_ue_golomb_long(gb); // num_ticks_poc_diff_one_minus1
 }
 
 static void hvcc_parse_vui(GetBitContext *gb,
                            HEVCDecoderConfigurationRecord *hvcc,
                            unsigned int max_sub_layers_minus1)
 {
     unsigned int min_spatial_segmentation_idc;
 
     if (get_bits1(gb))              // aspect_ratio_info_present_flag
         if (get_bits(gb, 8) == 255) // aspect_ratio_idc
             skip_bits_long(gb, 32); // sar_width u(16), sar_height u(16)
 
     if (get_bits1(gb))  // overscan_info_present_flag
         skip_bits1(gb); // overscan_appropriate_flag
 
     if (get_bits1(gb)) {  // video_signal_type_present_flag
         skip_bits(gb, 4); // video_format u(3), video_full_range_flag u(1)
 
         if (get_bits1(gb)) // colour_description_present_flag
             /*
              * colour_primaries         u(8)
              * transfer_characteristics u(8)
              * matrix_coeffs            u(8)
              */
             skip_bits(gb, 24);
     }
 
     if (get_bits1(gb)) {        // chroma_loc_info_present_flag
         get_ue_golomb_long(gb); // chroma_sample_loc_type_top_field
         get_ue_golomb_long(gb); // chroma_sample_loc_type_bottom_field
     }
 
     /*
      * neutral_chroma_indication_flag u(1)
      * field_seq_flag                 u(1)
      * frame_field_info_present_flag  u(1)
      */
     skip_bits(gb, 3);
 
     if (get_bits1(gb)) {        // default_display_window_flag
         get_ue_golomb_long(gb); // def_disp_win_left_offset
         get_ue_golomb_long(gb); // def_disp_win_right_offset
         get_ue_golomb_long(gb); // def_disp_win_top_offset
         get_ue_golomb_long(gb); // def_disp_win_bottom_offset
     }
 
     if (get_bits1(gb)) { // vui_timing_info_present_flag
         skip_timing_info(gb);
 
         if (get_bits1(gb)) // vui_hrd_parameters_present_flag
             skip_hrd_parameters(gb, 1, max_sub_layers_minus1);
     }
 
     if (get_bits1(gb)) { // bitstream_restriction_flag
         /*
          * tiles_fixed_structure_flag              u(1)
          * motion_vectors_over_pic_boundaries_flag u(1)
          * restricted_ref_pic_lists_flag           u(1)
          */
         skip_bits(gb, 3);
 
         min_spatial_segmentation_idc = get_ue_golomb_long(gb);
 
         /*
          * unsigned int(12) min_spatial_segmentation_idc;
          *
          * The min_spatial_segmentation_idc indication must indicate a level of
          * spatial segmentation equal to or less than the lowest level of
          * spatial segmentation indicated in all the parameter sets.
          */
         hvcc->min_spatial_segmentation_idc = FFMIN(hvcc->min_spatial_segmentation_idc,
                                                    min_spatial_segmentation_idc);
 
         get_ue_golomb_long(gb); // max_bytes_per_pic_denom
         get_ue_golomb_long(gb); // max_bits_per_min_cu_denom
         get_ue_golomb_long(gb); // log2_max_mv_length_horizontal
         get_ue_golomb_long(gb); // log2_max_mv_length_vertical
     }
 }
 
 static void skip_sub_layer_ordering_info(GetBitContext *gb)
 {
     get_ue_golomb_long(gb); // max_dec_pic_buffering_minus1
     get_ue_golomb_long(gb); // max_num_reorder_pics
     get_ue_golomb_long(gb); // max_latency_increase_plus1
 }
 
 static int hvcc_parse_vps(GetBitContext *gb,
                           HEVCDecoderConfigurationRecord *hvcc)
 {
     unsigned int vps_max_sub_layers_minus1;
 
     /*
      * vps_video_parameter_set_id u(4)
      * vps_reserved_three_2bits   u(2)
      * vps_max_layers_minus1      u(6)
      */
     skip_bits(gb, 12);
 
     vps_max_sub_layers_minus1 = get_bits(gb, 3);
 
