libswscale/swscale_internal.h
5427e242
 /*
0a3a125f
  * Copyright (C) 2001-2011 Michael Niedermayer <michaelni@gmx.at>
d026b45e
  *
  * This file is part of FFmpeg.
  *
807e0c66
  * FFmpeg is free software; you can redistribute it and/or
  * modify it under the terms of the GNU Lesser General Public
  * License as published by the Free Software Foundation; either
  * version 2.1 of the License, or (at your option) any later version.
d026b45e
  *
  * FFmpeg is distributed in the hope that it will be useful,
  * but WITHOUT ANY WARRANTY; without even the implied warranty of
807e0c66
  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  * Lesser General Public License for more details.
d026b45e
  *
807e0c66
  * You should have received a copy of the GNU Lesser General Public
  * License along with FFmpeg; if not, write to the Free Software
b19bcbaa
  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
d026b45e
  */
5427e242
 
0eaf5235
 #ifndef SWSCALE_SWSCALE_INTERNAL_H
 #define SWSCALE_SWSCALE_INTERNAL_H
5427e242
 
4706949c
 #include "config.h"
 
b63f641e
 #if HAVE_ALTIVEC_H
f2015f0c
 #include <altivec.h>
 #endif
 
76899be1
 #include "version.h"
 
0a7068fa
 #include "libavutil/avassert.h"
83da2c6f
 #include "libavutil/avutil.h"
1d9c2dc8
 #include "libavutil/common.h"
70c25c62
 #include "libavutil/intreadwrite.h"
abc78a5a
 #include "libavutil/log.h"
d49ea4af
 #include "libavutil/pixfmt.h"
6b0768e2
 #include "libavutil/pixdesc.h"
94c4def2
 
83890c66
 #define STR(s) AV_TOSTRING(s) // AV_STRINGIFY is too long
1625216e
 
0644cabd
 #define YUVRGB_TABLE_HEADROOM 128
 
a4bd4733
 #define MAX_FILTER_SIZE SWS_MAX_FILTER_SIZE
5427e242
 
87f40364
 #define DITHER1XBPP
 
a898cdc9
 #if HAVE_BIGENDIAN
9990e426
 #define ALT32_CORR (-1)
 #else
 #define ALT32_CORR   1
1625216e
 #endif
 
b63f641e
 #if ARCH_X86_64
83890c66
 #   define APCK_PTR2  8
1625216e
 #   define APCK_COEF 16
 #   define APCK_SIZE 24
 #else
83890c66
 #   define APCK_PTR2  4
 #   define APCK_COEF  8
1625216e
 #   define APCK_SIZE 16
9990e426
 #endif
 
1615fb91
 struct SwsContext;
 
1e0e1932
 typedef enum SwsDither {
     SWS_DITHER_NONE = 0,
     SWS_DITHER_AUTO,
     SWS_DITHER_BAYER,
     SWS_DITHER_ED,
3e601662
     SWS_DITHER_A_DITHER,
     SWS_DITHER_X_DITHER,
1e0e1932
     NB_SWS_DITHER,
 } SwsDither;
 
83890c66
 typedef int (*SwsFunc)(struct SwsContext *context, const uint8_t *src[],
457eed72
                        int srcStride[], int srcSliceY, int srcSliceH,
83890c66
                        uint8_t *dst[], int dstStride[]);
34e8d147
 
d6cc6ac6
 /**
34e8d147
  * Write one line of horizontally scaled data to planar output
d6cc6ac6
  * without any additional vertical scaling (or point-scaling).
  *
34e8d147
  * @param src     scaled source data, 15bit for 8-10bit output,
28c1115a
  *                19-bit for 16bit output (in int32_t)
34e8d147
  * @param dest    pointer to the output plane. For >8bit
28c1115a
  *                output, this is in uint16_t
34e8d147
  * @param dstW    width of destination in pixels
  * @param dither  ordered dither array of type int16_t and size 8
  * @param offset  Dither offset
d6cc6ac6
  */
83890c66
 typedef void (*yuv2planar1_fn)(const int16_t *src, uint8_t *dest, int dstW,
                                const uint8_t *dither, int offset);
34e8d147
 
d6cc6ac6
 /**
ff7913ae
  * Write one line of horizontally scaled data to planar output
d6cc6ac6
  * with multi-point vertical scaling between input pixels.
  *
ff7913ae
  * @param filter        vertical luma/alpha scaling coefficients, 12bit [0,4096]
  * @param src           scaled luma (Y) or alpha (A) source data, 15bit for 8-10bit output,
28c1115a
  *                      19-bit for 16bit output (in int32_t)
ff7913ae
  * @param filterSize    number of vertical input lines to scale
  * @param dest          pointer to output plane. For >8bit
  *                      output, this is in uint16_t
  * @param dstW          width of destination pixels
  * @param offset        Dither offset
  */
83890c66
 typedef void (*yuv2planarX_fn)(const int16_t *filter, int filterSize,
                                const int16_t **src, uint8_t *dest, int dstW,
                                const uint8_t *dither, int offset);
ff7913ae
 
 /**
  * Write one line of horizontally scaled chroma to interleaved output
  * with multi-point vertical scaling between input pixels.
  *
  * @param c             SWS scaling context
d6cc6ac6
  * @param chrFilter     vertical chroma scaling coefficients, 12bit [0,4096]
28c1115a
  * @param chrUSrc       scaled chroma (U) source data, 15bit for 8-10bit output,
  *                      19-bit for 16bit output (in int32_t)
  * @param chrVSrc       scaled chroma (V) source data, 15bit for 8-10bit output,
  *                      19-bit for 16bit output (in int32_t)
d6cc6ac6
  * @param chrFilterSize number of vertical chroma input lines to scale
ff7913ae
  * @param dest          pointer to the output plane. For >8bit
28c1115a
  *                      output, this is in uint16_t
ff7913ae
  * @param dstW          width of chroma planes
d6cc6ac6
  */
83890c66
 typedef void (*yuv2interleavedX_fn)(struct SwsContext *c,
                                     const int16_t *chrFilter,
                                     int chrFilterSize,
                                     const int16_t **chrUSrc,
                                     const int16_t **chrVSrc,
                                     uint8_t *dest, int dstW);
ff7913ae
 
