libavcodec/jfdctint_template.c
0a72533e
 /*
  * This file is part of the Independent JPEG Group's software.
  *
  * The authors make NO WARRANTY or representation, either express or implied,
  * with respect to this software, its quality, accuracy, merchantability, or
  * fitness for a particular purpose.  This software is provided "AS IS", and
  * you, its user, assume the entire risk as to its quality and accuracy.
  *
  * This software is copyright (C) 1991-1996, Thomas G. Lane.
  * All Rights Reserved except as specified below.
  *
  * Permission is hereby granted to use, copy, modify, and distribute this
  * software (or portions thereof) for any purpose, without fee, subject to
  * these conditions:
  * (1) If any part of the source code for this software is distributed, then
  * this README file must be included, with this copyright and no-warranty
  * notice unaltered; and any additions, deletions, or changes to the original
  * files must be clearly indicated in accompanying documentation.
  * (2) If only executable code is distributed, then the accompanying
  * documentation must state that "this software is based in part on the work
  * of the Independent JPEG Group".
  * (3) Permission for use of this software is granted only if the user accepts
  * full responsibility for any undesirable consequences; the authors accept
  * NO LIABILITY for damages of any kind.
  *
  * These conditions apply to any software derived from or based on the IJG
  * code, not just to the unmodified library.  If you use our work, you ought
  * to acknowledge us.
  *
  * Permission is NOT granted for the use of any IJG author's name or company
  * name in advertising or publicity relating to this software or products
  * derived from it.  This software may be referred to only as "the Independent
  * JPEG Group's software".
  *
  * We specifically permit and encourage the use of this software as the basis
  * of commercial products, provided that all warranty or liability claims are
  * assumed by the product vendor.
  *
  * This file contains a slow-but-accurate integer implementation of the
  * forward DCT (Discrete Cosine Transform).
  *
  * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
  * on each column.  Direct algorithms are also available, but they are
  * much more complex and seem not to be any faster when reduced to code.
  *
  * This implementation is based on an algorithm described in
  *   C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
  *   Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
  *   Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
  * The primary algorithm described there uses 11 multiplies and 29 adds.
  * We use their alternate method with 12 multiplies and 32 adds.
  * The advantage of this method is that no data path contains more than one
  * multiplication; this allows a very simple and accurate implementation in
  * scaled fixed-point arithmetic, with a minimal number of shifts.
  */
 
 /**
  * @file
  * Independent JPEG Group's slow & accurate dct.
  */
 
 #include "libavutil/common.h"
5d3d39c7
 #include "dct.h"
0a72533e
 
 #include "bit_depth_template.c"
 
 #define DCTSIZE 8
 #define BITS_IN_JSAMPLE BIT_DEPTH
 #define GLOBAL(x) x
 #define RIGHT_SHIFT(x, n) ((x) >> (n))
 #define MULTIPLY16C16(var,const) ((var)*(const))
 
 #if 1 //def USE_ACCURATE_ROUNDING
 #define DESCALE(x,n)  RIGHT_SHIFT((x) + (1 << ((n) - 1)), n)
 #else
 #define DESCALE(x,n)  RIGHT_SHIFT(x, n)
 #endif
 
