libavcodec/atrac3plus.c
2e1fb96a
 /*
  * ATRAC3+ compatible decoder
  *
  * Copyright (c) 2010-2013 Maxim Poliakovski
  *
  * This file is part of FFmpeg.
  *
  * FFmpeg is free software; you can redistribute it and/or
  * modify it under the terms of the GNU Lesser General Public
  * License as published by the Free Software Foundation; either
  * version 2.1 of the License, or (at your option) any later version.
  *
  * FFmpeg is distributed in the hope that it will be useful,
  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  * Lesser General Public License for more details.
  *
  * You should have received a copy of the GNU Lesser General Public
  * License along with FFmpeg; if not, write to the Free Software
  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  */
 
 /**
  * @file
  * Bitstream parser for ATRAC3+ decoder.
  */
 
 #include "libavutil/avassert.h"
 #include "avcodec.h"
 #include "get_bits.h"
 #include "atrac3plus.h"
 #include "atrac3plus_data.h"
 
 static VLC_TYPE tables_data[154276][2];
 static VLC wl_vlc_tabs[4];
 static VLC sf_vlc_tabs[8];
 static VLC ct_vlc_tabs[4];
 static VLC spec_vlc_tabs[112];
 static VLC gain_vlc_tabs[11];
 static VLC tone_vlc_tabs[7];
 
 #define GET_DELTA(gb, delta_bits) \
     ((delta_bits) ? get_bits((gb), (delta_bits)) : 0)
 
 /**
  * Generate canonical VLC table from given descriptor.
  *
  * @param[in]     cb          ptr to codebook descriptor
  * @param[in]     xlat        ptr to translation table or NULL
  * @param[in,out] tab_offset  starting offset to the generated vlc table
  * @param[out]    out_vlc     ptr to vlc table to be generated
  */
 static av_cold void build_canonical_huff(const uint8_t *cb, const uint8_t *xlat,
                                          int *tab_offset, VLC *out_vlc)
 {
     int i, b;
     uint16_t codes[256];
     uint8_t bits[256];
     unsigned code = 0;
     int index = 0;
     int min_len = *cb++; // get shortest codeword length
     int max_len = *cb++; // get longest  codeword length
 
     for (b = min_len; b <= max_len; b++) {
         for (i = *cb++; i > 0; i--) {
             av_assert0(index < 256);
             bits[index]  = b;
             codes[index] = code++;
             index++;
         }
         code <<= 1;
     }
 
     out_vlc->table = &tables_data[*tab_offset];
     out_vlc->table_allocated = 1 << max_len;
 
     ff_init_vlc_sparse(out_vlc, max_len, index, bits, 1, 1, codes, 2, 2,
                        xlat, 1, 1, INIT_VLC_USE_NEW_STATIC);
 
     *tab_offset += 1 << max_len;
 }
 
 av_cold void ff_atrac3p_init_vlcs(void)
 {
     int i, wl_vlc_offs, ct_vlc_offs, sf_vlc_offs, tab_offset;
 
d9e2aceb
     static const int wl_nb_bits[4]  = { 2, 3, 5, 5 };
     static const int wl_nb_codes[4] = { 3, 5, 8, 8 };
     static const uint8_t * const wl_bits[4] = {
2e1fb96a
         atrac3p_wl_huff_bits1, atrac3p_wl_huff_bits2,
         atrac3p_wl_huff_bits3, atrac3p_wl_huff_bits4
     };
d9e2aceb
     static const uint8_t * const wl_codes[4] = {
2e1fb96a
         atrac3p_wl_huff_code1, atrac3p_wl_huff_code2,
         atrac3p_wl_huff_code3, atrac3p_wl_huff_code4
     };
d9e2aceb
     static const uint8_t * const wl_xlats[4] = {
2e1fb96a
         atrac3p_wl_huff_xlat1, atrac3p_wl_huff_xlat2, NULL, NULL
     };
 
d9e2aceb
     static const int ct_nb_bits[4]  = { 3, 4, 4, 4 };
     static const int ct_nb_codes[4] = { 4, 8, 8, 8 };
     static const uint8_t * const ct_bits[4]  = {
2e1fb96a
         atrac3p_ct_huff_bits1, atrac3p_ct_huff_bits2,
         atrac3p_ct_huff_bits2, atrac3p_ct_huff_bits3
     };
d9e2aceb
     static const uint8_t * const ct_codes[4] = {
2e1fb96a
         atrac3p_ct_huff_code1, atrac3p_ct_huff_code2,
         atrac3p_ct_huff_code2, atrac3p_ct_huff_code3
     };
d9e2aceb
     static const uint8_t * const ct_xlats[4] = {
2e1fb96a
         NULL, NULL, atrac3p_ct_huff_xlat1, NULL
     };
 
d9e2aceb
     static const  int sf_nb_bits[8]  = {  9,  9,  9,  9,  6,  6,  7,  7 };
     static const  int sf_nb_codes[8] = { 64, 64, 64, 64, 16, 16, 16, 16 };
     static const uint8_t  * const sf_bits[8]  = {
2e1fb96a
         atrac3p_sf_huff_bits1, atrac3p_sf_huff_bits1, atrac3p_sf_huff_bits2,
         atrac3p_sf_huff_bits3, atrac3p_sf_huff_bits4, atrac3p_sf_huff_bits4,
         atrac3p_sf_huff_bits5, atrac3p_sf_huff_bits6
     };
d9e2aceb
     static const uint16_t * const sf_codes[8] = {
2e1fb96a
         atrac3p_sf_huff_code1, atrac3p_sf_huff_code1, atrac3p_sf_huff_code2,
         atrac3p_sf_huff_code3, atrac3p_sf_huff_code4, atrac3p_sf_huff_code4,
         atrac3p_sf_huff_code5, atrac3p_sf_huff_code6
     };
d9e2aceb
     static const uint8_t  * const sf_xlats[8] = {
2e1fb96a
         atrac3p_sf_huff_xlat1, atrac3p_sf_huff_xlat2, NULL, NULL,
         atrac3p_sf_huff_xlat4, atrac3p_sf_huff_xlat5, NULL, NULL
     };
 
d9e2aceb
     static const uint8_t * const gain_cbs[11] = {
2e1fb96a
         atrac3p_huff_gain_npoints1_cb, atrac3p_huff_gain_npoints1_cb,
         atrac3p_huff_gain_lev1_cb, atrac3p_huff_gain_lev2_cb,
         atrac3p_huff_gain_lev3_cb, atrac3p_huff_gain_lev4_cb,
         atrac3p_huff_gain_loc3_cb, atrac3p_huff_gain_loc1_cb,
         atrac3p_huff_gain_loc4_cb, atrac3p_huff_gain_loc2_cb,
         atrac3p_huff_gain_loc5_cb
     };
d9e2aceb
     static const uint8_t * const gain_xlats[11] = {
2e1fb96a
         NULL, atrac3p_huff_gain_npoints2_xlat, atrac3p_huff_gain_lev1_xlat,
         atrac3p_huff_gain_lev2_xlat, atrac3p_huff_gain_lev3_xlat,
         atrac3p_huff_gain_lev4_xlat, atrac3p_huff_gain_loc3_xlat,
         atrac3p_huff_gain_loc1_xlat, atrac3p_huff_gain_loc4_xlat,
         atrac3p_huff_gain_loc2_xlat, atrac3p_huff_gain_loc5_xlat
     };
 
d9e2aceb
     static const uint8_t * const tone_cbs[7] = {
2e1fb96a
         atrac3p_huff_tonebands_cb,  atrac3p_huff_numwavs1_cb,
         atrac3p_huff_numwavs2_cb,   atrac3p_huff_wav_ampsf1_cb,
         atrac3p_huff_wav_ampsf2_cb, atrac3p_huff_wav_ampsf3_cb,
         atrac3p_huff_freq_cb
     };
d9e2aceb
     static const uint8_t * const tone_xlats[7] = {
2e1fb96a
         NULL, NULL, atrac3p_huff_numwavs2_xlat, atrac3p_huff_wav_ampsf1_xlat,
         atrac3p_huff_wav_ampsf2_xlat, atrac3p_huff_wav_ampsf3_xlat,
         atrac3p_huff_freq_xlat
     };
 
     for (i = 0, wl_vlc_offs = 0, ct_vlc_offs = 2508; i < 4; i++) {
         wl_vlc_tabs[i].table = &tables_data[wl_vlc_offs];
         wl_vlc_tabs[i].table_allocated = 1 << wl_nb_bits[i];
         ct_vlc_tabs[i].table = &tables_data[ct_vlc_offs];
         ct_vlc_tabs[i].table_allocated = 1 << ct_nb_bits[i];
 
         ff_init_vlc_sparse(&wl_vlc_tabs[i], wl_nb_bits[i], wl_nb_codes[i],
                            wl_bits[i],  1, 1,
                            wl_codes[i], 1, 1,
                            wl_xlats[i], 1, 1,
                            INIT_VLC_USE_NEW_STATIC);
 
         ff_init_vlc_sparse(&ct_vlc_tabs[i], ct_nb_bits[i], ct_nb_codes[i],
                            ct_bits[i],  1, 1,
                            ct_codes[i], 1, 1,
                            ct_xlats[i], 1, 1,
                            INIT_VLC_USE_NEW_STATIC);
 
         wl_vlc_offs += wl_vlc_tabs[i].table_allocated;
         ct_vlc_offs += ct_vlc_tabs[i].table_allocated;
     }
 
     for (i = 0, sf_vlc_offs = 76; i < 8; i++) {
         sf_vlc_tabs[i].table = &tables_data[sf_vlc_offs];
         sf_vlc_tabs[i].table_allocated = 1 << sf_nb_bits[i];
 
         ff_init_vlc_sparse(&sf_vlc_tabs[i], sf_nb_bits[i], sf_nb_codes[i],
                            sf_bits[i],  1, 1,
                            sf_codes[i], 2, 2,
                            sf_xlats[i], 1, 1,
                            INIT_VLC_USE_NEW_STATIC);
         sf_vlc_offs += sf_vlc_tabs[i].table_allocated;
     }
 
     tab_offset = 2564;
 