d6cc6ac6
 /**
  * Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB
  * output without any additional vertical scaling (or point-scaling). Note
  * that this function may do chroma scaling, see the "uvalpha" argument.
  *
  * @param c       SWS scaling context
28c1115a
  * @param lumSrc  scaled luma (Y) source data, 15bit for 8-10bit output,
  *                19-bit for 16bit output (in int32_t)
  * @param chrUSrc scaled chroma (U) source data, 15bit for 8-10bit output,
  *                19-bit for 16bit output (in int32_t)
  * @param chrVSrc scaled chroma (V) source data, 15bit for 8-10bit output,
  *                19-bit for 16bit output (in int32_t)
  * @param alpSrc  scaled alpha (A) source data, 15bit for 8-10bit output,
  *                19-bit for 16bit output (in int32_t)
  * @param dest    pointer to the output plane. For 16bit output, this is
  *                uint16_t
d6cc6ac6
  * @param dstW    width of lumSrc and alpSrc in pixels, number of pixels
  *                to write into dest[]
  * @param uvalpha chroma scaling coefficient for the second line of chroma
  *                pixels, either 2048 or 0. If 0, one chroma input is used
  *                for 2 output pixels (or if the SWS_FLAG_FULL_CHR_INT flag
  *                is set, it generates 1 output pixel). If 2048, two chroma
  *                input pixels should be averaged for 2 output pixels (this
  *                only happens if SWS_FLAG_FULL_CHR_INT is not set)
  * @param y       vertical line number for this output. This does not need
  *                to be used to calculate the offset in the destination,
  *                but can be used to generate comfort noise using dithering
  *                for some output formats.
  */
83890c66
 typedef void (*yuv2packed1_fn)(struct SwsContext *c, const int16_t *lumSrc,
                                const int16_t *chrUSrc[2],
                                const int16_t *chrVSrc[2],
                                const int16_t *alpSrc, uint8_t *dest,
                                int dstW, int uvalpha, int y);
d6cc6ac6
 /**
  * Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB
  * output by doing bilinear scaling between two input lines.
  *
  * @param c       SWS scaling context
28c1115a
  * @param lumSrc  scaled luma (Y) source data, 15bit for 8-10bit output,
  *                19-bit for 16bit output (in int32_t)
  * @param chrUSrc scaled chroma (U) source data, 15bit for 8-10bit output,
  *                19-bit for 16bit output (in int32_t)
  * @param chrVSrc scaled chroma (V) source data, 15bit for 8-10bit output,
  *                19-bit for 16bit output (in int32_t)
  * @param alpSrc  scaled alpha (A) source data, 15bit for 8-10bit output,
  *                19-bit for 16bit output (in int32_t)
  * @param dest    pointer to the output plane. For 16bit output, this is
  *                uint16_t
d6cc6ac6
  * @param dstW    width of lumSrc and alpSrc in pixels, number of pixels
  *                to write into dest[]
  * @param yalpha  luma/alpha scaling coefficients for the second input line.
  *                The first line's coefficients can be calculated by using
  *                4096 - yalpha
  * @param uvalpha chroma scaling coefficient for the second input line. The
  *                first line's coefficients can be calculated by using
  *                4096 - uvalpha
  * @param y       vertical line number for this output. This does not need
  *                to be used to calculate the offset in the destination,
  *                but can be used to generate comfort noise using dithering
  *                for some output formats.
  */
83890c66
 typedef void (*yuv2packed2_fn)(struct SwsContext *c, const int16_t *lumSrc[2],
                                const int16_t *chrUSrc[2],
                                const int16_t *chrVSrc[2],
                                const int16_t *alpSrc[2],
                                uint8_t *dest,
                                int dstW, int yalpha, int uvalpha, int y);
d6cc6ac6
 /**
  * Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB
  * output by doing multi-point vertical scaling between input pixels.
  *
  * @param c             SWS scaling context
  * @param lumFilter     vertical luma/alpha scaling coefficients, 12bit [0,4096]
28c1115a
  * @param lumSrc        scaled luma (Y) source data, 15bit for 8-10bit output,
  *                      19-bit for 16bit output (in int32_t)
d6cc6ac6
  * @param lumFilterSize number of vertical luma/alpha input lines to scale
  * @param chrFilter     vertical chroma scaling coefficients, 12bit [0,4096]
28c1115a
  * @param chrUSrc       scaled chroma (U) source data, 15bit for 8-10bit output,
  *                      19-bit for 16bit output (in int32_t)
  * @param chrVSrc       scaled chroma (V) source data, 15bit for 8-10bit output,
  *                      19-bit for 16bit output (in int32_t)
d6cc6ac6
  * @param chrFilterSize number of vertical chroma input lines to scale
28c1115a
  * @param alpSrc        scaled alpha (A) source data, 15bit for 8-10bit output,
  *                      19-bit for 16bit output (in int32_t)
  * @param dest          pointer to the output plane. For 16bit output, this is
  *                      uint16_t
d6cc6ac6
  * @param dstW          width of lumSrc and alpSrc in pixels, number of pixels
  *                      to write into dest[]
  * @param y             vertical line number for this output. This does not need
  *                      to be used to calculate the offset in the destination,
  *                      but can be used to generate comfort noise using dithering
  *                      or some output formats.
  */
83890c66
 typedef void (*yuv2packedX_fn)(struct SwsContext *c, const int16_t *lumFilter,
                                const int16_t **lumSrc, int lumFilterSize,
                                const int16_t *chrFilter,
                                const int16_t **chrUSrc,
                                const int16_t **chrVSrc, int chrFilterSize,
                                const int16_t **alpSrc, uint8_t *dest,
                                int dstW, int y);
b73fe700
 