     /*
      * numTemporalLayers greater than 1 indicates that the stream to which this
      * configuration record applies is temporally scalable and the contained
      * number of temporal layers (also referred to as temporal sub-layer or
      * sub-layer in ISO/IEC 23008-2) is equal to numTemporalLayers. Value 1
      * indicates that the stream is not temporally scalable. Value 0 indicates
      * that it is unknown whether the stream is temporally scalable.
      */
     hvcc->numTemporalLayers = FFMAX(hvcc->numTemporalLayers,
                                     vps_max_sub_layers_minus1 + 1);
 
     /*
      * vps_temporal_id_nesting_flag u(1)
      * vps_reserved_0xffff_16bits   u(16)
      */
     skip_bits(gb, 17);
 
     hvcc_parse_ptl(gb, hvcc, vps_max_sub_layers_minus1);
 
     /* nothing useful for hvcC past this point */
     return 0;
 }
 
 static void skip_scaling_list_data(GetBitContext *gb)
 {
     int i, j, k, num_coeffs;
 
     for (i = 0; i < 4; i++)
         for (j = 0; j < (i == 3 ? 2 : 6); j++)
             if (!get_bits1(gb))         // scaling_list_pred_mode_flag[i][j]
                 get_ue_golomb_long(gb); // scaling_list_pred_matrix_id_delta[i][j]
             else {
                 num_coeffs = FFMIN(64, 1 << (4 + (i << 1)));
 
                 if (i > 1)
b37b8321
                     get_se_golomb_long(gb); // scaling_list_dc_coef_minus8[i-2][j]
c7613798
 
                 for (k = 0; k < num_coeffs; k++)
b37b8321
                     get_se_golomb_long(gb); // scaling_list_delta_coef
c7613798
             }
 }
 
 static int parse_rps(GetBitContext *gb, unsigned int rps_idx,
                      unsigned int num_rps,
                      unsigned int num_delta_pocs[MAX_SHORT_TERM_RPS_COUNT])
 {
     unsigned int i;
 
     if (rps_idx && get_bits1(gb)) { // inter_ref_pic_set_prediction_flag
         /* this should only happen for slice headers, and this isn't one */
         if (rps_idx >= num_rps)
             return AVERROR_INVALIDDATA;
 
         skip_bits1        (gb); // delta_rps_sign
         get_ue_golomb_long(gb); // abs_delta_rps_minus1
 
         num_delta_pocs[rps_idx] = 0;
 
         /*
          * From libavcodec/hevc_ps.c:
          *
          * if (is_slice_header) {
          *    //foo
          * } else
          *     rps_ridx = &sps->st_rps[rps - sps->st_rps - 1];
          *
          * where:
          * rps:             &sps->st_rps[rps_idx]
          * sps->st_rps:     &sps->st_rps[0]
          * is_slice_header: rps_idx == num_rps
          *
          * thus:
          * if (num_rps != rps_idx)
          *     rps_ridx = &sps->st_rps[rps_idx - 1];
          *
          * NumDeltaPocs[RefRpsIdx]: num_delta_pocs[rps_idx - 1]
          */
         for (i = 0; i < num_delta_pocs[rps_idx - 1]; i++) {
             uint8_t use_delta_flag = 0;
             uint8_t used_by_curr_pic_flag = get_bits1(gb);
             if (!used_by_curr_pic_flag)
                 use_delta_flag = get_bits1(gb);
 
             if (used_by_curr_pic_flag || use_delta_flag)
                 num_delta_pocs[rps_idx]++;
         }
     } else {
         unsigned int num_negative_pics = get_ue_golomb_long(gb);
         unsigned int num_positive_pics = get_ue_golomb_long(gb);
 
         num_delta_pocs[rps_idx] = num_negative_pics + num_positive_pics;
 
         for (i = 0; i < num_negative_pics; i++) {
             get_ue_golomb_long(gb); // delta_poc_s0_minus1[rps_idx]
             skip_bits1        (gb); // used_by_curr_pic_s0_flag[rps_idx]
         }
 
         for (i = 0; i < num_positive_pics; i++) {
             get_ue_golomb_long(gb); // delta_poc_s1_minus1[rps_idx]
             skip_bits1        (gb); // used_by_curr_pic_s1_flag[rps_idx]
         }
     }
 
     return 0;
 }
 
 static int hvcc_parse_sps(GetBitContext *gb,
                           HEVCDecoderConfigurationRecord *hvcc)
 {
     unsigned int i, sps_max_sub_layers_minus1, log2_max_pic_order_cnt_lsb_minus4;
     unsigned int num_short_term_ref_pic_sets, num_delta_pocs[MAX_SHORT_TERM_RPS_COUNT];
 
     skip_bits(gb, 4); // sps_video_parameter_set_id
 
     sps_max_sub_layers_minus1 = get_bits (gb, 3);
 