     /* build huffman tables for spectrum decoding */
     for (i = 0; i < 112; i++) {
         if (atrac3p_spectra_tabs[i].cb)
             build_canonical_huff(atrac3p_spectra_tabs[i].cb,
                                  atrac3p_spectra_tabs[i].xlat,
                                  &tab_offset, &spec_vlc_tabs[i]);
         else
             spec_vlc_tabs[i].table = 0;
     }
 
     /* build huffman tables for gain data decoding */
     for (i = 0; i < 11; i++)
         build_canonical_huff(gain_cbs[i], gain_xlats[i], &tab_offset, &gain_vlc_tabs[i]);
 
     /* build huffman tables for tone decoding */
     for (i = 0; i < 7; i++)
         build_canonical_huff(tone_cbs[i], tone_xlats[i], &tab_offset, &tone_vlc_tabs[i]);
 }
 
 /**
  * Decode number of coded quantization units.
  *
  * @param[in]     gb            the GetBit context
  * @param[in,out] chan          ptr to the channel parameters
  * @param[in,out] ctx           ptr to the channel unit context
  * @param[in]     avctx         ptr to the AVCodecContext
  * @return result code: 0 = OK, otherwise - error code
  */
 static int num_coded_units(GetBitContext *gb, Atrac3pChanParams *chan,
                            Atrac3pChanUnitCtx *ctx, AVCodecContext *avctx)
 {
     chan->fill_mode = get_bits(gb, 2);
     if (!chan->fill_mode) {
         chan->num_coded_vals = ctx->num_quant_units;
     } else {
         chan->num_coded_vals = get_bits(gb, 5);
         if (chan->num_coded_vals > ctx->num_quant_units) {
             av_log(avctx, AV_LOG_ERROR,
                    "Invalid number of transmitted units!\n");
             return AVERROR_INVALIDDATA;
         }
 
         if (chan->fill_mode == 3)
             chan->split_point = get_bits(gb, 2) + (chan->ch_num << 1) + 1;
     }
 
     return 0;
 }
 
 /**
  * Add weighting coefficients to the decoded word-length information.
  *
  * @param[in,out] ctx           ptr to the channel unit context
  * @param[in,out] chan          ptr to the channel parameters
e6f0bb65
  * @param[in]     wtab_idx      index of the table of weights
2e1fb96a
  * @param[in]     avctx         ptr to the AVCodecContext
  * @return result code: 0 = OK, otherwise - error code
  */
 static int add_wordlen_weights(Atrac3pChanUnitCtx *ctx,
                                Atrac3pChanParams *chan, int wtab_idx,
                                AVCodecContext *avctx)
 {
     int i;
     const int8_t *weights_tab =
         &atrac3p_wl_weights[chan->ch_num * 3 + wtab_idx - 1][0];
 
     for (i = 0; i < ctx->num_quant_units; i++) {
         chan->qu_wordlen[i] += weights_tab[i];
         if (chan->qu_wordlen[i] < 0 || chan->qu_wordlen[i] > 7) {
             av_log(avctx, AV_LOG_ERROR,
                    "WL index out of range: pos=%d, val=%d!\n",
                    i, chan->qu_wordlen[i]);
             return AVERROR_INVALIDDATA;
         }
     }
 
     return 0;
 }
 
 /**
  * Subtract weighting coefficients from decoded scalefactors.
  *
  * @param[in,out] ctx           ptr to the channel unit context
  * @param[in,out] chan          ptr to the channel parameters
  * @param[in]     wtab_idx      index of table of weights
  * @param[in]     avctx         ptr to the AVCodecContext
  * @return result code: 0 = OK, otherwise - error code
  */
 static int subtract_sf_weights(Atrac3pChanUnitCtx *ctx,
                                Atrac3pChanParams *chan, int wtab_idx,
                                AVCodecContext *avctx)
 {
     int i;
     const int8_t *weights_tab = &atrac3p_sf_weights[wtab_idx - 1][0];
 
     for (i = 0; i < ctx->used_quant_units; i++) {
         chan->qu_sf_idx[i] -= weights_tab[i];
         if (chan->qu_sf_idx[i] < 0 || chan->qu_sf_idx[i] > 63) {
             av_log(avctx, AV_LOG_ERROR,
                    "SF index out of range: pos=%d, val=%d!\n",
                    i, chan->qu_sf_idx[i]);
             return AVERROR_INVALIDDATA;
         }
     }
 
     return 0;
 }
 
 /**
  * Unpack vector quantization tables.
  *
  * @param[in]    start_val    start value for the unpacked table
  * @param[in]    shape_vec    ptr to table to unpack
  * @param[out]   dst          ptr to output array
  * @param[in]    num_values   number of values to unpack
  */
 static inline void unpack_vq_shape(int start_val, const int8_t *shape_vec,
                                    int *dst, int num_values)
 {
     int i;
 
     if (num_values) {
         dst[0] = dst[1] = dst[2] = start_val;
         for (i = 3; i < num_values; i++)
             dst[i] = start_val - shape_vec[atrac3p_qu_num_to_seg[i] - 1];
     }
 }
 
 #define UNPACK_SF_VQ_SHAPE(gb, dst, num_vals)                            \
     start_val = get_bits((gb), 6);                                       \
     unpack_vq_shape(start_val, &atrac3p_sf_shapes[get_bits((gb), 6)][0], \
                     (dst), (num_vals))
 
 /**
  * Decode word length for each quantization unit of a channel.
  *
  * @param[in]     gb            the GetBit context
  * @param[in,out] ctx           ptr to the channel unit context
  * @param[in]     ch_num        channel to process
  * @param[in]     avctx         ptr to the AVCodecContext
  * @return result code: 0 = OK, otherwise - error code
  */
 static int decode_channel_wordlen(GetBitContext *gb, Atrac3pChanUnitCtx *ctx,
                                   int ch_num, AVCodecContext *avctx)
 {
     int i, weight_idx = 0, delta, diff, pos, delta_bits, min_val, flag,
         ret, start_val;
     VLC *vlc_tab;
     Atrac3pChanParams *chan     = &ctx->channels[ch_num];
     Atrac3pChanParams *ref_chan = &ctx->channels[0];
 
     chan->fill_mode = 0;
 
     switch (get_bits(gb, 2)) { /* switch according to coding mode */
     case 0: /* coded using constant number of bits */
         for (i = 0; i < ctx->num_quant_units; i++)
             chan->qu_wordlen[i] = get_bits(gb, 3);
         break;
     case 1:
         if (ch_num) {
             if ((ret = num_coded_units(gb, chan, ctx, avctx)) < 0)
                 return ret;
 
             if (chan->num_coded_vals) {
                 vlc_tab = &wl_vlc_tabs[get_bits(gb, 2)];
 
                 for (i = 0; i < chan->num_coded_vals; i++) {
                     delta = get_vlc2(gb, vlc_tab->table, vlc_tab->bits, 1);
                     chan->qu_wordlen[i] = (ref_chan->qu_wordlen[i] + delta) & 7;
                 }
             }
         } else {
             weight_idx = get_bits(gb, 2);
             if ((ret = num_coded_units(gb, chan, ctx, avctx)) < 0)
                 return ret;
 
             if (chan->num_coded_vals) {
                 pos = get_bits(gb, 5);
                 if (pos > chan->num_coded_vals) {
                     av_log(avctx, AV_LOG_ERROR,
                            "WL mode 1: invalid position!\n");
                     return AVERROR_INVALIDDATA;
                 }
 
                 delta_bits = get_bits(gb, 2);
                 min_val    = get_bits(gb, 3);
 
                 for (i = 0; i < pos; i++)
                     chan->qu_wordlen[i] = get_bits(gb, 3);
 
                 for (i = pos; i < chan->num_coded_vals; i++)
                     chan->qu_wordlen[i] = (min_val + GET_DELTA(gb, delta_bits)) & 7;
             }
         }
         break;
     case 2:
         if ((ret = num_coded_units(gb, chan, ctx, avctx)) < 0)
             return ret;
 
         if (ch_num && chan->num_coded_vals) {
             vlc_tab = &wl_vlc_tabs[get_bits(gb, 2)];
             delta = get_vlc2(gb, vlc_tab->table, vlc_tab->bits, 1);
             chan->qu_wordlen[0] = (ref_chan->qu_wordlen[0] + delta) & 7;
 
             for (i = 1; i < chan->num_coded_vals; i++) {
                 diff = ref_chan->qu_wordlen[i] - ref_chan->qu_wordlen[i - 1];
                 delta = get_vlc2(gb, vlc_tab->table, vlc_tab->bits, 1);
                 chan->qu_wordlen[i] = (chan->qu_wordlen[i - 1] + diff + delta) & 7;
             }
         } else if (chan->num_coded_vals) {
             flag    = get_bits(gb, 1);
             vlc_tab = &wl_vlc_tabs[get_bits(gb, 1)];
 
             start_val = get_bits(gb, 3);
             unpack_vq_shape(start_val,
                             &atrac3p_wl_shapes[start_val][get_bits(gb, 4)][0],
                             chan->qu_wordlen, chan->num_coded_vals);
 
             if (!flag) {
                 for (i = 0; i < chan->num_coded_vals; i++) {
                     delta = get_vlc2(gb, vlc_tab->table, vlc_tab->bits, 1);
                     chan->qu_wordlen[i] = (chan->qu_wordlen[i] + delta) & 7;
                 }
             } else {
                 for (i = 0; i < (chan->num_coded_vals & - 2); i += 2)
                     if (!get_bits1(gb)) {
                         chan->qu_wordlen[i]     = (chan->qu_wordlen[i] +
                                                    get_vlc2(gb, vlc_tab->table,
                                                             vlc_tab->bits, 1)) & 7;
                         chan->qu_wordlen[i + 1] = (chan->qu_wordlen[i + 1] +
                                                    get_vlc2(gb, vlc_tab->table,
                                                             vlc_tab->bits, 1)) & 7;
                     }
 
                 if (chan->num_coded_vals & 1)
                     chan->qu_wordlen[i] = (chan->qu_wordlen[i] +
                                            get_vlc2(gb, vlc_tab->table,
                                                     vlc_tab->bits, 1)) & 7;
             }
         }
         break;
     case 3:
         weight_idx = get_bits(gb, 2);
         if ((ret = num_coded_units(gb, chan, ctx, avctx)) < 0)
             return ret;
 
         if (chan->num_coded_vals) {
             vlc_tab = &wl_vlc_tabs[get_bits(gb, 2)];
 