61884d19
 /**
  * Write one line of horizontally scaled Y/U/V/A to YUV/RGB
  * output by doing multi-point vertical scaling between input pixels.
  *
  * @param c             SWS scaling context
  * @param lumFilter     vertical luma/alpha scaling coefficients, 12bit [0,4096]
  * @param lumSrc        scaled luma (Y) source data, 15bit for 8-10bit output,
  *                      19-bit for 16bit output (in int32_t)
  * @param lumFilterSize number of vertical luma/alpha input lines to scale
  * @param chrFilter     vertical chroma scaling coefficients, 12bit [0,4096]
  * @param chrUSrc       scaled chroma (U) source data, 15bit for 8-10bit output,
  *                      19-bit for 16bit output (in int32_t)
  * @param chrVSrc       scaled chroma (V) source data, 15bit for 8-10bit output,
  *                      19-bit for 16bit output (in int32_t)
  * @param chrFilterSize number of vertical chroma input lines to scale
  * @param alpSrc        scaled alpha (A) source data, 15bit for 8-10bit output,
  *                      19-bit for 16bit output (in int32_t)
  * @param dest          pointer to the output planes. For 16bit output, this is
  *                      uint16_t
  * @param dstW          width of lumSrc and alpSrc in pixels, number of pixels
  *                      to write into dest[]
  * @param y             vertical line number for this output. This does not need
  *                      to be used to calculate the offset in the destination,
  *                      but can be used to generate comfort noise using dithering
  *                      or some output formats.
  */
 typedef void (*yuv2anyX_fn)(struct SwsContext *c, const int16_t *lumFilter,
4eb93bed
                             const int16_t **lumSrc, int lumFilterSize,
                             const int16_t *chrFilter,
                             const int16_t **chrUSrc,
                             const int16_t **chrVSrc, int chrFilterSize,
                             const int16_t **alpSrc, uint8_t **dest,
                             int dstW, int y);
61884d19
 
8a322796
 /* This struct should be aligned on at least a 32-byte boundary. */
dd68318c
 typedef struct SwsContext {
221b804f
     /**
      * info on struct for av_log
      */
635a8cd2
     const AVClass *av_class;
221b804f
 
     /**
56b69633
      * Note that src, dst, srcStride, dstStride will be copied in the
      * sws_scale() wrapper so they can be freely modified here.
221b804f
      */
1909f6b1
     SwsFunc swscale;
9556124c
     int srcW;                     ///< Width  of source      luma/alpha planes.
     int srcH;                     ///< Height of source      luma/alpha planes.
     int dstH;                     ///< Height of destination luma/alpha planes.
     int chrSrcW;                  ///< Width  of source      chroma     planes.
     int chrSrcH;                  ///< Height of source      chroma     planes.
     int chrDstW;                  ///< Width  of destination chroma     planes.
     int chrDstH;                  ///< Height of destination chroma     planes.
221b804f
     int lumXInc, chrXInc;
     int lumYInc, chrYInc;
716d413c
     enum AVPixelFormat dstFormat; ///< Destination pixel format.
     enum AVPixelFormat srcFormat; ///< Source      pixel format.
30b61475
     int dstFormatBpp;             ///< Number of bits per pixel of the destination pixel format.
     int srcFormatBpp;             ///< Number of bits per pixel of the source      pixel format.
28c1115a
     int dstBpc, srcBpc;
5d4d503f
     int chrSrcHSubSample;         ///< Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in source      image.
     int chrSrcVSubSample;         ///< Binary logarithm of vertical   subsampling factor between luma/alpha and chroma planes in source      image.
     int chrDstHSubSample;         ///< Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in destination image.
     int chrDstVSubSample;         ///< Binary logarithm of vertical   subsampling factor between luma/alpha and chroma planes in destination image.
     int vChrDrop;                 ///< Binary logarithm of extra vertical subsampling factor in source image chroma planes specified by user.
     int sliceDir;                 ///< Direction that slices are fed to the scaler (1 = top-to-bottom, -1 = bottom-to-top).
9556124c
     double param[2];              ///< Input parameters for scaling algorithms that need them.
221b804f
 
49004617
     uint32_t pal_yuv[256];
     uint32_t pal_rgb[256];
 
5d4d503f
     /**
      * @name Scaled horizontal lines ring buffer.
      * The horizontal scaler keeps just enough scaled lines in a ring buffer
      * so they may be passed to the vertical scaler. The pointers to the
      * allocated buffers for each line are duplicated in sequence in the ring
      * buffer to simplify indexing and avoid wrapping around between lines
      * inside the vertical scaler code. The wrapping is done before the
      * vertical scaler is called.
      */
     //@{
     int16_t **lumPixBuf;          ///< Ring buffer for scaled horizontal luma   plane lines to be fed to the vertical scaler.
986f0d86
     int16_t **chrUPixBuf;         ///< Ring buffer for scaled horizontal chroma plane lines to be fed to the vertical scaler.
     int16_t **chrVPixBuf;         ///< Ring buffer for scaled horizontal chroma plane lines to be fed to the vertical scaler.
5d4d503f
     int16_t **alpPixBuf;          ///< Ring buffer for scaled horizontal alpha  plane lines to be fed to the vertical scaler.
83890c66
     int vLumBufSize;              ///< Number of vertical luma/alpha lines allocated in the ring buffer.
     int vChrBufSize;              ///< Number of vertical chroma     lines allocated in the ring buffer.
     int lastInLumBuf;             ///< Last scaled horizontal luma/alpha line from source in the ring buffer.
     int lastInChrBuf;             ///< Last scaled horizontal chroma     line from source in the ring buffer.
     int lumBufIndex;              ///< Index in ring buffer of the last scaled horizontal luma/alpha line from source.
     int chrBufIndex;              ///< Index in ring buffer of the last scaled horizontal chroma     line from source.
5d4d503f
     //@}
221b804f
 