     /*
      * numTemporalLayers greater than 1 indicates that the stream to which this
      * configuration record applies is temporally scalable and the contained
      * number of temporal layers (also referred to as temporal sub-layer or
      * sub-layer in ISO/IEC 23008-2) is equal to numTemporalLayers. Value 1
      * indicates that the stream is not temporally scalable. Value 0 indicates
      * that it is unknown whether the stream is temporally scalable.
      */
     hvcc->numTemporalLayers = FFMAX(hvcc->numTemporalLayers,
                                     sps_max_sub_layers_minus1 + 1);
 
     hvcc->temporalIdNested = get_bits1(gb);
 
     hvcc_parse_ptl(gb, hvcc, sps_max_sub_layers_minus1);
 
     get_ue_golomb_long(gb); // sps_seq_parameter_set_id
 
     hvcc->chromaFormat = get_ue_golomb_long(gb);
 
     if (hvcc->chromaFormat == 3)
         skip_bits1(gb); // separate_colour_plane_flag
 
     get_ue_golomb_long(gb); // pic_width_in_luma_samples
     get_ue_golomb_long(gb); // pic_height_in_luma_samples
 
     if (get_bits1(gb)) {        // conformance_window_flag
         get_ue_golomb_long(gb); // conf_win_left_offset
         get_ue_golomb_long(gb); // conf_win_right_offset
         get_ue_golomb_long(gb); // conf_win_top_offset
         get_ue_golomb_long(gb); // conf_win_bottom_offset
     }
 
     hvcc->bitDepthLumaMinus8          = get_ue_golomb_long(gb);
     hvcc->bitDepthChromaMinus8        = get_ue_golomb_long(gb);
     log2_max_pic_order_cnt_lsb_minus4 = get_ue_golomb_long(gb);
 
     /* sps_sub_layer_ordering_info_present_flag */
     i = get_bits1(gb) ? 0 : sps_max_sub_layers_minus1;
     for (; i <= sps_max_sub_layers_minus1; i++)
         skip_sub_layer_ordering_info(gb);
 
     get_ue_golomb_long(gb); // log2_min_luma_coding_block_size_minus3
     get_ue_golomb_long(gb); // log2_diff_max_min_luma_coding_block_size
     get_ue_golomb_long(gb); // log2_min_transform_block_size_minus2
     get_ue_golomb_long(gb); // log2_diff_max_min_transform_block_size
     get_ue_golomb_long(gb); // max_transform_hierarchy_depth_inter
     get_ue_golomb_long(gb); // max_transform_hierarchy_depth_intra
 
     if (get_bits1(gb) && // scaling_list_enabled_flag
         get_bits1(gb))   // sps_scaling_list_data_present_flag
         skip_scaling_list_data(gb);
 
     skip_bits1(gb); // amp_enabled_flag
     skip_bits1(gb); // sample_adaptive_offset_enabled_flag
 
     if (get_bits1(gb)) {           // pcm_enabled_flag
         skip_bits         (gb, 4); // pcm_sample_bit_depth_luma_minus1
         skip_bits         (gb, 4); // pcm_sample_bit_depth_chroma_minus1
         get_ue_golomb_long(gb);    // log2_min_pcm_luma_coding_block_size_minus3
         get_ue_golomb_long(gb);    // log2_diff_max_min_pcm_luma_coding_block_size
         skip_bits1        (gb);    // pcm_loop_filter_disabled_flag
     }
 
     num_short_term_ref_pic_sets = get_ue_golomb_long(gb);
     if (num_short_term_ref_pic_sets > MAX_SHORT_TERM_RPS_COUNT)
         return AVERROR_INVALIDDATA;
 
     for (i = 0; i < num_short_term_ref_pic_sets; i++) {
         int ret = parse_rps(gb, i, num_short_term_ref_pic_sets, num_delta_pocs);
         if (ret < 0)
             return ret;
     }
 
     if (get_bits1(gb)) {                               // long_term_ref_pics_present_flag
         for (i = 0; i < get_ue_golomb_long(gb); i++) { // num_long_term_ref_pics_sps
             int len = FFMIN(log2_max_pic_order_cnt_lsb_minus4 + 4, 16);
             skip_bits (gb, len); // lt_ref_pic_poc_lsb_sps[i]
             skip_bits1(gb);      // used_by_curr_pic_lt_sps_flag[i]
         }
     }
 
     skip_bits1(gb); // sps_temporal_mvp_enabled_flag
     skip_bits1(gb); // strong_intra_smoothing_enabled_flag
 
     if (get_bits1(gb)) // vui_parameters_present_flag
         hvcc_parse_vui(gb, hvcc, sps_max_sub_layers_minus1);
 