             /* first coefficient is coded directly */
             chan->qu_wordlen[0] = get_bits(gb, 3);
 
             for (i = 1; i < chan->num_coded_vals; i++) {
                 delta = get_vlc2(gb, vlc_tab->table, vlc_tab->bits, 1);
                 chan->qu_wordlen[i] = (chan->qu_wordlen[i - 1] + delta) & 7;
             }
         }
         break;
     }
 
     if (chan->fill_mode == 2) {
         for (i = chan->num_coded_vals; i < ctx->num_quant_units; i++)
             chan->qu_wordlen[i] = ch_num ? get_bits1(gb) : 1;
     } else if (chan->fill_mode == 3) {
         pos = ch_num ? chan->num_coded_vals + chan->split_point
                      : ctx->num_quant_units - chan->split_point;
         for (i = chan->num_coded_vals; i < pos; i++)
             chan->qu_wordlen[i] = 1;
     }
 
     if (weight_idx)
         return add_wordlen_weights(ctx, chan, weight_idx, avctx);
 
     return 0;
 }
 
 /**
  * Decode scale factor indexes for each quant unit of a channel.
  *
  * @param[in]     gb            the GetBit context
  * @param[in,out] ctx           ptr to the channel unit context
  * @param[in]     ch_num        channel to process
  * @param[in]     avctx         ptr to the AVCodecContext
  * @return result code: 0 = OK, otherwise - error code
  */
 static int decode_channel_sf_idx(GetBitContext *gb, Atrac3pChanUnitCtx *ctx,
                                  int ch_num, AVCodecContext *avctx)
 {
     int i, weight_idx = 0, delta, diff, num_long_vals,
         delta_bits, min_val, vlc_sel, start_val;
     VLC *vlc_tab;
     Atrac3pChanParams *chan     = &ctx->channels[ch_num];
     Atrac3pChanParams *ref_chan = &ctx->channels[0];
 
     switch (get_bits(gb, 2)) { /* switch according to coding mode */
     case 0: /* coded using constant number of bits */
         for (i = 0; i < ctx->used_quant_units; i++)
             chan->qu_sf_idx[i] = get_bits(gb, 6);
         break;
     case 1:
         if (ch_num) {
             vlc_tab = &sf_vlc_tabs[get_bits(gb, 2)];
 
             for (i = 0; i < ctx->used_quant_units; i++) {
                 delta = get_vlc2(gb, vlc_tab->table, vlc_tab->bits, 1);
                 chan->qu_sf_idx[i] = (ref_chan->qu_sf_idx[i] + delta) & 0x3F;
             }
         } else {
             weight_idx = get_bits(gb, 2);
             if (weight_idx == 3) {
                 UNPACK_SF_VQ_SHAPE(gb, chan->qu_sf_idx, ctx->used_quant_units);
 
                 num_long_vals = get_bits(gb, 5);
                 delta_bits    = get_bits(gb, 2);
                 min_val       = get_bits(gb, 4) - 7;
 
                 for (i = 0; i < num_long_vals; i++)
                     chan->qu_sf_idx[i] = (chan->qu_sf_idx[i] +
                                           get_bits(gb, 4) - 7) & 0x3F;
 
                 /* all others are: min_val + delta */
                 for (i = num_long_vals; i < ctx->used_quant_units; i++)
                     chan->qu_sf_idx[i] = (chan->qu_sf_idx[i] + min_val +
                                           GET_DELTA(gb, delta_bits)) & 0x3F;
             } else {
                 num_long_vals = get_bits(gb, 5);
                 delta_bits    = get_bits(gb, 3);
                 min_val       = get_bits(gb, 6);
                 if (num_long_vals > ctx->used_quant_units || delta_bits == 7) {
                     av_log(avctx, AV_LOG_ERROR,
                            "SF mode 1: invalid parameters!\n");
                     return AVERROR_INVALIDDATA;
                 }
 
                 /* read full-precision SF indexes */
                 for (i = 0; i < num_long_vals; i++)
                     chan->qu_sf_idx[i] = get_bits(gb, 6);
 
                 /* all others are: min_val + delta */
                 for (i = num_long_vals; i < ctx->used_quant_units; i++)
                     chan->qu_sf_idx[i] = (min_val +
                                           GET_DELTA(gb, delta_bits)) & 0x3F;
             }
         }
         break;
     case 2:
         if (ch_num) {
             vlc_tab = &sf_vlc_tabs[get_bits(gb, 2)];
 
             delta = get_vlc2(gb, vlc_tab->table, vlc_tab->bits, 1);
             chan->qu_sf_idx[0] = (ref_chan->qu_sf_idx[0] + delta) & 0x3F;
 
             for (i = 1; i < ctx->used_quant_units; i++) {
                 diff  = ref_chan->qu_sf_idx[i] - ref_chan->qu_sf_idx[i - 1];
                 delta = get_vlc2(gb, vlc_tab->table, vlc_tab->bits, 1);
                 chan->qu_sf_idx[i] = (chan->qu_sf_idx[i - 1] + diff + delta) & 0x3F;
             }
         } else {
             vlc_tab = &sf_vlc_tabs[get_bits(gb, 2) + 4];
 
             UNPACK_SF_VQ_SHAPE(gb, chan->qu_sf_idx, ctx->used_quant_units);
 
             for (i = 0; i < ctx->used_quant_units; i++) {
                 delta = get_vlc2(gb, vlc_tab->table, vlc_tab->bits, 1);
                 chan->qu_sf_idx[i] = (chan->qu_sf_idx[i] +
                                       sign_extend(delta, 4)) & 0x3F;
             }
         }
         break;
     case 3:
         if (ch_num) {
             /* copy coefficients from reference channel */
             for (i = 0; i < ctx->used_quant_units; i++)
                 chan->qu_sf_idx[i] = ref_chan->qu_sf_idx[i];
         } else {
             weight_idx = get_bits(gb, 2);
             vlc_sel    = get_bits(gb, 2);
             vlc_tab    = &sf_vlc_tabs[vlc_sel];
 
             if (weight_idx == 3) {
                 vlc_tab = &sf_vlc_tabs[vlc_sel + 4];
 
                 UNPACK_SF_VQ_SHAPE(gb, chan->qu_sf_idx, ctx->used_quant_units);
 
                 diff               = (get_bits(gb, 4)    + 56)   & 0x3F;
                 chan->qu_sf_idx[0] = (chan->qu_sf_idx[0] + diff) & 0x3F;
 
                 for (i = 1; i < ctx->used_quant_units; i++) {
                     delta = get_vlc2(gb, vlc_tab->table, vlc_tab->bits, 1);
                     diff               = (diff + sign_extend(delta, 4)) & 0x3F;
                     chan->qu_sf_idx[i] = (diff + chan->qu_sf_idx[i])    & 0x3F;
                 }
             } else {
                 /* 1st coefficient is coded directly */
                 chan->qu_sf_idx[0] = get_bits(gb, 6);
 
                 for (i = 1; i < ctx->used_quant_units; i++) {
                     delta = get_vlc2(gb, vlc_tab->table, vlc_tab->bits, 1);
                     chan->qu_sf_idx[i] = (chan->qu_sf_idx[i - 1] + delta) & 0x3F;
                 }
             }
         }
         break;
     }
 
     if (weight_idx && weight_idx < 3)
         return subtract_sf_weights(ctx, chan, weight_idx, avctx);
 
     return 0;
 }
 
 /**
  * Decode word length information for each channel.
  *
  * @param[in]     gb            the GetBit context
  * @param[in,out] ctx           ptr to the channel unit context
  * @param[in]     num_channels  number of channels to process
  * @param[in]     avctx         ptr to the AVCodecContext
  * @return result code: 0 = OK, otherwise - error code
  */
 static int decode_quant_wordlen(GetBitContext *gb, Atrac3pChanUnitCtx *ctx,
                                 int num_channels, AVCodecContext *avctx)
 {
     int ch_num, i, ret;
 
     for (ch_num = 0; ch_num < num_channels; ch_num++) {
         memset(ctx->channels[ch_num].qu_wordlen, 0,
                sizeof(ctx->channels[ch_num].qu_wordlen));
 
         if ((ret = decode_channel_wordlen(gb, ctx, ch_num, avctx)) < 0)
             return ret;
     }
 