485d73ef
     uint8_t *formatConvBuffer;
221b804f
 
5d4d503f
     /**
      * @name Horizontal and vertical filters.
      * To better understand the following fields, here is a pseudo-code of
      * their usage in filtering a horizontal line:
      * @code
      * for (i = 0; i < width; i++) {
      *     dst[i] = 0;
      *     for (j = 0; j < filterSize; j++)
      *         dst[i] += src[ filterPos[i] + j ] * filter[ filterSize * i + j ];
      *     dst[i] >>= FRAC_BITS; // The actual implementation is fixed-point.
      * }
      * @endcode
      */
     //@{
     int16_t *hLumFilter;          ///< Array of horizontal filter coefficients for luma/alpha planes.
     int16_t *hChrFilter;          ///< Array of horizontal filter coefficients for chroma     planes.
     int16_t *vLumFilter;          ///< Array of vertical   filter coefficients for luma/alpha planes.
     int16_t *vChrFilter;          ///< Array of vertical   filter coefficients for chroma     planes.
2254b559
     int32_t *hLumFilterPos;       ///< Array of horizontal filter starting positions for each dst[i] for luma/alpha planes.
     int32_t *hChrFilterPos;       ///< Array of horizontal filter starting positions for each dst[i] for chroma     planes.
     int32_t *vLumFilterPos;       ///< Array of vertical   filter starting positions for each dst[i] for luma/alpha planes.
     int32_t *vChrFilterPos;       ///< Array of vertical   filter starting positions for each dst[i] for chroma     planes.
83890c66
     int hLumFilterSize;           ///< Horizontal filter size for luma/alpha pixels.
     int hChrFilterSize;           ///< Horizontal filter size for chroma     pixels.
     int vLumFilterSize;           ///< Vertical   filter size for luma/alpha pixels.
     int vChrFilterSize;           ///< Vertical   filter size for chroma     pixels.
5d4d503f
     //@}
221b804f
 
a65bdceb
     int lumMmxextFilterCodeSize;  ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code size for luma/alpha planes.
     int chrMmxextFilterCodeSize;  ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code size for chroma planes.
     uint8_t *lumMmxextFilterCode; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code for luma/alpha planes.
     uint8_t *chrMmxextFilterCode; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code for chroma planes.
221b804f
 
a65bdceb
     int canMMXEXTBeUsed;
221b804f
 
9556124c
     int dstY;                     ///< Last destination vertical line output from last slice.
     int flags;                    ///< Flags passed by the user to select scaler algorithm, optimizations, subsampling, etc...
83890c66
     void *yuvTable;             // pointer to the yuv->rgb table start so it can be freed()
4fab08c9
     // alignment ensures the offset can be added in a single
     // instruction on e.g. ARM
     DECLARE_ALIGNED(16, int, table_gV)[256 + 2*YUVRGB_TABLE_HEADROOM];
0644cabd
     uint8_t *table_rV[256 + 2*YUVRGB_TABLE_HEADROOM];
     uint8_t *table_gU[256 + 2*YUVRGB_TABLE_HEADROOM];
     uint8_t *table_bU[256 + 2*YUVRGB_TABLE_HEADROOM];
a5e20d9f
     DECLARE_ALIGNED(16, int32_t, input_rgb2yuv_table)[16+40*4]; // This table can contain both C and SIMD formatted values, the C vales are always at the XY_IDX points
d4956b0b
 #define RY_IDX 0
 #define GY_IDX 1
 #define BY_IDX 2
 #define RU_IDX 3
 #define GU_IDX 4
 #define BU_IDX 5
 #define RV_IDX 6
 #define GV_IDX 7
 #define BV_IDX 8
3662e49d
 #define RGB2YUV_SHIFT 15
221b804f
 
646ade76
     int *dither_error[4];
 
221b804f
     //Colorspace stuff
     int contrast, brightness, saturation;    // for sws_getColorspaceDetails
     int srcColorspaceTable[4];
     int dstColorspaceTable[4];
9556124c
     int srcRange;                 ///< 0 = MPG YUV range, 1 = JPG YUV range (source      image).
     int dstRange;                 ///< 0 = MPG YUV range, 1 = JPG YUV range (destination image).
1c910d2f
     int src0Alpha;
     int dst0Alpha;
0c47c902
     int srcXYZ;
     int dstXYZ;
b405f4e9
     int src_h_chr_pos;
     int dst_h_chr_pos;
     int src_v_chr_pos;
     int dst_v_chr_pos;
43c16478
     int yuv2rgb_y_offset;
     int yuv2rgb_y_coeff;
     int yuv2rgb_v2r_coeff;
     int yuv2rgb_v2g_coeff;
     int yuv2rgb_u2g_coeff;
     int yuv2rgb_u2b_coeff;
221b804f
 
 #define RED_DITHER            "0*8"
 #define GREEN_DITHER          "1*8"
 #define BLUE_DITHER           "2*8"
 #define Y_COEFF               "3*8"
 #define VR_COEFF              "4*8"
 #define UB_COEFF              "5*8"
 #define VG_COEFF              "6*8"
 #define UG_COEFF              "7*8"
 #define Y_OFFSET              "8*8"
 #define U_OFFSET              "9*8"
 #define V_OFFSET              "10*8"
8bae9ddc
 #define LUM_MMX_FILTER_OFFSET "11*8"
955d7e26
 #define CHR_MMX_FILTER_OFFSET "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)
2fcef4a0
 #define DSTW_OFFSET           "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2"
955d7e26
 #define ESP_OFFSET            "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2+8"
 #define VROUNDER_OFFSET       "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2+16"
 #define U_TEMP                "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2+24"
 #define V_TEMP                "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2+32"
 #define Y_TEMP                "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2+40"
 #define ALP_MMX_FILTER_OFFSET "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2+48"
 #define UV_OFF_PX             "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*3+48"
 #define UV_OFF_BYTE           "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*3+56"
 #define DITHER16              "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*3+64"
 #define DITHER32              "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*3+80"
39a6e02f
 #define DITHER32_INT          (11*8+4*4*MAX_FILTER_SIZE*3+80) // value equal to above, used for checking that the struct hasn't been changed by mistake
221b804f
 
92db6235
     DECLARE_ALIGNED(8, uint64_t, redDither);
     DECLARE_ALIGNED(8, uint64_t, greenDither);
     DECLARE_ALIGNED(8, uint64_t, blueDither);
 