     /* nothing useful for hvcC past this point */
     return 0;
 }
 
 static int hvcc_parse_pps(GetBitContext *gb,
                           HEVCDecoderConfigurationRecord *hvcc)
 {
     uint8_t tiles_enabled_flag, entropy_coding_sync_enabled_flag;
 
     get_ue_golomb_long(gb); // pps_pic_parameter_set_id
     get_ue_golomb_long(gb); // pps_seq_parameter_set_id
 
     /*
      * dependent_slice_segments_enabled_flag u(1)
      * output_flag_present_flag              u(1)
      * num_extra_slice_header_bits           u(3)
      * sign_data_hiding_enabled_flag         u(1)
      * cabac_init_present_flag               u(1)
      */
     skip_bits(gb, 7);
 
     get_ue_golomb_long(gb); // num_ref_idx_l0_default_active_minus1
     get_ue_golomb_long(gb); // num_ref_idx_l1_default_active_minus1
b37b8321
     get_se_golomb_long(gb); // init_qp_minus26
c7613798
 
     /*
      * constrained_intra_pred_flag u(1)
      * transform_skip_enabled_flag u(1)
      */
     skip_bits(gb, 2);
 
     if (get_bits1(gb))          // cu_qp_delta_enabled_flag
         get_ue_golomb_long(gb); // diff_cu_qp_delta_depth
 
b37b8321
     get_se_golomb_long(gb); // pps_cb_qp_offset
     get_se_golomb_long(gb); // pps_cr_qp_offset
c7613798
 
     /*
      * weighted_pred_flag               u(1)
      * weighted_bipred_flag             u(1)
      * transquant_bypass_enabled_flag   u(1)
      */
     skip_bits(gb, 3);
 
     tiles_enabled_flag               = get_bits1(gb);
     entropy_coding_sync_enabled_flag = get_bits1(gb);
 
     if (entropy_coding_sync_enabled_flag && tiles_enabled_flag)
         hvcc->parallelismType = 0; // mixed-type parallel decoding
     else if (entropy_coding_sync_enabled_flag)
         hvcc->parallelismType = 3; // wavefront-based parallel decoding
     else if (tiles_enabled_flag)
         hvcc->parallelismType = 2; // tile-based parallel decoding
     else
         hvcc->parallelismType = 1; // slice-based parallel decoding
 
     /* nothing useful for hvcC past this point */
     return 0;
 }
 
 static uint8_t *nal_unit_extract_rbsp(const uint8_t *src, uint32_t src_len,
                                       uint32_t *dst_len)
 {
     uint8_t *dst;
     uint32_t i, len;
 
     dst = av_malloc(src_len);
     if (!dst)
         return NULL;
 
     /* NAL unit header (2 bytes) */
     i = len = 0;
     while (i < 2 && i < src_len)
         dst[len++] = src[i++];
 
     while (i + 2 < src_len)
         if (!src[i] && !src[i + 1] && src[i + 2] == 3) {
             dst[len++] = src[i++];
             dst[len++] = src[i++];
             i++; // remove emulation_prevention_three_byte
         } else
             dst[len++] = src[i++];
 
     while (i < src_len)
         dst[len++] = src[i++];
 
     *dst_len = len;
     return dst;
 }
 
 
 
 static void nal_unit_parse_header(GetBitContext *gb, uint8_t *nal_type)
 {
     skip_bits1(gb); // forbidden_zero_bit
 
     *nal_type = get_bits(gb, 6);
 