     /* scan for last non-zero coeff in both channels and
      * set number of quant units having coded spectrum */
     for (i = ctx->num_quant_units - 1; i >= 0; i--)
         if (ctx->channels[0].qu_wordlen[i] ||
             (num_channels == 2 && ctx->channels[1].qu_wordlen[i]))
             break;
     ctx->used_quant_units = i + 1;
 
     return 0;
 }
 
 /**
  * Decode scale factor indexes for each channel.
  *
  * @param[in]     gb            the GetBit context
  * @param[in,out] ctx           ptr to the channel unit context
  * @param[in]     num_channels  number of channels to process
  * @param[in]     avctx         ptr to the AVCodecContext
  * @return result code: 0 = OK, otherwise - error code
  */
 static int decode_scale_factors(GetBitContext *gb, Atrac3pChanUnitCtx *ctx,
                                 int num_channels, AVCodecContext *avctx)
 {
     int ch_num, ret;
 
     if (!ctx->used_quant_units)
         return 0;
 
     for (ch_num = 0; ch_num < num_channels; ch_num++) {
         memset(ctx->channels[ch_num].qu_sf_idx, 0,
                sizeof(ctx->channels[ch_num].qu_sf_idx));
 
         if ((ret = decode_channel_sf_idx(gb, ctx, ch_num, avctx)) < 0)
             return ret;
     }
 
     return 0;
 }
 
 /**
  * Decode number of code table values.
  *
  * @param[in]     gb            the GetBit context
  * @param[in,out] ctx           ptr to the channel unit context
  * @param[in]     avctx         ptr to the AVCodecContext
  * @return result code: 0 = OK, otherwise - error code
  */
 static int get_num_ct_values(GetBitContext *gb, Atrac3pChanUnitCtx *ctx,
                              AVCodecContext *avctx)
 {
     int num_coded_vals;
 
     if (get_bits1(gb)) {
         num_coded_vals = get_bits(gb, 5);
         if (num_coded_vals > ctx->used_quant_units) {
             av_log(avctx, AV_LOG_ERROR,
                    "Invalid number of code table indexes: %d!\n", num_coded_vals);
             return AVERROR_INVALIDDATA;
         }
         return num_coded_vals;
     } else
         return ctx->used_quant_units;
 }
 
 #define DEC_CT_IDX_COMMON(OP)                                           \
     num_vals = get_num_ct_values(gb, ctx, avctx);                       \
     if (num_vals < 0)                                                   \
         return num_vals;                                                \
                                                                         \
     for (i = 0; i < num_vals; i++) {                                    \
         if (chan->qu_wordlen[i]) {                                      \
             chan->qu_tab_idx[i] = OP;                                   \
         } else if (ch_num && ref_chan->qu_wordlen[i])                   \
             /* get clone master flag */                                 \
             chan->qu_tab_idx[i] = get_bits1(gb);                        \
     }
 
 #define CODING_DIRECT get_bits(gb, num_bits)
 
 #define CODING_VLC get_vlc2(gb, vlc_tab->table, vlc_tab->bits, 1)
 
 #define CODING_VLC_DELTA                                                \
     (!i) ? CODING_VLC                                                   \
          : (pred + get_vlc2(gb, delta_vlc->table,                       \
                             delta_vlc->bits, 1)) & mask;                \
     pred = chan->qu_tab_idx[i]
 
 #define CODING_VLC_DIFF                                                 \
     (ref_chan->qu_tab_idx[i] +                                          \
      get_vlc2(gb, vlc_tab->table, vlc_tab->bits, 1)) & mask
 
 /**
  * Decode code table indexes for each quant unit of a channel.
  *
  * @param[in]     gb            the GetBit context
  * @param[in,out] ctx           ptr to the channel unit context
  * @param[in]     ch_num        channel to process
  * @param[in]     avctx         ptr to the AVCodecContext
  * @return result code: 0 = OK, otherwise - error code
  */
 static int decode_channel_code_tab(GetBitContext *gb, Atrac3pChanUnitCtx *ctx,
                                    int ch_num, AVCodecContext *avctx)
 {
     int i, num_vals, num_bits, pred;
     int mask = ctx->use_full_table ? 7 : 3; /* mask for modular arithmetic */
     VLC *vlc_tab, *delta_vlc;
     Atrac3pChanParams *chan     = &ctx->channels[ch_num];
     Atrac3pChanParams *ref_chan = &ctx->channels[0];
 
     chan->table_type = get_bits1(gb);
 
     switch (get_bits(gb, 2)) { /* switch according to coding mode */
     case 0: /* directly coded */
         num_bits = ctx->use_full_table + 2;
         DEC_CT_IDX_COMMON(CODING_DIRECT);
         break;
     case 1: /* entropy-coded */
         vlc_tab = ctx->use_full_table ? &ct_vlc_tabs[1]
                                       : ct_vlc_tabs;
         DEC_CT_IDX_COMMON(CODING_VLC);
         break;
     case 2: /* entropy-coded delta */
         if (ctx->use_full_table) {
             vlc_tab   = &ct_vlc_tabs[1];
             delta_vlc = &ct_vlc_tabs[2];
         } else {
             vlc_tab   = ct_vlc_tabs;
             delta_vlc = ct_vlc_tabs;
         }
         pred = 0;
         DEC_CT_IDX_COMMON(CODING_VLC_DELTA);
         break;
     case 3: /* entropy-coded difference to master */
         if (ch_num) {
             vlc_tab = ctx->use_full_table ? &ct_vlc_tabs[3]
                                           : ct_vlc_tabs;
             DEC_CT_IDX_COMMON(CODING_VLC_DIFF);
         }
         break;
     }
 
     return 0;
 }
 
 /**
  * Decode code table indexes for each channel.
  *
  * @param[in]     gb            the GetBit context
  * @param[in,out] ctx           ptr to the channel unit context
  * @param[in]     num_channels  number of channels to process
  * @param[in]     avctx         ptr to the AVCodecContext
  * @return result code: 0 = OK, otherwise - error code
  */
 static int decode_code_table_indexes(GetBitContext *gb, Atrac3pChanUnitCtx *ctx,
                                      int num_channels, AVCodecContext *avctx)
 {
     int ch_num, ret;
 
     if (!ctx->used_quant_units)
         return 0;
 
     ctx->use_full_table = get_bits1(gb);
 
     for (ch_num = 0; ch_num < num_channels; ch_num++) {
         memset(ctx->channels[ch_num].qu_tab_idx, 0,
                sizeof(ctx->channels[ch_num].qu_tab_idx));
 
         if ((ret = decode_channel_code_tab(gb, ctx, ch_num, avctx)) < 0)
             return ret;
     }
 
     return 0;
 }
 
 /**
  * Decode huffman-coded spectral lines for a given quant unit.
  *
  * This is a generalized version for all known coding modes.
  * Its speed can be improved by creating separate functions for each mode.
  *
  * @param[in]   gb          the GetBit context
  * @param[in]   tab         code table telling how to decode spectral lines
  * @param[in]   vlc_tab     ptr to the huffman table associated with the code table
  * @param[out]  out         pointer to buffer where decoded data should be stored
  * @param[in]   num_specs   number of spectral lines to decode
  */
 static void decode_qu_spectra(GetBitContext *gb, const Atrac3pSpecCodeTab *tab,
                               VLC *vlc_tab, int16_t *out, const int num_specs)
 {
     int i, j, pos, cf;
     int group_size = tab->group_size;
     int num_coeffs = tab->num_coeffs;
     int bits       = tab->bits;
     int is_signed  = tab->is_signed;
ba625dd8
     unsigned val;
2e1fb96a
 
     for (pos = 0; pos < num_specs;) {
         if (group_size == 1 || get_bits1(gb)) {
             for (j = 0; j < group_size; j++) {
                 val = get_vlc2(gb, vlc_tab->table, vlc_tab->bits, 1);
 
                 for (i = 0; i < num_coeffs; i++) {
ba625dd8
                     cf = av_mod_uintp2(val, bits);
2e1fb96a
                     if (is_signed)
                         cf = sign_extend(cf, bits);
                     else if (cf && get_bits1(gb))
                         cf = -cf;
 
                     out[pos++] = cf;
                     val      >>= bits;
                 }
             }
         } else /* group skipped */
             pos += group_size * num_coeffs;
     }
 }
 
 /**
  * Decode huffman-coded IMDCT spectrum for all channels.
  *
  * @param[in]     gb            the GetBit context
  * @param[in,out] ctx           ptr to the channel unit context
  * @param[in]     num_channels  number of channels to process
  * @param[in]     avctx         ptr to the AVCodecContext
  */
 static void decode_spectrum(GetBitContext *gb, Atrac3pChanUnitCtx *ctx,
                             int num_channels, AVCodecContext *avctx)
 {
     int i, ch_num, qu, wordlen, codetab, tab_index, num_specs;
     const Atrac3pSpecCodeTab *tab;
     Atrac3pChanParams *chan;
 
     for (ch_num = 0; ch_num < num_channels; ch_num++) {
         chan = &ctx->channels[ch_num];
 
         memset(chan->spectrum, 0, sizeof(chan->spectrum));
 
         /* set power compensation level to disabled */
         memset(chan->power_levs, ATRAC3P_POWER_COMP_OFF, sizeof(chan->power_levs));
 
         for (qu = 0; qu < ctx->used_quant_units; qu++) {
             num_specs = ff_atrac3p_qu_to_spec_pos[qu + 1] -
                         ff_atrac3p_qu_to_spec_pos[qu];
 
             wordlen = chan->qu_wordlen[qu];
             codetab = chan->qu_tab_idx[qu];
             if (wordlen) {
                 if (!ctx->use_full_table)
                     codetab = atrac3p_ct_restricted_to_full[chan->table_type][wordlen - 1][codetab];
 
                 tab_index = (chan->table_type * 8 + codetab) * 7 + wordlen - 1;
                 tab       = &atrac3p_spectra_tabs[tab_index];
 
                 /* this allows reusing VLC tables */
                 if (tab->redirect >= 0)
                     tab_index = tab->redirect;
 
                 decode_qu_spectra(gb, tab, &spec_vlc_tabs[tab_index],
                                   &chan->spectrum[ff_atrac3p_qu_to_spec_pos[qu]],
                                   num_specs);
             } else if (ch_num && ctx->channels[0].qu_wordlen[qu] && !codetab) {
                 /* copy coefficients from master */
                 memcpy(&chan->spectrum[ff_atrac3p_qu_to_spec_pos[qu]],
                        &ctx->channels[0].spectrum[ff_atrac3p_qu_to_spec_pos[qu]],
                        num_specs *
                        sizeof(chan->spectrum[ff_atrac3p_qu_to_spec_pos[qu]]));
                 chan->qu_wordlen[qu] = ctx->channels[0].qu_wordlen[qu];
             }
         }
 