     DECLARE_ALIGNED(8, uint64_t, yCoeff);
     DECLARE_ALIGNED(8, uint64_t, vrCoeff);
     DECLARE_ALIGNED(8, uint64_t, ubCoeff);
     DECLARE_ALIGNED(8, uint64_t, vgCoeff);
     DECLARE_ALIGNED(8, uint64_t, ugCoeff);
     DECLARE_ALIGNED(8, uint64_t, yOffset);
     DECLARE_ALIGNED(8, uint64_t, uOffset);
     DECLARE_ALIGNED(8, uint64_t, vOffset);
83890c66
     int32_t lumMmxFilter[4 * MAX_FILTER_SIZE];
     int32_t chrMmxFilter[4 * MAX_FILTER_SIZE];
5d4d503f
     int dstW;                     ///< Width  of destination luma/alpha planes.
92db6235
     DECLARE_ALIGNED(8, uint64_t, esp);
     DECLARE_ALIGNED(8, uint64_t, vRounder);
     DECLARE_ALIGNED(8, uint64_t, u_temp);
     DECLARE_ALIGNED(8, uint64_t, v_temp);
     DECLARE_ALIGNED(8, uint64_t, y_temp);
b18f8cbf
     int32_t alpMmxFilter[4 * MAX_FILTER_SIZE];
142e76f1
     // alignment of these values is not necessary, but merely here
     // to maintain the same offset across x8632 and x86-64. Once we
     // use proper offset macros in the asm, they can be removed.
986f0d86
     DECLARE_ALIGNED(8, ptrdiff_t, uv_off); ///< offset (in pixels) between u and v planes
009f829d
     DECLARE_ALIGNED(8, ptrdiff_t, uv_offx2); ///< offset (in bytes) between u and v planes
142e76f1
     DECLARE_ALIGNED(8, uint16_t, dither16)[8];
     DECLARE_ALIGNED(8, uint32_t, dither32)[8];
a31de956
 
c59f9a68
     const uint8_t *chrDither8, *lumDither8;
 
b63f641e
 #if HAVE_ALTIVEC
d3243d14
     vector signed short   CY;
     vector signed short   CRV;
     vector signed short   CBU;
     vector signed short   CGU;
     vector signed short   CGV;
     vector signed short   OY;
     vector unsigned short CSHIFT;
83890c66
     vector signed short  *vYCoeffsBank, *vCCoeffsBank;
a31de956
 #endif
 
76a34906
     int use_mmx_vfilter;
d3f3eea9
 
0c47c902
 /* pre defined color-spaces gamma */
 #define XYZ_GAMMA (2.6f)
 #define RGB_GAMMA (2.2f)
2514b800
     int16_t *xyzgamma;
     int16_t *rgbgamma;
b9b1a2c3
     int16_t *xyzgammainv;
     int16_t *rgbgammainv;
0c47c902
     int16_t xyz2rgb_matrix[3][4];
b9b1a2c3
     int16_t rgb2xyz_matrix[3][4];
0c47c902
 
1909f6b1
     /* function pointers for swscale() */
109f62e8
     yuv2planar1_fn yuv2plane1;
     yuv2planarX_fn yuv2planeX;
     yuv2interleavedX_fn yuv2nv12cX;
b73fe700
     yuv2packed1_fn yuv2packed1;
     yuv2packed2_fn yuv2packed2;
     yuv2packedX_fn yuv2packedX;
61884d19
     yuv2anyX_fn yuv2anyX;
40fa5140
 
83890c66
     /// Unscaled conversion of luma plane to YV12 for horizontal scaler.
bd141af4
     void (*lumToYV12)(uint8_t *dst, const uint8_t *src, const uint8_t *src2, const uint8_t *src3,
83890c66
                       int width, uint32_t *pal);
     /// Unscaled conversion of alpha plane to YV12 for horizontal scaler.
bd141af4
     void (*alpToYV12)(uint8_t *dst, const uint8_t *src, const uint8_t *src2, const uint8_t *src3,
83890c66
                       int width, uint32_t *pal);
     /// Unscaled conversion of chroma planes to YV12 for horizontal scaler.
bb53e1d1
     void (*chrToYV12)(uint8_t *dstU, uint8_t *dstV,
bd141af4
                       const uint8_t *src1, const uint8_t *src2, const uint8_t *src3,
83890c66
                       int width, uint32_t *pal);
185655c6
 
     /**
83890c66
      * Functions to read planar input, such as planar RGB, and convert
5c057433
      * internally to Y/UV/A.
83890c66
      */
185655c6
     /** @{ */
d4956b0b
     void (*readLumPlanar)(uint8_t *dst, const uint8_t *src[4], int width, int32_t *rgb2yuv);
83890c66
     void (*readChrPlanar)(uint8_t *dstU, uint8_t *dstV, const uint8_t *src[4],
d4956b0b
                           int width, int32_t *rgb2yuv);
5c057433
     void (*readAlpPlanar)(uint8_t *dst, const uint8_t *src[4], int width, int32_t *rgb2yuv);
185655c6
     /** @} */
 
4578435f
     /**
      * Scale one horizontal line of input data using a bilinear filter
      * to produce one line of output data. Compared to SwsContext->hScale(),
      * please take note of the following caveats when using these:
      * - Scaling is done using only 7bit instead of 14bit coefficients.
      * - You can use no more than 5 input pixels to produce 4 output
      *   pixels. Therefore, this filter should not be used for downscaling
      *   by more than ~20% in width (because that equals more than 5/4th
      *   downscaling and thus more than 5 pixels input per 4 pixels output).
      * - In general, bilinear filters create artifacts during downscaling
      *   (even when <20%), because one output pixel will span more than one
      *   input pixel, and thus some pixels will need edges of both neighbor
      *   pixels to interpolate the output pixel. Since you can use at most
      *   two input pixels per output pixel in bilinear scaling, this is
      *   impossible and thus downscaling by any size will create artifacts.
      * To enable this type of scaling, set SWS_FLAG_FAST_BILINEAR
      * in SwsContext->flags.
      */
     /** @{ */
40fa5140
     void (*hyscale_fast)(struct SwsContext *c,
b8e89339
                          int16_t *dst, int dstWidth,
40fa5140
                          const uint8_t *src, int srcW, int xInc);
     void (*hcscale_fast)(struct SwsContext *c,
b8e89339
                          int16_t *dst1, int16_t *dst2, int dstWidth,
457eed72
                          const uint8_t *src1, const uint8_t *src2,
                          int srcW, int xInc);
4578435f
     /** @} */
40fa5140
 