 
 /*
  * This module is specialized to the case DCTSIZE = 8.
  */
 
 #if DCTSIZE != 8
 #error  "Sorry, this code only copes with 8x8 DCTs."
 #endif
 
 
 /*
  * The poop on this scaling stuff is as follows:
  *
  * Each 1-D DCT step produces outputs which are a factor of sqrt(N)
  * larger than the true DCT outputs.  The final outputs are therefore
  * a factor of N larger than desired; since N=8 this can be cured by
  * a simple right shift at the end of the algorithm.  The advantage of
  * this arrangement is that we save two multiplications per 1-D DCT,
  * because the y0 and y4 outputs need not be divided by sqrt(N).
  * In the IJG code, this factor of 8 is removed by the quantization step
  * (in jcdctmgr.c), NOT in this module.
  *
  * We have to do addition and subtraction of the integer inputs, which
  * is no problem, and multiplication by fractional constants, which is
  * a problem to do in integer arithmetic.  We multiply all the constants
  * by CONST_SCALE and convert them to integer constants (thus retaining
  * CONST_BITS bits of precision in the constants).  After doing a
  * multiplication we have to divide the product by CONST_SCALE, with proper
  * rounding, to produce the correct output.  This division can be done
  * cheaply as a right shift of CONST_BITS bits.  We postpone shifting
  * as long as possible so that partial sums can be added together with
  * full fractional precision.
  *
  * The outputs of the first pass are scaled up by PASS1_BITS bits so that
  * they are represented to better-than-integral precision.  These outputs
  * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
  * with the recommended scaling.  (For 12-bit sample data, the intermediate
  * array is int32_t anyway.)
  *
  * To avoid overflow of the 32-bit intermediate results in pass 2, we must
  * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26.  Error analysis
  * shows that the values given below are the most effective.
  */
 
 #undef CONST_BITS
 #undef PASS1_BITS
 #undef OUT_SHIFT
 
 #if BITS_IN_JSAMPLE == 8
 #define CONST_BITS  13
 #define PASS1_BITS  4   /* set this to 2 if 16x16 multiplies are faster */
 #define OUT_SHIFT   PASS1_BITS
 #else
 #define CONST_BITS  13
 #define PASS1_BITS  1   /* lose a little precision to avoid overflow */
 #define OUT_SHIFT   (PASS1_BITS + 1)
 #endif
 
 /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
  * causing a lot of useless floating-point operations at run time.
  * To get around this we use the following pre-calculated constants.
  * If you change CONST_BITS you may want to add appropriate values.
  * (With a reasonable C compiler, you can just rely on the FIX() macro...)
  */
 
 #if CONST_BITS == 13
 #define FIX_0_298631336  ((int32_t)  2446)      /* FIX(0.298631336) */
 #define FIX_0_390180644  ((int32_t)  3196)      /* FIX(0.390180644) */
 #define FIX_0_541196100  ((int32_t)  4433)      /* FIX(0.541196100) */
 #define FIX_0_765366865  ((int32_t)  6270)      /* FIX(0.765366865) */
 #define FIX_0_899976223  ((int32_t)  7373)      /* FIX(0.899976223) */
 #define FIX_1_175875602  ((int32_t)  9633)      /* FIX(1.175875602) */
 #define FIX_1_501321110  ((int32_t)  12299)     /* FIX(1.501321110) */
 #define FIX_1_847759065  ((int32_t)  15137)     /* FIX(1.847759065) */
 #define FIX_1_961570560  ((int32_t)  16069)     /* FIX(1.961570560) */
 #define FIX_2_053119869  ((int32_t)  16819)     /* FIX(2.053119869) */
 #define FIX_2_562915447  ((int32_t)  20995)     /* FIX(2.562915447) */
 #define FIX_3_072711026  ((int32_t)  25172)     /* FIX(3.072711026) */
 #else
 #define FIX_0_298631336  FIX(0.298631336)
 #define FIX_0_390180644  FIX(0.390180644)
 #define FIX_0_541196100  FIX(0.541196100)
 #define FIX_0_765366865  FIX(0.765366865)
 #define FIX_0_899976223  FIX(0.899976223)
 #define FIX_1_175875602  FIX(1.175875602)
 #define FIX_1_501321110  FIX(1.501321110)
 #define FIX_1_847759065  FIX(1.847759065)
 #define FIX_1_961570560  FIX(1.961570560)
 #define FIX_2_053119869  FIX(2.053119869)
 #define FIX_2_562915447  FIX(2.562915447)
 #define FIX_3_072711026  FIX(3.072711026)
 #endif
 
 
 /* Multiply an int32_t variable by an int32_t constant to yield an int32_t result.
  * For 8-bit samples with the recommended scaling, all the variable
  * and constant values involved are no more than 16 bits wide, so a
  * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
  * For 12-bit samples, a full 32-bit multiplication will be needed.
  */
 