         /* Power compensation levels only present in the bitstream
          * if there are more than 2 quant units. The lowest two units
          * correspond to the frequencies 0...351 Hz, whose shouldn't
          * be affected by the power compensation. */
         if (ctx->used_quant_units > 2) {
             num_specs = atrac3p_subband_to_num_powgrps[ctx->num_coded_subbands - 1];
             for (i = 0; i < num_specs; i++)
                 chan->power_levs[i] = get_bits(gb, 4);
         }
     }
 }
 
 /**
  * Retrieve specified amount of flag bits from the input bitstream.
  * The data can be shortened in the case of the following two common conditions:
  * if all bits are zero then only one signal bit = 0 will be stored,
  * if all bits are ones then two signal bits = 1,0 will be stored.
  * Otherwise, all necessary bits will be directly stored
  * prefixed by two signal bits = 1,1.
  *
  * @param[in]   gb              ptr to the GetBitContext
  * @param[out]  out             where to place decoded flags
  * @param[in]   num_flags       number of flags to process
  * @return: 0 = all flag bits are zero, 1 = there is at least one non-zero flag bit
  */
 static int get_subband_flags(GetBitContext *gb, uint8_t *out, int num_flags)
 {
     int i, result;
 
     memset(out, 0, num_flags);
 
     result = get_bits1(gb);
     if (result) {
         if (get_bits1(gb))
             for (i = 0; i < num_flags; i++)
                 out[i] = get_bits1(gb);
         else
             memset(out, 1, num_flags);
     }
 
     return result;
 }
 
 /**
  * Decode mdct window shape flags for all channels.
  *
  * @param[in]     gb            the GetBit context
  * @param[in,out] ctx           ptr to the channel unit context
  * @param[in]     num_channels  number of channels to process
  */
 static void decode_window_shape(GetBitContext *gb, Atrac3pChanUnitCtx *ctx,
                                 int num_channels)
 {
     int ch_num;
 
     for (ch_num = 0; ch_num < num_channels; ch_num++)
         get_subband_flags(gb, ctx->channels[ch_num].wnd_shape,
                           ctx->num_subbands);
 }
 
 /**
  * Decode number of gain control points.
  *
  * @param[in]     gb              the GetBit context
  * @param[in,out] ctx             ptr to the channel unit context
  * @param[in]     ch_num          channel to process
  * @param[in]     coded_subbands  number of subbands to process
  * @return result code: 0 = OK, otherwise - error code
  */
 static int decode_gainc_npoints(GetBitContext *gb, Atrac3pChanUnitCtx *ctx,
                                 int ch_num, int coded_subbands)
 {
     int i, delta, delta_bits, min_val;
     Atrac3pChanParams *chan     = &ctx->channels[ch_num];
     Atrac3pChanParams *ref_chan = &ctx->channels[0];
 
     switch (get_bits(gb, 2)) { /* switch according to coding mode */
     case 0: /* fixed-length coding */
         for (i = 0; i < coded_subbands; i++)
             chan->gain_data[i].num_points = get_bits(gb, 3);
         break;
     case 1: /* variable-length coding */
         for (i = 0; i < coded_subbands; i++)
             chan->gain_data[i].num_points =
                 get_vlc2(gb, gain_vlc_tabs[0].table,
                          gain_vlc_tabs[0].bits, 1);
         break;
     case 2:
         if (ch_num) { /* VLC modulo delta to master channel */
             for (i = 0; i < coded_subbands; i++) {
                 delta = get_vlc2(gb, gain_vlc_tabs[1].table,
                                  gain_vlc_tabs[1].bits, 1);
                 chan->gain_data[i].num_points =
                     (ref_chan->gain_data[i].num_points + delta) & 7;
             }
         } else { /* VLC modulo delta to previous */
             chan->gain_data[0].num_points =
                 get_vlc2(gb, gain_vlc_tabs[0].table,
                          gain_vlc_tabs[0].bits, 1);
 
             for (i = 1; i < coded_subbands; i++) {
                 delta = get_vlc2(gb, gain_vlc_tabs[1].table,
                                  gain_vlc_tabs[1].bits, 1);
                 chan->gain_data[i].num_points =
                     (chan->gain_data[i - 1].num_points + delta) & 7;
             }
         }
         break;
     case 3:
         if (ch_num) { /* copy data from master channel */
             for (i = 0; i < coded_subbands; i++)
                 chan->gain_data[i].num_points =
                     ref_chan->gain_data[i].num_points;
         } else { /* shorter delta to min */
             delta_bits = get_bits(gb, 2);
             min_val    = get_bits(gb, 3);
 
             for (i = 0; i < coded_subbands; i++) {
                 chan->gain_data[i].num_points = min_val + GET_DELTA(gb, delta_bits);
                 if (chan->gain_data[i].num_points > 7)
                     return AVERROR_INVALIDDATA;
             }
         }
     }
 
     return 0;
 }
 
 /**
  * Implements coding mode 3 (slave) for gain compensation levels.
  *
  * @param[out]   dst   ptr to the output array
  * @param[in]    ref   ptr to the reference channel
  */
 static inline void gainc_level_mode3s(AtracGainInfo *dst, AtracGainInfo *ref)
 {
     int i;
 
     for (i = 0; i < dst->num_points; i++)
         dst->lev_code[i] = (i >= ref->num_points) ? 7 : ref->lev_code[i];
 }
 
 /**
  * Implements coding mode 1 (master) for gain compensation levels.
  *
  * @param[in]     gb     the GetBit context
  * @param[in]     ctx    ptr to the channel unit context
  * @param[out]    dst    ptr to the output array
  */
 static inline void gainc_level_mode1m(GetBitContext *gb,
                                       Atrac3pChanUnitCtx *ctx,
                                       AtracGainInfo *dst)
 {
     int i, delta;
 
     if (dst->num_points > 0)
         dst->lev_code[0] = get_vlc2(gb, gain_vlc_tabs[2].table,
                                     gain_vlc_tabs[2].bits, 1);
 
     for (i = 1; i < dst->num_points; i++) {
         delta = get_vlc2(gb, gain_vlc_tabs[3].table,
                          gain_vlc_tabs[3].bits, 1);
         dst->lev_code[i] = (dst->lev_code[i - 1] + delta) & 0xF;
     }
 }
 
 /**
  * Decode level code for each gain control point.
  *
  * @param[in]     gb              the GetBit context
  * @param[in,out] ctx             ptr to the channel unit context
  * @param[in]     ch_num          channel to process
  * @param[in]     coded_subbands  number of subbands to process
  * @return result code: 0 = OK, otherwise - error code
  */
 static int decode_gainc_levels(GetBitContext *gb, Atrac3pChanUnitCtx *ctx,
                                int ch_num, int coded_subbands)
 {
     int sb, i, delta, delta_bits, min_val, pred;
     Atrac3pChanParams *chan     = &ctx->channels[ch_num];
     Atrac3pChanParams *ref_chan = &ctx->channels[0];
 
     switch (get_bits(gb, 2)) { /* switch according to coding mode */
     case 0: /* fixed-length coding */
         for (sb = 0; sb < coded_subbands; sb++)
             for (i = 0; i < chan->gain_data[sb].num_points; i++)
                 chan->gain_data[sb].lev_code[i] = get_bits(gb, 4);
         break;
     case 1:
         if (ch_num) { /* VLC modulo delta to master channel */
             for (sb = 0; sb < coded_subbands; sb++)
                 for (i = 0; i < chan->gain_data[sb].num_points; i++) {
                     delta = get_vlc2(gb, gain_vlc_tabs[5].table,
                                      gain_vlc_tabs[5].bits, 1);
                     pred = (i >= ref_chan->gain_data[sb].num_points)
                            ? 7 : ref_chan->gain_data[sb].lev_code[i];
                     chan->gain_data[sb].lev_code[i] = (pred + delta) & 0xF;
                 }
         } else { /* VLC modulo delta to previous */
             for (sb = 0; sb < coded_subbands; sb++)
                 gainc_level_mode1m(gb, ctx, &chan->gain_data[sb]);
         }
         break;
     case 2:
         if (ch_num) { /* VLC modulo delta to previous or clone master */
             for (sb = 0; sb < coded_subbands; sb++)
                 if (chan->gain_data[sb].num_points > 0) {
                     if (get_bits1(gb))
                         gainc_level_mode1m(gb, ctx, &chan->gain_data[sb]);
                     else
                         gainc_level_mode3s(&chan->gain_data[sb],
                                            &ref_chan->gain_data[sb]);
                 }
         } else { /* VLC modulo delta to lev_codes of previous subband */
             if (chan->gain_data[0].num_points > 0)
                 gainc_level_mode1m(gb, ctx, &chan->gain_data[0]);
 
             for (sb = 1; sb < coded_subbands; sb++)
                 for (i = 0; i < chan->gain_data[sb].num_points; i++) {
                     delta = get_vlc2(gb, gain_vlc_tabs[4].table,
                                      gain_vlc_tabs[4].bits, 1);
                     pred = (i >= chan->gain_data[sb - 1].num_points)
                            ? 7 : chan->gain_data[sb - 1].lev_code[i];
                     chan->gain_data[sb].lev_code[i] = (pred + delta) & 0xF;
                 }
         }
         break;
     case 3:
         if (ch_num) { /* clone master */
             for (sb = 0; sb < coded_subbands; sb++)
                 gainc_level_mode3s(&chan->gain_data[sb],
                                    &ref_chan->gain_data[sb]);
         } else { /* shorter delta to min */
             delta_bits = get_bits(gb, 2);
             min_val    = get_bits(gb, 4);
 
             for (sb = 0; sb < coded_subbands; sb++)
                 for (i = 0; i < chan->gain_data[sb].num_points; i++) {
                     chan->gain_data[sb].lev_code[i] = min_val + GET_DELTA(gb, delta_bits);
                     if (chan->gain_data[sb].lev_code[i] > 15)
                         return AVERROR_INVALIDDATA;
                 }
         }
         break;
     }
 
     return 0;
 }
 
 /**
  * Implements coding mode 0 for gain compensation locations.
  *
  * @param[in]     gb     the GetBit context
  * @param[in]     ctx    ptr to the channel unit context
  * @param[out]    dst    ptr to the output array
  * @param[in]     pos    position of the value to be processed
  */
 static inline void gainc_loc_mode0(GetBitContext *gb, Atrac3pChanUnitCtx *ctx,
                                    AtracGainInfo *dst, int pos)
 {
     int delta_bits;
 
     if (!pos || dst->loc_code[pos - 1] < 15)
         dst->loc_code[pos] = get_bits(gb, 5);
     else if (dst->loc_code[pos - 1] >= 30)
         dst->loc_code[pos] = 31;
     else {
         delta_bits         = av_log2(30 - dst->loc_code[pos - 1]) + 1;
         dst->loc_code[pos] = dst->loc_code[pos - 1] +
                              get_bits(gb, delta_bits) + 1;
     }
 }
 