4578435f
     /**
      * Scale one horizontal line of input data using a filter over the input
      * lines, to produce one (differently sized) line of output data.
      *
      * @param dst        pointer to destination buffer for horizontally scaled
28c1115a
      *                   data. If the number of bits per component of one
      *                   destination pixel (SwsContext->dstBpc) is <= 10, data
      *                   will be 15bpc in 16bits (int16_t) width. Else (i.e.
      *                   SwsContext->dstBpc == 16), data will be 19bpc in
      *                   32bits (int32_t) width.
4578435f
      * @param dstW       width of destination image
28c1115a
      * @param src        pointer to source data to be scaled. If the number of
      *                   bits per component of a source pixel (SwsContext->srcBpc)
      *                   is 8, this is 8bpc in 8bits (uint8_t) width. Else
      *                   (i.e. SwsContext->dstBpc > 8), this is native depth
      *                   in 16bits (uint16_t) width. In other words, for 9-bit
      *                   YUV input, this is 9bpc, for 10-bit YUV input, this is
      *                   10bpc, and for 16-bit RGB or YUV, this is 16bpc.
4578435f
      * @param filter     filter coefficients to be used per output pixel for
      *                   scaling. This contains 14bpp filtering coefficients.
      *                   Guaranteed to contain dstW * filterSize entries.
      * @param filterPos  position of the first input pixel to be used for
      *                   each output pixel during scaling. Guaranteed to
      *                   contain dstW entries.
      * @param filterSize the number of input coefficients to be used (and
      *                   thus the number of input pixels to be used) for
      *                   creating a single output pixel. Is aligned to 4
      *                   (and input coefficients thus padded with zeroes)
      *                   to simplify creating SIMD code.
      */
3f04ab4f
     /** @{ */
83890c66
     void (*hyScale)(struct SwsContext *c, int16_t *dst, int dstW,
                     const uint8_t *src, const int16_t *filter,
2254b559
                     const int32_t *filterPos, int filterSize);
83890c66
     void (*hcScale)(struct SwsContext *c, int16_t *dst, int dstW,
                     const uint8_t *src, const int16_t *filter,
2254b559
                     const int32_t *filterPos, int filterSize);
3f04ab4f
     /** @} */
40fa5140
 
83890c66
     /// Color range conversion function for luma plane if needed.
     void (*lumConvertRange)(int16_t *dst, int width);
     /// Color range conversion function for chroma planes if needed.
     void (*chrConvertRange)(int16_t *dst1, int16_t *dst2, int width);
bae76dc3
 
e7a47515
     int needs_hcscale; ///< Set if there are chroma planes to be converted.
1e0e1932
 
     SwsDither dither;
5427e242
 } SwsContext;
 //FIXME check init (where 0)
 
780daf2b
 SwsFunc ff_yuv2rgb_get_func_ptr(SwsContext *c);
457eed72
 int ff_yuv2rgb_c_init_tables(SwsContext *c, const int inv_table[4],
                              int fullRange, int brightness,
                              int contrast, int saturation);
c2503d9c
 void ff_yuv2rgb_init_tables_ppc(SwsContext *c, const int inv_table[4],
                                 int brightness, int contrast, int saturation);
5427e242
 
983260b0
 void updateMMXDitherTables(SwsContext *c, int dstY, int lumBufIndex, int chrBufIndex,
                            int lastInLumBuf, int lastInChrBuf);
 
a2f088c0
 av_cold void ff_sws_init_range_convert(SwsContext *c);
 
a5195839
 SwsFunc ff_yuv2rgb_init_x86(SwsContext *c);
c2503d9c
 SwsFunc ff_yuv2rgb_init_ppc(SwsContext *c);
c95a3a9f
 
b932eb1b
 #if FF_API_SWS_FORMAT_NAME
 /**
  * @deprecated Use av_get_pix_fmt_name() instead.
  */
 attribute_deprecated
716d413c
 const char *sws_format_name(enum AVPixelFormat format);
b932eb1b
 #endif
 
0a7068fa
 static av_always_inline int is16BPS(enum AVPixelFormat pix_fmt)
 {
     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
     av_assert0(desc);
     return desc->comp[0].depth_minus1 == 15;
 }
cca81e7e
 
0a7068fa
 static av_always_inline int is9_OR_10BPS(enum AVPixelFormat pix_fmt)
 {
     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
     av_assert0(desc);
a9bd51b1
     return desc->comp[0].depth_minus1 >= 8 && desc->comp[0].depth_minus1 <= 13;
0a7068fa
 }
cca81e7e
 
92afb431
 #define isNBPS(x) is9_OR_10BPS(x)
 
0a7068fa
 static av_always_inline int isBE(enum AVPixelFormat pix_fmt)
 {
     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
     av_assert0(desc);
e6c4ac7b
     return desc->flags & AV_PIX_FMT_FLAG_BE;
0a7068fa
 }
 
 static av_always_inline int isYUV(enum AVPixelFormat pix_fmt)
 {
     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
     av_assert0(desc);
e6c4ac7b
     return !(desc->flags & AV_PIX_FMT_FLAG_RGB) && desc->nb_components >= 2;
0a7068fa
 }
 
 static av_always_inline int isPlanarYUV(enum AVPixelFormat pix_fmt)
 {
     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
     av_assert0(desc);
e6c4ac7b
     return ((desc->flags & AV_PIX_FMT_FLAG_PLANAR) && isYUV(pix_fmt));
0a7068fa
 }
 
 static av_always_inline int isRGB(enum AVPixelFormat pix_fmt)
 {
     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
     av_assert0(desc);
e6c4ac7b
     return (desc->flags & AV_PIX_FMT_FLAG_RGB);
0a7068fa
 }
6b0768e2
 
f7f18352
 #if 0 // FIXME
6b0768e2
 #define isGray(x) \
ff468092
     (!(av_pix_fmt_desc_get(x)->flags & AV_PIX_FMT_FLAG_PAL) && \
79393a83
      av_pix_fmt_desc_get(x)->nb_components <= 2)
f7f18352
 #else
83890c66
 #define isGray(x)                      \
716d413c
     ((x) == AV_PIX_FMT_GRAY8       ||  \
e96c3b81
      (x) == AV_PIX_FMT_YA8         ||  \
716d413c
      (x) == AV_PIX_FMT_GRAY16BE    ||  \
f84a1b59
      (x) == AV_PIX_FMT_GRAY16LE    ||  \
      (x) == AV_PIX_FMT_YA16BE      ||  \
      (x) == AV_PIX_FMT_YA16LE)
f7f18352
 #endif
6b0768e2
 