     /*
      * nuh_layer_id          u(6)
      * nuh_temporal_id_plus1 u(3)
      */
     skip_bits(gb, 9);
 }
 
 static int hvcc_array_add_nal_unit(uint8_t *nal_buf, uint32_t nal_size,
                                    uint8_t nal_type, int ps_array_completeness,
                                    HEVCDecoderConfigurationRecord *hvcc)
 {
     int ret;
     uint8_t index;
     uint16_t numNalus;
     HVCCNALUnitArray *array;
 
     for (index = 0; index < hvcc->numOfArrays; index++)
         if (hvcc->array[index].NAL_unit_type == nal_type)
             break;
 
     if (index >= hvcc->numOfArrays) {
         uint8_t i;
 
         ret = av_reallocp_array(&hvcc->array, index + 1, sizeof(HVCCNALUnitArray));
         if (ret < 0)
             return ret;
 
         for (i = hvcc->numOfArrays; i <= index; i++)
             memset(&hvcc->array[i], 0, sizeof(HVCCNALUnitArray));
         hvcc->numOfArrays = index + 1;
     }
 
     array    = &hvcc->array[index];
     numNalus = array->numNalus;
 
     ret = av_reallocp_array(&array->nalUnit, numNalus + 1, sizeof(uint8_t*));
     if (ret < 0)
         return ret;
 
     ret = av_reallocp_array(&array->nalUnitLength, numNalus + 1, sizeof(uint16_t));
     if (ret < 0)
         return ret;
 
     array->nalUnit      [numNalus] = nal_buf;
     array->nalUnitLength[numNalus] = nal_size;
     array->NAL_unit_type           = nal_type;
     array->numNalus++;
 
     /*
      * When the sample entry name is ‘hvc1’, the default and mandatory value of
      * array_completeness is 1 for arrays of all types of parameter sets, and 0
      * for all other arrays. When the sample entry name is ‘hev1’, the default
      * value of array_completeness is 0 for all arrays.
      */
     if (nal_type == NAL_VPS || nal_type == NAL_SPS || nal_type == NAL_PPS)
         array->array_completeness = ps_array_completeness;
 
     return 0;
 }
 
 static int hvcc_add_nal_unit(uint8_t *nal_buf, uint32_t nal_size,
                              int ps_array_completeness,
                              HEVCDecoderConfigurationRecord *hvcc)
 {
     int ret = 0;
     GetBitContext gbc;
     uint8_t nal_type;
     uint8_t *rbsp_buf;
     uint32_t rbsp_size;
 
     rbsp_buf = nal_unit_extract_rbsp(nal_buf, nal_size, &rbsp_size);
     if (!rbsp_buf) {
         ret = AVERROR(ENOMEM);
         goto end;
     }
 
     ret = init_get_bits8(&gbc, rbsp_buf, rbsp_size);
     if (ret < 0)
         goto end;
 
     nal_unit_parse_header(&gbc, &nal_type);
 
     /*
      * Note: only 'declarative' SEI messages are allowed in
      * hvcC. Perhaps the SEI playload type should be checked
      * and non-declarative SEI messages discarded?
      */
     switch (nal_type) {
     case NAL_VPS:
     case NAL_SPS:
     case NAL_PPS:
     case NAL_SEI_PREFIX:
     case NAL_SEI_SUFFIX:
         ret = hvcc_array_add_nal_unit(nal_buf, nal_size, nal_type,
                                       ps_array_completeness, hvcc);
         if (ret < 0)
             goto end;
         else if (nal_type == NAL_VPS)
             ret = hvcc_parse_vps(&gbc, hvcc);
         else if (nal_type == NAL_SPS)
             ret = hvcc_parse_sps(&gbc, hvcc);
         else if (nal_type == NAL_PPS)
             ret = hvcc_parse_pps(&gbc, hvcc);
         if (ret < 0)
             goto end;
         break;
     default:
         ret = AVERROR_INVALIDDATA;
         goto end;
     }
 
 end:
     av_free(rbsp_buf);
     return ret;
 }
 
 static void hvcc_init(HEVCDecoderConfigurationRecord *hvcc)
 {
     memset(hvcc, 0, sizeof(HEVCDecoderConfigurationRecord));
     hvcc->configurationVersion = 1;
     hvcc->lengthSizeMinusOne   = 3; // 4 bytes
 
     /*
      * The following fields have all their valid bits set by default,
      * the ProfileTierLevel parsing code will unset them when needed.
      */
     hvcc->general_profile_compatibility_flags = 0xffffffff;
     hvcc->general_constraint_indicator_flags  = 0xffffffffffff;
 