 /**
  * Implements coding mode 1 for gain compensation locations.
  *
  * @param[in]     gb     the GetBit context
  * @param[in]     ctx    ptr to the channel unit context
  * @param[out]    dst    ptr to the output array
  */
 static inline void gainc_loc_mode1(GetBitContext *gb, Atrac3pChanUnitCtx *ctx,
                                    AtracGainInfo *dst)
 {
     int i;
     VLC *tab;
 
     if (dst->num_points > 0) {
         /* 1st coefficient is stored directly */
         dst->loc_code[0] = get_bits(gb, 5);
 
         for (i = 1; i < dst->num_points; i++) {
             /* switch VLC according to the curve direction
              * (ascending/descending) */
             tab              = (dst->lev_code[i] <= dst->lev_code[i - 1])
                                ? &gain_vlc_tabs[7]
                                : &gain_vlc_tabs[9];
             dst->loc_code[i] = dst->loc_code[i - 1] +
                                get_vlc2(gb, tab->table, tab->bits, 1);
         }
     }
 }
 
 /**
  * Decode location code for each gain control point.
  *
  * @param[in]     gb              the GetBit context
  * @param[in,out] ctx             ptr to the channel unit context
  * @param[in]     ch_num          channel to process
  * @param[in]     coded_subbands  number of subbands to process
  * @param[in]     avctx           ptr to the AVCodecContext
  * @return result code: 0 = OK, otherwise - error code
  */
 static int decode_gainc_loc_codes(GetBitContext *gb, Atrac3pChanUnitCtx *ctx,
                                   int ch_num, int coded_subbands,
                                   AVCodecContext *avctx)
 {
     int sb, i, delta, delta_bits, min_val, pred, more_than_ref;
     AtracGainInfo *dst, *ref;
     VLC *tab;
     Atrac3pChanParams *chan     = &ctx->channels[ch_num];
     Atrac3pChanParams *ref_chan = &ctx->channels[0];
 
     switch (get_bits(gb, 2)) { /* switch according to coding mode */
     case 0: /* sequence of numbers in ascending order */
         for (sb = 0; sb < coded_subbands; sb++)
             for (i = 0; i < chan->gain_data[sb].num_points; i++)
                 gainc_loc_mode0(gb, ctx, &chan->gain_data[sb], i);
         break;
     case 1:
         if (ch_num) {
             for (sb = 0; sb < coded_subbands; sb++) {
                 if (chan->gain_data[sb].num_points <= 0)
                     continue;
                 dst = &chan->gain_data[sb];
                 ref = &ref_chan->gain_data[sb];
 
                 /* 1st value is vlc-coded modulo delta to master */
                 delta = get_vlc2(gb, gain_vlc_tabs[10].table,
                                  gain_vlc_tabs[10].bits, 1);
                 pred = ref->num_points > 0 ? ref->loc_code[0] : 0;
                 dst->loc_code[0] = (pred + delta) & 0x1F;
 
                 for (i = 1; i < dst->num_points; i++) {
                     more_than_ref = i >= ref->num_points;
                     if (dst->lev_code[i] > dst->lev_code[i - 1]) {
                         /* ascending curve */
                         if (more_than_ref) {
                             delta =
                                 get_vlc2(gb, gain_vlc_tabs[9].table,
                                          gain_vlc_tabs[9].bits, 1);
                             dst->loc_code[i] = dst->loc_code[i - 1] + delta;
                         } else {
                             if (get_bits1(gb))
                                 gainc_loc_mode0(gb, ctx, dst, i);  // direct coding
                             else
                                 dst->loc_code[i] = ref->loc_code[i];  // clone master
                         }
                     } else { /* descending curve */
                         tab   = more_than_ref ? &gain_vlc_tabs[7]
                                               : &gain_vlc_tabs[10];
                         delta = get_vlc2(gb, tab->table, tab->bits, 1);
                         if (more_than_ref)
                             dst->loc_code[i] = dst->loc_code[i - 1] + delta;
                         else
                             dst->loc_code[i] = (ref->loc_code[i] + delta) & 0x1F;
                     }
                 }
             }
         } else /* VLC delta to previous */
             for (sb = 0; sb < coded_subbands; sb++)
                 gainc_loc_mode1(gb, ctx, &chan->gain_data[sb]);
         break;
     case 2:
         if (ch_num) {
             for (sb = 0; sb < coded_subbands; sb++) {
                 if (chan->gain_data[sb].num_points <= 0)
                     continue;
                 dst = &chan->gain_data[sb];
                 ref = &ref_chan->gain_data[sb];
                 if (dst->num_points > ref->num_points || get_bits1(gb))
                     gainc_loc_mode1(gb, ctx, dst);
                 else /* clone master for the whole subband */
                     for (i = 0; i < chan->gain_data[sb].num_points; i++)
                         dst->loc_code[i] = ref->loc_code[i];
             }
         } else {
             /* data for the first subband is coded directly */
             for (i = 0; i < chan->gain_data[0].num_points; i++)
                 gainc_loc_mode0(gb, ctx, &chan->gain_data[0], i);
 
             for (sb = 1; sb < coded_subbands; sb++) {
                 if (chan->gain_data[sb].num_points <= 0)
                     continue;
                 dst = &chan->gain_data[sb];
 
                 /* 1st value is vlc-coded modulo delta to the corresponding
                  * value of the previous subband if any or zero */
                 delta = get_vlc2(gb, gain_vlc_tabs[6].table,
                                  gain_vlc_tabs[6].bits, 1);
                 pred             = dst[-1].num_points > 0
                                    ? dst[-1].loc_code[0] : 0;
                 dst->loc_code[0] = (pred + delta) & 0x1F;
 
                 for (i = 1; i < dst->num_points; i++) {
                     more_than_ref = i >= dst[-1].num_points;
                     /* Select VLC table according to curve direction and
                      * presence of prediction. */
                     tab = &gain_vlc_tabs[(dst->lev_code[i] > dst->lev_code[i - 1]) *
                                                    2 + more_than_ref + 6];
                     delta = get_vlc2(gb, tab->table, tab->bits, 1);
                     if (more_than_ref)
                         dst->loc_code[i] = dst->loc_code[i - 1] + delta;
                     else
                         dst->loc_code[i] = (dst[-1].loc_code[i] + delta) & 0x1F;
                 }
             }
         }
         break;
     case 3:
         if (ch_num) { /* clone master or direct or direct coding */
             for (sb = 0; sb < coded_subbands; sb++)
                 for (i = 0; i < chan->gain_data[sb].num_points; i++) {
                     if (i >= ref_chan->gain_data[sb].num_points)
                         gainc_loc_mode0(gb, ctx, &chan->gain_data[sb], i);
                     else
                         chan->gain_data[sb].loc_code[i] =
                             ref_chan->gain_data[sb].loc_code[i];
                 }
         } else { /* shorter delta to min */
             delta_bits = get_bits(gb, 2) + 1;
             min_val    = get_bits(gb, 5);
 
             for (sb = 0; sb < coded_subbands; sb++)
                 for (i = 0; i < chan->gain_data[sb].num_points; i++)
                     chan->gain_data[sb].loc_code[i] = min_val + i +
                                                       get_bits(gb, delta_bits);
         }
         break;
     }
 
     /* Validate decoded information */
     for (sb = 0; sb < coded_subbands; sb++) {
         dst = &chan->gain_data[sb];
         for (i = 0; i < chan->gain_data[sb].num_points; i++) {
             if (dst->loc_code[i] < 0 || dst->loc_code[i] > 31 ||
                 (i && dst->loc_code[i] <= dst->loc_code[i - 1])) {
                 av_log(avctx, AV_LOG_ERROR,
                        "Invalid gain location: ch=%d, sb=%d, pos=%d, val=%d\n",
                        ch_num, sb, i, dst->loc_code[i]);
                 return AVERROR_INVALIDDATA;
             }
         }
     }
 
     return 0;
 }
 
 /**
  * Decode gain control data for all channels.
  *
  * @param[in]     gb            the GetBit context
  * @param[in,out] ctx           ptr to the channel unit context
  * @param[in]     num_channels  number of channels to process
  * @param[in]     avctx         ptr to the AVCodecContext
  * @return result code: 0 = OK, otherwise - error code
  */
 static int decode_gainc_data(GetBitContext *gb, Atrac3pChanUnitCtx *ctx,
                              int num_channels, AVCodecContext *avctx)
 {
     int ch_num, coded_subbands, sb, ret;
 
     for (ch_num = 0; ch_num < num_channels; ch_num++) {
         memset(ctx->channels[ch_num].gain_data, 0,
                sizeof(*ctx->channels[ch_num].gain_data) * ATRAC3P_SUBBANDS);
 