dd3ca3ea
 #define isRGBinInt(x) \
     (           \
ac627b3d
      (x) == AV_PIX_FMT_RGB48BE     ||  \
716d413c
      (x) == AV_PIX_FMT_RGB48LE     ||  \
      (x) == AV_PIX_FMT_RGB32       ||  \
      (x) == AV_PIX_FMT_RGB32_1     ||  \
      (x) == AV_PIX_FMT_RGB24       ||  \
      (x) == AV_PIX_FMT_RGB565BE    ||  \
      (x) == AV_PIX_FMT_RGB565LE    ||  \
      (x) == AV_PIX_FMT_RGB555BE    ||  \
      (x) == AV_PIX_FMT_RGB555LE    ||  \
      (x) == AV_PIX_FMT_RGB444BE    ||  \
      (x) == AV_PIX_FMT_RGB444LE    ||  \
      (x) == AV_PIX_FMT_RGB8        ||  \
      (x) == AV_PIX_FMT_RGB4        ||  \
      (x) == AV_PIX_FMT_RGB4_BYTE   ||  \
1481d24c
      (x) == AV_PIX_FMT_RGBA64BE    ||  \
      (x) == AV_PIX_FMT_RGBA64LE    ||  \
716d413c
      (x) == AV_PIX_FMT_MONOBLACK   ||  \
ac627b3d
      (x) == AV_PIX_FMT_MONOWHITE   \
9d9de37d
     )
dd3ca3ea
 #define isBGRinInt(x) \
     (           \
ac627b3d
      (x) == AV_PIX_FMT_BGR48BE     ||  \
716d413c
      (x) == AV_PIX_FMT_BGR48LE     ||  \
      (x) == AV_PIX_FMT_BGR32       ||  \
      (x) == AV_PIX_FMT_BGR32_1     ||  \
      (x) == AV_PIX_FMT_BGR24       ||  \
      (x) == AV_PIX_FMT_BGR565BE    ||  \
      (x) == AV_PIX_FMT_BGR565LE    ||  \
      (x) == AV_PIX_FMT_BGR555BE    ||  \
      (x) == AV_PIX_FMT_BGR555LE    ||  \
      (x) == AV_PIX_FMT_BGR444BE    ||  \
      (x) == AV_PIX_FMT_BGR444LE    ||  \
      (x) == AV_PIX_FMT_BGR8        ||  \
      (x) == AV_PIX_FMT_BGR4        ||  \
      (x) == AV_PIX_FMT_BGR4_BYTE   ||  \
1481d24c
      (x) == AV_PIX_FMT_BGRA64BE    ||  \
      (x) == AV_PIX_FMT_BGRA64LE    ||  \
716d413c
      (x) == AV_PIX_FMT_MONOBLACK   ||  \
ac627b3d
      (x) == AV_PIX_FMT_MONOWHITE   \
9d9de37d
     )
92afb431
 
81858371
 #define isRGBinBytes(x) (           \
ac627b3d
            (x) == AV_PIX_FMT_RGB48BE     \
         || (x) == AV_PIX_FMT_RGB48LE     \
         || (x) == AV_PIX_FMT_RGBA64BE    \
         || (x) == AV_PIX_FMT_RGBA64LE    \
         || (x) == AV_PIX_FMT_RGBA        \
         || (x) == AV_PIX_FMT_ARGB        \
         || (x) == AV_PIX_FMT_RGB24       \
81858371
     )
 #define isBGRinBytes(x) (           \
ac627b3d
            (x) == AV_PIX_FMT_BGR48BE     \
         || (x) == AV_PIX_FMT_BGR48LE     \
         || (x) == AV_PIX_FMT_BGRA64BE    \
         || (x) == AV_PIX_FMT_BGRA64LE    \
         || (x) == AV_PIX_FMT_BGRA        \
         || (x) == AV_PIX_FMT_ABGR        \
         || (x) == AV_PIX_FMT_BGR24       \
81858371
     )
92afb431
 
02b63246
 #define isBayer(x) ( \
            (x)==AV_PIX_FMT_BAYER_BGGR8    \
         || (x)==AV_PIX_FMT_BAYER_BGGR16LE \
         || (x)==AV_PIX_FMT_BAYER_BGGR16BE \
         || (x)==AV_PIX_FMT_BAYER_RGGB8    \
         || (x)==AV_PIX_FMT_BAYER_RGGB16LE \
         || (x)==AV_PIX_FMT_BAYER_RGGB16BE \
         || (x)==AV_PIX_FMT_BAYER_GBRG8    \
         || (x)==AV_PIX_FMT_BAYER_GBRG16LE \
         || (x)==AV_PIX_FMT_BAYER_GBRG16BE \
         || (x)==AV_PIX_FMT_BAYER_GRBG8    \
         || (x)==AV_PIX_FMT_BAYER_GRBG16LE \
         || (x)==AV_PIX_FMT_BAYER_GRBG16BE \
     )
 
dd3ca3ea
 #define isAnyRGB(x) \
     (           \
02b63246
           isBayer(x)          ||    \
dd3ca3ea
           isRGBinInt(x)       ||    \
           isBGRinInt(x)       ||    \
443181c0
           isRGB(x)      \
81858371
     )
92afb431
 
0a7068fa
 static av_always_inline int isALPHA(enum AVPixelFormat pix_fmt)
 {
     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
     av_assert0(desc);
034b31df
     if (pix_fmt == AV_PIX_FMT_PAL8)
         return 1;
c7c71f95
     return desc->flags & AV_PIX_FMT_FLAG_ALPHA;
0a7068fa
 }
6b0768e2
 