     /*
      * Initialize this field with an invalid value which can be used to detect
      * whether we didn't see any VUI (in wich case it should be reset to zero).
      */
     hvcc->min_spatial_segmentation_idc = MAX_SPATIAL_SEGMENTATION + 1;
 }
 
 static void hvcc_close(HEVCDecoderConfigurationRecord *hvcc)
 {
     uint8_t i;
 
     for (i = 0; i < hvcc->numOfArrays; i++) {
         hvcc->array[i].numNalus = 0;
         av_freep(&hvcc->array[i].nalUnit);
         av_freep(&hvcc->array[i].nalUnitLength);
     }
 
     hvcc->numOfArrays = 0;
     av_freep(&hvcc->array);
 }
 
 static int hvcc_write(AVIOContext *pb, HEVCDecoderConfigurationRecord *hvcc)
 {
     uint8_t i;
     uint16_t j, vps_count = 0, sps_count = 0, pps_count = 0;
 
     /*
      * We only support writing HEVCDecoderConfigurationRecord version 1.
      */
     hvcc->configurationVersion = 1;
 
     /*
      * If min_spatial_segmentation_idc is invalid, reset to 0 (unspecified).
      */
     if (hvcc->min_spatial_segmentation_idc > MAX_SPATIAL_SEGMENTATION)
         hvcc->min_spatial_segmentation_idc = 0;
 
     /*
      * parallelismType indicates the type of parallelism that is used to meet
      * the restrictions imposed by min_spatial_segmentation_idc when the value
      * of min_spatial_segmentation_idc is greater than 0.
      */
     if (!hvcc->min_spatial_segmentation_idc)
         hvcc->parallelismType = 0;
 
     /*
      * It's unclear how to properly compute these fields, so
      * let's always set them to values meaning 'unspecified'.
      */
     hvcc->avgFrameRate      = 0;
     hvcc->constantFrameRate = 0;
 
     av_dlog(NULL,  "configurationVersion:                %"PRIu8"\n",
             hvcc->configurationVersion);
     av_dlog(NULL,  "general_profile_space:               %"PRIu8"\n",
             hvcc->general_profile_space);
     av_dlog(NULL,  "general_tier_flag:                   %"PRIu8"\n",
             hvcc->general_tier_flag);
     av_dlog(NULL,  "general_profile_idc:                 %"PRIu8"\n",
             hvcc->general_profile_idc);
     av_dlog(NULL, "general_profile_compatibility_flags: 0x%08"PRIx32"\n",
             hvcc->general_profile_compatibility_flags);
     av_dlog(NULL, "general_constraint_indicator_flags:  0x%012"PRIx64"\n",
             hvcc->general_constraint_indicator_flags);
     av_dlog(NULL,  "general_level_idc:                   %"PRIu8"\n",
             hvcc->general_level_idc);
     av_dlog(NULL,  "min_spatial_segmentation_idc:        %"PRIu16"\n",
             hvcc->min_spatial_segmentation_idc);
     av_dlog(NULL,  "parallelismType:                     %"PRIu8"\n",
             hvcc->parallelismType);
     av_dlog(NULL,  "chromaFormat:                        %"PRIu8"\n",
             hvcc->chromaFormat);
     av_dlog(NULL,  "bitDepthLumaMinus8:                  %"PRIu8"\n",
             hvcc->bitDepthLumaMinus8);
     av_dlog(NULL,  "bitDepthChromaMinus8:                %"PRIu8"\n",
             hvcc->bitDepthChromaMinus8);
     av_dlog(NULL,  "avgFrameRate:                        %"PRIu16"\n",
             hvcc->avgFrameRate);
     av_dlog(NULL,  "constantFrameRate:                   %"PRIu8"\n",
             hvcc->constantFrameRate);
     av_dlog(NULL,  "numTemporalLayers:                   %"PRIu8"\n",
             hvcc->numTemporalLayers);
     av_dlog(NULL,  "temporalIdNested:                    %"PRIu8"\n",
             hvcc->temporalIdNested);
     av_dlog(NULL,  "lengthSizeMinusOne:                  %"PRIu8"\n",
             hvcc->lengthSizeMinusOne);
     av_dlog(NULL,  "numOfArrays:                         %"PRIu8"\n",
             hvcc->numOfArrays);
     for (i = 0; i < hvcc->numOfArrays; i++) {
         av_dlog(NULL, "array_completeness[%"PRIu8"]:               %"PRIu8"\n",
                 i, hvcc->array[i].array_completeness);
         av_dlog(NULL, "NAL_unit_type[%"PRIu8"]:                    %"PRIu8"\n",
                 i, hvcc->array[i].NAL_unit_type);
         av_dlog(NULL, "numNalus[%"PRIu8"]:                         %"PRIu16"\n",
                 i, hvcc->array[i].numNalus);
         for (j = 0; j < hvcc->array[i].numNalus; j++)
             av_dlog(NULL,
                     "nalUnitLength[%"PRIu8"][%"PRIu16"]:                 %"PRIu16"\n",
                     i, j, hvcc->array[i].nalUnitLength[j]);
     }
 