 #if BITS_IN_JSAMPLE == 8 && CONST_BITS<=13 && PASS1_BITS<=2
 #define MULTIPLY(var,const)  MULTIPLY16C16(var,const)
 #else
 #define MULTIPLY(var,const)  ((var) * (const))
 #endif
 
 
88bd7fdc
 static av_always_inline void FUNC(row_fdct)(int16_t *data)
0a72533e
 {
   int tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
   int tmp10, tmp11, tmp12, tmp13;
   int z1, z2, z3, z4, z5;
88bd7fdc
   int16_t *dataptr;
0a72533e
   int ctr;
 
   /* Pass 1: process rows. */
   /* Note results are scaled up by sqrt(8) compared to a true DCT; */
   /* furthermore, we scale the results by 2**PASS1_BITS. */
 
   dataptr = data;
   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
     tmp0 = dataptr[0] + dataptr[7];
     tmp7 = dataptr[0] - dataptr[7];
     tmp1 = dataptr[1] + dataptr[6];
     tmp6 = dataptr[1] - dataptr[6];
     tmp2 = dataptr[2] + dataptr[5];
     tmp5 = dataptr[2] - dataptr[5];
     tmp3 = dataptr[3] + dataptr[4];
     tmp4 = dataptr[3] - dataptr[4];
 
     /* Even part per LL&M figure 1 --- note that published figure is faulty;
      * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
      */
 
     tmp10 = tmp0 + tmp3;
     tmp13 = tmp0 - tmp3;
     tmp11 = tmp1 + tmp2;
     tmp12 = tmp1 - tmp2;
 
e50ae60d
     dataptr[0] = (int16_t) ((tmp10 + tmp11) * (1 << PASS1_BITS));
     dataptr[4] = (int16_t) ((tmp10 - tmp11) * (1 << PASS1_BITS));
0a72533e
 
     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
88bd7fdc
     dataptr[2] = (int16_t) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
0a72533e
                                    CONST_BITS-PASS1_BITS);
88bd7fdc
     dataptr[6] = (int16_t) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
0a72533e
                                    CONST_BITS-PASS1_BITS);
 
     /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
      * cK represents cos(K*pi/16).
      * i0..i3 in the paper are tmp4..tmp7 here.
      */
 
     z1 = tmp4 + tmp7;
     z2 = tmp5 + tmp6;
     z3 = tmp4 + tmp6;
     z4 = tmp5 + tmp7;
     z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
 
     tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
     tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
     tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
     tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
     z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
     z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
     z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
     z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
 
     z3 += z5;
     z4 += z5;
 
88bd7fdc
     dataptr[7] = (int16_t) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
     dataptr[5] = (int16_t) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
     dataptr[3] = (int16_t) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
     dataptr[1] = (int16_t) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
0a72533e
 
     dataptr += DCTSIZE;         /* advance pointer to next row */
   }
 }
 
 /*
  * Perform the forward DCT on one block of samples.
  */
 
 GLOBAL(void)
88bd7fdc
 FUNC(ff_jpeg_fdct_islow)(int16_t *data)
0a72533e
 {
   int tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
   int tmp10, tmp11, tmp12, tmp13;
   int z1, z2, z3, z4, z5;
88bd7fdc
   int16_t *dataptr;
0a72533e
   int ctr;
 
   FUNC(row_fdct)(data);
 
   /* Pass 2: process columns.
    * We remove the PASS1_BITS scaling, but leave the results scaled up
    * by an overall factor of 8.
    */
 
   dataptr = data;
   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
     tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
     tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
     tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
     tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
     tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
     tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
     tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
 
     /* Even part per LL&M figure 1 --- note that published figure is faulty;
      * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
      */
 
     tmp10 = tmp0 + tmp3;
     tmp13 = tmp0 - tmp3;
     tmp11 = tmp1 + tmp2;
     tmp12 = tmp1 - tmp2;
 
     dataptr[DCTSIZE*0] = DESCALE(tmp10 + tmp11, OUT_SHIFT);
     dataptr[DCTSIZE*4] = DESCALE(tmp10 - tmp11, OUT_SHIFT);
 