92afb431
 #if 1
6af28010
 #define isPacked(x)         (       \
ac627b3d
            (x)==AV_PIX_FMT_PAL8        \
         || (x)==AV_PIX_FMT_YUYV422     \
ed962414
         || (x)==AV_PIX_FMT_YVYU422     \
ac627b3d
         || (x)==AV_PIX_FMT_UYVY422     \
4c8bc6fd
         || (x)==AV_PIX_FMT_YA8       \
aee99a5d
         || (x)==AV_PIX_FMT_YA16LE      \
         || (x)==AV_PIX_FMT_YA16BE      \
cca81e7e
         ||  isRGBinInt(x)           \
         ||  isBGRinInt(x)           \
6af28010
     )
92afb431
 #else
0a7068fa
 static av_always_inline int isPacked(enum AVPixelFormat pix_fmt)
 {
     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
     av_assert0(desc);
e6c4ac7b
     return ((desc->nb_components >= 2 && !(desc->flags & AV_PIX_FMT_FLAG_PLANAR)) ||
0a7068fa
             pix_fmt == AV_PIX_FMT_PAL8);
 }
6b0768e2
 
92afb431
 #endif
0a7068fa
 static av_always_inline int isPlanar(enum AVPixelFormat pix_fmt)
 {
     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
     av_assert0(desc);
e6c4ac7b
     return (desc->nb_components >= 2 && (desc->flags & AV_PIX_FMT_FLAG_PLANAR));
0a7068fa
 }
 
 static av_always_inline int isPackedRGB(enum AVPixelFormat pix_fmt)
 {
     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
     av_assert0(desc);
e6c4ac7b
     return ((desc->flags & (AV_PIX_FMT_FLAG_PLANAR | AV_PIX_FMT_FLAG_RGB)) == AV_PIX_FMT_FLAG_RGB);
0a7068fa
 }
 
 static av_always_inline int isPlanarRGB(enum AVPixelFormat pix_fmt)
 {
     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
     av_assert0(desc);
e6c4ac7b
     return ((desc->flags & (AV_PIX_FMT_FLAG_PLANAR | AV_PIX_FMT_FLAG_RGB)) ==
             (AV_PIX_FMT_FLAG_PLANAR | AV_PIX_FMT_FLAG_RGB));
0a7068fa
 }
 
 static av_always_inline int usePal(enum AVPixelFormat pix_fmt)
 {
     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
     av_assert0(desc);
ff468092
     return (desc->flags & AV_PIX_FMT_FLAG_PAL) || (desc->flags & AV_PIX_FMT_FLAG_PSEUDOPAL);
0a7068fa
 }
e9e12f0e
 
43175f50
 extern const uint64_t ff_dither4[2];
 extern const uint64_t ff_dither8[2];
87f40364
 
c14fc458
 extern const uint8_t ff_dither_2x2_4[3][8];
 extern const uint8_t ff_dither_2x2_8[3][8];
 extern const uint8_t ff_dither_4x4_16[5][8];
 extern const uint8_t ff_dither_8x8_32[9][8];
 extern const uint8_t ff_dither_8x8_73[9][8];
c6280127
 extern const uint8_t ff_dither_8x8_128[9][8];
c14fc458
 extern const uint8_t ff_dither_8x8_220[9][8];
aa2ba8c9
 
 extern const int32_t ff_yuv2rgb_coeffs[8][4];
0cb25594
 
e40b183d
 extern const AVClass sws_context_class;
 
a4388ebd
 /**
1909f6b1
  * Set c->swscale to an unscaled converter if one exists for the specific
a4388ebd
  * source and destination formats, bit depths, flags, etc.
  */
 void ff_get_unscaled_swscale(SwsContext *c);
3aa682f2
 void ff_get_unscaled_swscale_ppc(SwsContext *c);
1c67ad9d
 void ff_get_unscaled_swscale_arm(SwsContext *c);
0e5d31b1
 
a4388ebd
 /**
58c42af7
  * Return function pointer to fastest main scaler path function depending
a4388ebd
  * on architecture and available optimizations.
  */
 SwsFunc ff_getSwsFunc(SwsContext *c);
 
2dd7a1c0
 void ff_sws_init_input_funcs(SwsContext *c);
21449410
 void ff_sws_init_output_funcs(SwsContext *c,
                               yuv2planar1_fn *yuv2plane1,
                               yuv2planarX_fn *yuv2planeX,
                               yuv2interleavedX_fn *yuv2nv12cX,
                               yuv2packed1_fn *yuv2packed1,
                               yuv2packed2_fn *yuv2packed2,
61884d19
                               yuv2packedX_fn *yuv2packedX,
                               yuv2anyX_fn *yuv2anyX);
c2503d9c
 void ff_sws_init_swscale_ppc(SwsContext *c);
a5195839
 void ff_sws_init_swscale_x86(SwsContext *c);
67d80a54
 
e9f7c7ae
 void ff_hyscale_fast_c(SwsContext *c, int16_t *dst, int dstWidth,
                        const uint8_t *src, int srcW, int xInc);
 void ff_hcscale_fast_c(SwsContext *c, int16_t *dst1, int16_t *dst2,
                        int dstWidth, const uint8_t *src1,
                        const uint8_t *src2, int srcW, int xInc);
6532a1a8
 int ff_init_hscaler_mmxext(int dstW, int xInc, uint8_t *filterCode,
                            int16_t *filter, int32_t *filterPos,
                            int numSplits);
 void ff_hyscale_fast_mmxext(SwsContext *c, int16_t *dst,
                             int dstWidth, const uint8_t *src,
                             int srcW, int xInc);
 void ff_hcscale_fast_mmxext(SwsContext *c, int16_t *dst1, int16_t *dst2,
                             int dstWidth, const uint8_t *src1,
                             const uint8_t *src2, int srcW, int xInc);
e9f7c7ae
 
70c25c62
 static inline void fillPlane16(uint8_t *plane, int stride, int width, int height, int y,
                                int alpha, int bits, const int big_endian)
 {
     int i, j;
     uint8_t *ptr = plane + stride * y;
     int v = alpha ? 0xFFFF>>(15-bits) : (1<<bits);
     for (i = 0; i < height; i++) {
 #define FILL(wfunc) \
         for (j = 0; j < width; j++) {\
             wfunc(ptr+2*j, v);\
         }
         if (big_endian) {
             FILL(AV_WB16);
         } else {
             FILL(AV_WL16);
         }
         ptr += stride;
     }
 }
 
0eaf5235
 #endif /* SWSCALE_SWSCALE_INTERNAL_H */