     /*
      * We need at least one of each: VPS, SPS and PPS.
      */
     for (i = 0; i < hvcc->numOfArrays; i++)
         switch (hvcc->array[i].NAL_unit_type) {
         case NAL_VPS:
             vps_count += hvcc->array[i].numNalus;
             break;
         case NAL_SPS:
             sps_count += hvcc->array[i].numNalus;
             break;
         case NAL_PPS:
             pps_count += hvcc->array[i].numNalus;
             break;
         default:
             break;
         }
     if (!vps_count || vps_count > MAX_VPS_COUNT ||
         !sps_count || sps_count > MAX_SPS_COUNT ||
         !pps_count || pps_count > MAX_PPS_COUNT)
         return AVERROR_INVALIDDATA;
 
     /* unsigned int(8) configurationVersion = 1; */
     avio_w8(pb, hvcc->configurationVersion);
 
     /*
      * unsigned int(2) general_profile_space;
      * unsigned int(1) general_tier_flag;
      * unsigned int(5) general_profile_idc;
      */
     avio_w8(pb, hvcc->general_profile_space << 6 |
                 hvcc->general_tier_flag     << 5 |
                 hvcc->general_profile_idc);
 
     /* unsigned int(32) general_profile_compatibility_flags; */
     avio_wb32(pb, hvcc->general_profile_compatibility_flags);
 
     /* unsigned int(48) general_constraint_indicator_flags; */
     avio_wb32(pb, hvcc->general_constraint_indicator_flags >> 16);
     avio_wb16(pb, hvcc->general_constraint_indicator_flags);
 
     /* unsigned int(8) general_level_idc; */
     avio_w8(pb, hvcc->general_level_idc);
 
     /*
      * bit(4) reserved = ‘1111’b;
      * unsigned int(12) min_spatial_segmentation_idc;
      */
     avio_wb16(pb, hvcc->min_spatial_segmentation_idc | 0xf000);
 
     /*
      * bit(6) reserved = ‘111111’b;
      * unsigned int(2) parallelismType;
      */
     avio_w8(pb, hvcc->parallelismType | 0xfc);
 
     /*
      * bit(6) reserved = ‘111111’b;
      * unsigned int(2) chromaFormat;
      */
     avio_w8(pb, hvcc->chromaFormat | 0xfc);
 
     /*
      * bit(5) reserved = ‘11111’b;
      * unsigned int(3) bitDepthLumaMinus8;
      */
     avio_w8(pb, hvcc->bitDepthLumaMinus8 | 0xf8);
 
     /*
      * bit(5) reserved = ‘11111’b;
      * unsigned int(3) bitDepthChromaMinus8;
      */
     avio_w8(pb, hvcc->bitDepthChromaMinus8 | 0xf8);
 
     /* bit(16) avgFrameRate; */
     avio_wb16(pb, hvcc->avgFrameRate);
 
     /*
      * bit(2) constantFrameRate;
      * bit(3) numTemporalLayers;
      * bit(1) temporalIdNested;
      * unsigned int(2) lengthSizeMinusOne;
      */
     avio_w8(pb, hvcc->constantFrameRate << 6 |
                 hvcc->numTemporalLayers << 3 |
                 hvcc->temporalIdNested  << 2 |
                 hvcc->lengthSizeMinusOne);
 
     /* unsigned int(8) numOfArrays; */
     avio_w8(pb, hvcc->numOfArrays);
 
     for (i = 0; i < hvcc->numOfArrays; i++) {
         /*
          * bit(1) array_completeness;
          * unsigned int(1) reserved = 0;
          * unsigned int(6) NAL_unit_type;
          */
         avio_w8(pb, hvcc->array[i].array_completeness << 7 |
                     hvcc->array[i].NAL_unit_type & 0x3f);
 