         if (get_bits1(gb)) { /* gain control data present? */
             coded_subbands = get_bits(gb, 4) + 1;
             if (get_bits1(gb)) /* is high band gain data replication on? */
                 ctx->channels[ch_num].num_gain_subbands = get_bits(gb, 4) + 1;
             else
                 ctx->channels[ch_num].num_gain_subbands = coded_subbands;
 
             if ((ret = decode_gainc_npoints(gb, ctx, ch_num, coded_subbands)) < 0 ||
                 (ret = decode_gainc_levels(gb, ctx, ch_num, coded_subbands))  < 0 ||
                 (ret = decode_gainc_loc_codes(gb, ctx, ch_num, coded_subbands, avctx)) < 0)
                 return ret;
 
             if (coded_subbands > 0) { /* propagate gain data if requested */
                 for (sb = coded_subbands; sb < ctx->channels[ch_num].num_gain_subbands; sb++)
                     ctx->channels[ch_num].gain_data[sb] =
                         ctx->channels[ch_num].gain_data[sb - 1];
             }
         } else {
             ctx->channels[ch_num].num_gain_subbands = 0;
         }
     }
 
     return 0;
 }
 
 /**
  * Decode envelope for all tones of a channel.
  *
  * @param[in]     gb                the GetBit context
  * @param[in,out] ctx               ptr to the channel unit context
  * @param[in]     ch_num            channel to process
  * @param[in]     band_has_tones    ptr to an array of per-band-flags:
  *                                  1 - tone data present
  */
 static void decode_tones_envelope(GetBitContext *gb, Atrac3pChanUnitCtx *ctx,
                                   int ch_num, int band_has_tones[])
 {
     int sb;
     Atrac3pWavesData *dst = ctx->channels[ch_num].tones_info;
     Atrac3pWavesData *ref = ctx->channels[0].tones_info;
 
     if (!ch_num || !get_bits1(gb)) { /* mode 0: fixed-length coding */
         for (sb = 0; sb < ctx->waves_info->num_tone_bands; sb++) {
             if (!band_has_tones[sb])
                 continue;
             dst[sb].pend_env.has_start_point = get_bits1(gb);
             dst[sb].pend_env.start_pos       = dst[sb].pend_env.has_start_point
                                                ? get_bits(gb, 5) : -1;
             dst[sb].pend_env.has_stop_point  = get_bits1(gb);
             dst[sb].pend_env.stop_pos        = dst[sb].pend_env.has_stop_point
                                                ? get_bits(gb, 5) : 32;
         }
     } else { /* mode 1(slave only): copy master */
         for (sb = 0; sb < ctx->waves_info->num_tone_bands; sb++) {
             if (!band_has_tones[sb])
                 continue;
             dst[sb].pend_env.has_start_point = ref[sb].pend_env.has_start_point;
             dst[sb].pend_env.has_stop_point  = ref[sb].pend_env.has_stop_point;
             dst[sb].pend_env.start_pos       = ref[sb].pend_env.start_pos;
             dst[sb].pend_env.stop_pos        = ref[sb].pend_env.stop_pos;
         }
     }
 }
 
 /**
  * Decode number of tones for each subband of a channel.
  *
  * @param[in]     gb                the GetBit context
  * @param[in,out] ctx               ptr to the channel unit context
  * @param[in]     ch_num            channel to process
  * @param[in]     band_has_tones    ptr to an array of per-band-flags:
  *                                  1 - tone data present
  * @param[in]     avctx             ptr to the AVCodecContext
  * @return result code: 0 = OK, otherwise - error code
  */
 static int decode_band_numwavs(GetBitContext *gb, Atrac3pChanUnitCtx *ctx,
                                int ch_num, int band_has_tones[],
                                AVCodecContext *avctx)
 {
     int mode, sb, delta;
     Atrac3pWavesData *dst = ctx->channels[ch_num].tones_info;
     Atrac3pWavesData *ref = ctx->channels[0].tones_info;
 
     mode = get_bits(gb, ch_num + 1);
     switch (mode) {
     case 0: /** fixed-length coding */
         for (sb = 0; sb < ctx->waves_info->num_tone_bands; sb++)
             if (band_has_tones[sb])
                 dst[sb].num_wavs = get_bits(gb, 4);
         break;
     case 1: /** variable-length coding */
         for (sb = 0; sb < ctx->waves_info->num_tone_bands; sb++)
             if (band_has_tones[sb])
                 dst[sb].num_wavs =
                     get_vlc2(gb, tone_vlc_tabs[1].table,
                              tone_vlc_tabs[1].bits, 1);
         break;
     case 2: /** VLC modulo delta to master (slave only) */
         for (sb = 0; sb < ctx->waves_info->num_tone_bands; sb++)
             if (band_has_tones[sb]) {
                 delta = get_vlc2(gb, tone_vlc_tabs[2].table,
                                  tone_vlc_tabs[2].bits, 1);
                 delta = sign_extend(delta, 3);
                 dst[sb].num_wavs = (ref[sb].num_wavs + delta) & 0xF;
             }
         break;
     case 3: /** copy master (slave only) */
         for (sb = 0; sb < ctx->waves_info->num_tone_bands; sb++)
             if (band_has_tones[sb])
                 dst[sb].num_wavs = ref[sb].num_wavs;
         break;
     }
 
     /** initialize start tone index for each subband */
     for (sb = 0; sb < ctx->waves_info->num_tone_bands; sb++)
         if (band_has_tones[sb]) {
             if (ctx->waves_info->tones_index + dst[sb].num_wavs > 48) {
                 av_log(avctx, AV_LOG_ERROR,
                        "Too many tones: %d (max. 48), frame: %d!\n",
                        ctx->waves_info->tones_index + dst[sb].num_wavs,
                        avctx->frame_number);
                 return AVERROR_INVALIDDATA;
             }
             dst[sb].start_index           = ctx->waves_info->tones_index;
             ctx->waves_info->tones_index += dst[sb].num_wavs;
         }
 
     return 0;
 }
 
 /**
  * Decode frequency information for each subband of a channel.
  *
  * @param[in]     gb                the GetBit context
  * @param[in,out] ctx               ptr to the channel unit context
  * @param[in]     ch_num            channel to process
  * @param[in]     band_has_tones    ptr to an array of per-band-flags:
  *                                  1 - tone data present
  */
 static void decode_tones_frequency(GetBitContext *gb, Atrac3pChanUnitCtx *ctx,
                                    int ch_num, int band_has_tones[])
 {
     int sb, i, direction, nbits, pred, delta;
     Atrac3pWaveParam *iwav, *owav;
     Atrac3pWavesData *dst = ctx->channels[ch_num].tones_info;
     Atrac3pWavesData *ref = ctx->channels[0].tones_info;
 
     if (!ch_num || !get_bits1(gb)) { /* mode 0: fixed-length coding */
         for (sb = 0; sb < ctx->waves_info->num_tone_bands; sb++) {
             if (!band_has_tones[sb] || !dst[sb].num_wavs)
                 continue;
             iwav      = &ctx->waves_info->waves[dst[sb].start_index];
             direction = (dst[sb].num_wavs > 1) ? get_bits1(gb) : 0;
             if (direction) { /** packed numbers in descending order */
                 if (dst[sb].num_wavs)
                     iwav[dst[sb].num_wavs - 1].freq_index = get_bits(gb, 10);
                 for (i = dst[sb].num_wavs - 2; i >= 0 ; i--) {
                     nbits = av_log2(iwav[i+1].freq_index) + 1;
                     iwav[i].freq_index = get_bits(gb, nbits);
                 }
             } else { /** packed numbers in ascending order */
                 for (i = 0; i < dst[sb].num_wavs; i++) {
                     if (!i || iwav[i - 1].freq_index < 512)
                         iwav[i].freq_index = get_bits(gb, 10);
                     else {
                         nbits = av_log2(1023 - iwav[i - 1].freq_index) + 1;
                         iwav[i].freq_index = get_bits(gb, nbits) +
                                              1024 - (1 << nbits);
                     }
                 }
             }
         }
     } else { /* mode 1: VLC modulo delta to master (slave only) */
         for (sb = 0; sb < ctx->waves_info->num_tone_bands; sb++) {
             if (!band_has_tones[sb] || !dst[sb].num_wavs)
                 continue;
             iwav = &ctx->waves_info->waves[ref[sb].start_index];
             owav = &ctx->waves_info->waves[dst[sb].start_index];
             for (i = 0; i < dst[sb].num_wavs; i++) {
                 delta = get_vlc2(gb, tone_vlc_tabs[6].table,
                                  tone_vlc_tabs[6].bits, 1);
                 delta = sign_extend(delta, 8);
                 pred  = (i < ref[sb].num_wavs) ? iwav[i].freq_index :
                         (ref[sb].num_wavs ? iwav[ref[sb].num_wavs - 1].freq_index : 0);
                 owav[i].freq_index = (pred + delta) & 0x3FF;
             }
         }
     }
 }
 