     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
     dataptr[DCTSIZE*2] = DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
                                  CONST_BITS + OUT_SHIFT);
     dataptr[DCTSIZE*6] = DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
                                  CONST_BITS + OUT_SHIFT);
 
     /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
      * cK represents cos(K*pi/16).
      * i0..i3 in the paper are tmp4..tmp7 here.
      */
 
     z1 = tmp4 + tmp7;
     z2 = tmp5 + tmp6;
     z3 = tmp4 + tmp6;
     z4 = tmp5 + tmp7;
     z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
 
     tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
     tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
     tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
     tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
     z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
     z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
     z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
     z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
 
     z3 += z5;
     z4 += z5;
 
     dataptr[DCTSIZE*7] = DESCALE(tmp4 + z1 + z3, CONST_BITS + OUT_SHIFT);
     dataptr[DCTSIZE*5] = DESCALE(tmp5 + z2 + z4, CONST_BITS + OUT_SHIFT);
     dataptr[DCTSIZE*3] = DESCALE(tmp6 + z2 + z3, CONST_BITS + OUT_SHIFT);
     dataptr[DCTSIZE*1] = DESCALE(tmp7 + z1 + z4, CONST_BITS + OUT_SHIFT);
 
     dataptr++;                  /* advance pointer to next column */
   }
 }
 
 /*
  * The secret of DCT2-4-8 is really simple -- you do the usual 1-DCT
da9cea77
  * on the rows and then, instead of doing even and odd, part on the columns
0a72533e
  * you do even part two times.
  */
 GLOBAL(void)
88bd7fdc
 FUNC(ff_fdct248_islow)(int16_t *data)
0a72533e
 {
   int tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
   int tmp10, tmp11, tmp12, tmp13;
   int z1;
88bd7fdc
   int16_t *dataptr;
0a72533e
   int ctr;
 
   FUNC(row_fdct)(data);
 
   /* Pass 2: process columns.
    * We remove the PASS1_BITS scaling, but leave the results scaled up
    * by an overall factor of 8.
    */
 
   dataptr = data;
   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
      tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*1];
      tmp1 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*3];
      tmp2 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*5];
      tmp3 = dataptr[DCTSIZE*6] + dataptr[DCTSIZE*7];
      tmp4 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*1];
      tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*3];
      tmp6 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*5];
      tmp7 = dataptr[DCTSIZE*6] - dataptr[DCTSIZE*7];
 
      tmp10 = tmp0 + tmp3;
      tmp11 = tmp1 + tmp2;
      tmp12 = tmp1 - tmp2;
      tmp13 = tmp0 - tmp3;
 
      dataptr[DCTSIZE*0] = DESCALE(tmp10 + tmp11, OUT_SHIFT);
      dataptr[DCTSIZE*4] = DESCALE(tmp10 - tmp11, OUT_SHIFT);
 
      z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
      dataptr[DCTSIZE*2] = DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
                                   CONST_BITS+OUT_SHIFT);
      dataptr[DCTSIZE*6] = DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
                                   CONST_BITS+OUT_SHIFT);
 
      tmp10 = tmp4 + tmp7;
      tmp11 = tmp5 + tmp6;
      tmp12 = tmp5 - tmp6;
      tmp13 = tmp4 - tmp7;
 
      dataptr[DCTSIZE*1] = DESCALE(tmp10 + tmp11, OUT_SHIFT);
      dataptr[DCTSIZE*5] = DESCALE(tmp10 - tmp11, OUT_SHIFT);
 
      z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
      dataptr[DCTSIZE*3] = DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
                                   CONST_BITS + OUT_SHIFT);
      dataptr[DCTSIZE*7] = DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
                                   CONST_BITS + OUT_SHIFT);
 
      dataptr++;                 /* advance pointer to next column */
   }
 }