         /* unsigned int(16) numNalus; */
         avio_wb16(pb, hvcc->array[i].numNalus);
 
         for (j = 0; j < hvcc->array[i].numNalus; j++) {
             /* unsigned int(16) nalUnitLength; */
             avio_wb16(pb, hvcc->array[i].nalUnitLength[j]);
 
             /* bit(8*nalUnitLength) nalUnit; */
             avio_write(pb, hvcc->array[i].nalUnit[j],
                        hvcc->array[i].nalUnitLength[j]);
         }
     }
 
     return 0;
 }
 
eaa79b79
 int ff_hevc_annexb2mp4(AVIOContext *pb, const uint8_t *buf_in,
                        int size, int filter_ps, int *ps_count)
 {
     int num_ps = 0, ret = 0;
     uint8_t *buf, *end, *start = NULL;
 
     if (!filter_ps) {
         ret = ff_avc_parse_nal_units(pb, buf_in, size);
         goto end;
     }
 
     ret = ff_avc_parse_nal_units_buf(buf_in, &start, &size);
     if (ret < 0)
         goto end;
 
     ret = 0;
     buf = start;
     end = start + size;
 
     while (end - buf > 4) {
         uint32_t len = FFMIN(AV_RB32(buf), end - buf - 4);
         uint8_t type = (buf[4] >> 1) & 0x3f;
 
         buf += 4;
 
         switch (type) {
         case NAL_VPS:
         case NAL_SPS:
         case NAL_PPS:
             num_ps++;
             break;
         default:
             ret += 4 + len;
             avio_wb32(pb, len);
             avio_write(pb, buf, len);
             break;
         }
 
         buf += len;
     }
 
 end:
ebe356bf
     av_free(start);
eaa79b79
     if (ps_count)
         *ps_count = num_ps;
     return ret;
 }
 
 int ff_hevc_annexb2mp4_buf(const uint8_t *buf_in, uint8_t **buf_out,
                            int *size, int filter_ps, int *ps_count)
 {
     AVIOContext *pb;
6d56bc9a
     int ret;
eaa79b79
 
     ret = avio_open_dyn_buf(&pb);
     if (ret < 0)
6d56bc9a
         return ret;
eaa79b79
 
6d56bc9a
     ret   = ff_hevc_annexb2mp4(pb, buf_in, *size, filter_ps, ps_count);
eaa79b79
     *size = avio_close_dyn_buf(pb, buf_out);
 
     return ret;
 }
 
c7613798
 int ff_isom_write_hvcc(AVIOContext *pb, const uint8_t *data,
                        int size, int ps_array_completeness)
 {
     int ret = 0;
     uint8_t *buf, *end, *start = NULL;
     HEVCDecoderConfigurationRecord hvcc;
 
     hvcc_init(&hvcc);
 
     if (size < 6) {
         /* We can't write a valid hvcC from the provided data */
         ret = AVERROR_INVALIDDATA;
         goto end;
     } else if (*data == 1) {
         /* Data is already hvcC-formatted */
         avio_write(pb, data, size);
         goto end;
     } else if (!(AV_RB24(data) == 1 || AV_RB32(data) == 1)) {
         /* Not a valid Annex B start code prefix */
         ret = AVERROR_INVALIDDATA;
         goto end;
     }
 
     ret = ff_avc_parse_nal_units_buf(data, &start, &size);
     if (ret < 0)
         goto end;
 
     buf = start;
     end = start + size;
 
     while (end - buf > 4) {
         uint32_t len = FFMIN(AV_RB32(buf), end - buf - 4);
         uint8_t type = (buf[4] >> 1) & 0x3f;
 
         buf += 4;
 
         switch (type) {
         case NAL_VPS:
         case NAL_SPS:
         case NAL_PPS:
         case NAL_SEI_PREFIX:
         case NAL_SEI_SUFFIX:
             ret = hvcc_add_nal_unit(buf, len, ps_array_completeness, &hvcc);
             if (ret < 0)
                 goto end;
             break;
         default:
             break;
         }
 
         buf += len;
     }
 
     ret = hvcc_write(pb, &hvcc);
 
 end:
     hvcc_close(&hvcc);
     av_free(start);
     return ret;
 }