 /**
  * Decode amplitude information for each subband of a channel.
  *
  * @param[in]     gb                the GetBit context
  * @param[in,out] ctx               ptr to the channel unit context
  * @param[in]     ch_num            channel to process
  * @param[in]     band_has_tones    ptr to an array of per-band-flags:
  *                                  1 - tone data present
  */
 static void decode_tones_amplitude(GetBitContext *gb, Atrac3pChanUnitCtx *ctx,
                                    int ch_num, int band_has_tones[])
 {
     int mode, sb, j, i, diff, maxdiff, fi, delta, pred;
     Atrac3pWaveParam *wsrc, *wref;
d16ec1b6
     int refwaves[48] = { 0 };
2e1fb96a
     Atrac3pWavesData *dst = ctx->channels[ch_num].tones_info;
     Atrac3pWavesData *ref = ctx->channels[0].tones_info;
 
     if (ch_num) {
         for (sb = 0; sb < ctx->waves_info->num_tone_bands; sb++) {
             if (!band_has_tones[sb] || !dst[sb].num_wavs)
                 continue;
             wsrc = &ctx->waves_info->waves[dst[sb].start_index];
             wref = &ctx->waves_info->waves[ref[sb].start_index];
             for (j = 0; j < dst[sb].num_wavs; j++) {
                 for (i = 0, fi = 0, maxdiff = 1024; i < ref[sb].num_wavs; i++) {
                     diff = FFABS(wsrc[j].freq_index - wref[i].freq_index);
                     if (diff < maxdiff) {
                         maxdiff = diff;
                         fi      = i;
                     }
                 }
 
                 if (maxdiff < 8)
                     refwaves[dst[sb].start_index + j] = fi + ref[sb].start_index;
                 else if (j < ref[sb].num_wavs)
                     refwaves[dst[sb].start_index + j] = j + ref[sb].start_index;
                 else
                     refwaves[dst[sb].start_index + j] = -1;
             }
         }
     }
 
     mode = get_bits(gb, ch_num + 1);
 
     switch (mode) {
     case 0: /** fixed-length coding */
         for (sb = 0; sb < ctx->waves_info->num_tone_bands; sb++) {
             if (!band_has_tones[sb] || !dst[sb].num_wavs)
                 continue;
             if (ctx->waves_info->amplitude_mode)
                 for (i = 0; i < dst[sb].num_wavs; i++)
                     ctx->waves_info->waves[dst[sb].start_index + i].amp_sf = get_bits(gb, 6);
             else
                 ctx->waves_info->waves[dst[sb].start_index].amp_sf = get_bits(gb, 6);
         }
         break;
     case 1: /** min + VLC delta */
         for (sb = 0; sb < ctx->waves_info->num_tone_bands; sb++) {
             if (!band_has_tones[sb] || !dst[sb].num_wavs)
                 continue;
             if (ctx->waves_info->amplitude_mode)
                 for (i = 0; i < dst[sb].num_wavs; i++)
                     ctx->waves_info->waves[dst[sb].start_index + i].amp_sf =
                         get_vlc2(gb, tone_vlc_tabs[3].table,
                                  tone_vlc_tabs[3].bits, 1) + 20;
             else
                 ctx->waves_info->waves[dst[sb].start_index].amp_sf =
                     get_vlc2(gb, tone_vlc_tabs[4].table,
                              tone_vlc_tabs[4].bits, 1) + 24;
         }
         break;
     case 2: /** VLC modulo delta to master (slave only) */
         for (sb = 0; sb < ctx->waves_info->num_tone_bands; sb++) {
             if (!band_has_tones[sb] || !dst[sb].num_wavs)
                 continue;
             for (i = 0; i < dst[sb].num_wavs; i++) {
                 delta = get_vlc2(gb, tone_vlc_tabs[5].table,
                                  tone_vlc_tabs[5].bits, 1);
                 delta = sign_extend(delta, 5);
                 pred  = refwaves[dst[sb].start_index + i] >= 0 ?
                         ctx->waves_info->waves[refwaves[dst[sb].start_index + i]].amp_sf : 34;
                 ctx->waves_info->waves[dst[sb].start_index + i].amp_sf = (pred + delta) & 0x3F;
             }
         }
         break;
     case 3: /** clone master (slave only) */
         for (sb = 0; sb < ctx->waves_info->num_tone_bands; sb++) {
             if (!band_has_tones[sb])
                 continue;
             for (i = 0; i < dst[sb].num_wavs; i++)
                 ctx->waves_info->waves[dst[sb].start_index + i].amp_sf =
                     refwaves[dst[sb].start_index + i] >= 0
                     ? ctx->waves_info->waves[refwaves[dst[sb].start_index + i]].amp_sf
                     : 32;
         }
         break;
     }
 }
 
 /**
  * Decode phase information for each subband of a channel.
  *
  * @param[in]     gb                the GetBit context
  * @param[in,out] ctx               ptr to the channel unit context
  * @param[in]     ch_num            channel to process
  * @param[in]     band_has_tones    ptr to an array of per-band-flags:
  *                                  1 - tone data present
  */
 static void decode_tones_phase(GetBitContext *gb, Atrac3pChanUnitCtx *ctx,
                                int ch_num, int band_has_tones[])
 {
     int sb, i;
     Atrac3pWaveParam *wparam;
     Atrac3pWavesData *dst = ctx->channels[ch_num].tones_info;
 
     for (sb = 0; sb < ctx->waves_info->num_tone_bands; sb++) {
         if (!band_has_tones[sb])
             continue;
         wparam = &ctx->waves_info->waves[dst[sb].start_index];
         for (i = 0; i < dst[sb].num_wavs; i++)
             wparam[i].phase_index = get_bits(gb, 5);
     }
 }
 
 /**
  * Decode tones info for all channels.
  *
  * @param[in]     gb            the GetBit context
  * @param[in,out] ctx           ptr to the channel unit context
  * @param[in]     num_channels  number of channels to process
  * @param[in]     avctx         ptr to the AVCodecContext
  * @return result code: 0 = OK, otherwise - error code
  */
 static int decode_tones_info(GetBitContext *gb, Atrac3pChanUnitCtx *ctx,
                              int num_channels, AVCodecContext *avctx)
 {
     int ch_num, i, ret;
     int band_has_tones[16];
 
4663a550
     for (ch_num = 0; ch_num < num_channels; ch_num++)
         memset(ctx->channels[ch_num].tones_info, 0,
                sizeof(*ctx->channels[ch_num].tones_info) * ATRAC3P_SUBBANDS);
 
2e1fb96a
     ctx->waves_info->tones_present = get_bits1(gb);
     if (!ctx->waves_info->tones_present)
         return 0;
 
     memset(ctx->waves_info->waves, 0, sizeof(ctx->waves_info->waves));
 
     ctx->waves_info->amplitude_mode = get_bits1(gb);
     if (!ctx->waves_info->amplitude_mode) {
         avpriv_report_missing_feature(avctx, "GHA amplitude mode 0");
         return AVERROR_PATCHWELCOME;
     }
 
     ctx->waves_info->num_tone_bands =
         get_vlc2(gb, tone_vlc_tabs[0].table,
                  tone_vlc_tabs[0].bits, 1) + 1;
 
     if (num_channels == 2) {
         get_subband_flags(gb, ctx->waves_info->tone_sharing, ctx->waves_info->num_tone_bands);
         get_subband_flags(gb, ctx->waves_info->tone_master,  ctx->waves_info->num_tone_bands);
4b343f7c
         get_subband_flags(gb, ctx->waves_info->invert_phase, ctx->waves_info->num_tone_bands);
2e1fb96a
     }
 
     ctx->waves_info->tones_index = 0;
 
     for (ch_num = 0; ch_num < num_channels; ch_num++) {
         for (i = 0; i < ctx->waves_info->num_tone_bands; i++)
             band_has_tones[i] = !ch_num ? 1 : !ctx->waves_info->tone_sharing[i];
 
         decode_tones_envelope(gb, ctx, ch_num, band_has_tones);
         if ((ret = decode_band_numwavs(gb, ctx, ch_num, band_has_tones,
                                        avctx)) < 0)
             return ret;
 
         decode_tones_frequency(gb, ctx, ch_num, band_has_tones);
         decode_tones_amplitude(gb, ctx, ch_num, band_has_tones);
         decode_tones_phase(gb, ctx, ch_num, band_has_tones);
     }
 
     if (num_channels == 2) {
         for (i = 0; i < ctx->waves_info->num_tone_bands; i++) {
             if (ctx->waves_info->tone_sharing[i])
                 ctx->channels[1].tones_info[i] = ctx->channels[0].tones_info[i];
 
             if (ctx->waves_info->tone_master[i])
                 FFSWAP(Atrac3pWavesData, ctx->channels[0].tones_info[i],
                        ctx->channels[1].tones_info[i]);
         }
     }
 
     return 0;
 }
 
 int ff_atrac3p_decode_channel_unit(GetBitContext *gb, Atrac3pChanUnitCtx *ctx,
                                    int num_channels, AVCodecContext *avctx)
 {
     int ret;
 
     /* parse sound header */
     ctx->num_quant_units = get_bits(gb, 5) + 1;
     if (ctx->num_quant_units > 28 && ctx->num_quant_units < 32) {
         av_log(avctx, AV_LOG_ERROR,
                "Invalid number of quantization units: %d!\n",
                ctx->num_quant_units);
         return AVERROR_INVALIDDATA;
     }
 
     ctx->mute_flag = get_bits1(gb);
 
     /* decode various sound parameters */
     if ((ret = decode_quant_wordlen(gb, ctx, num_channels, avctx)) < 0)
         return ret;
 
     ctx->num_subbands       = atrac3p_qu_to_subband[ctx->num_quant_units - 1] + 1;
     ctx->num_coded_subbands = ctx->used_quant_units
                               ? atrac3p_qu_to_subband[ctx->used_quant_units - 1] + 1
                               : 0;
 
     if ((ret = decode_scale_factors(gb, ctx, num_channels, avctx)) < 0)
         return ret;
 
     if ((ret = decode_code_table_indexes(gb, ctx, num_channels, avctx)) < 0)
         return ret;
 
     decode_spectrum(gb, ctx, num_channels, avctx);
 
     if (num_channels == 2) {
         get_subband_flags(gb, ctx->swap_channels, ctx->num_coded_subbands);
         get_subband_flags(gb, ctx->negate_coeffs, ctx->num_coded_subbands);
     }
 
     decode_window_shape(gb, ctx, num_channels);
 
     if ((ret = decode_gainc_data(gb, ctx, num_channels, avctx)) < 0)
         return ret;
 
     if ((ret = decode_tones_info(gb, ctx, num_channels, avctx)) < 0)
         return ret;
 
     /* decode global noise info */
     ctx->noise_present = get_bits1(gb);
     if (ctx->noise_present) {
         ctx->noise_level_index = get_bits(gb, 4);
         ctx->noise_table_index = get_bits(gb, 4);
     }
 
     return 0;
 }