libavcodec/qcelpdec.c
cb377ec5
 /*
  * QCELP decoder
  * Copyright (c) 2007 Reynaldo H. Verdejo Pinochet
  *
  * This file is part of FFmpeg.
  *
  * FFmpeg is free software; you can redistribute it and/or
  * modify it under the terms of the GNU Lesser General Public
  * License as published by the Free Software Foundation; either
  * version 2.1 of the License, or (at your option) any later version.
  *
  * FFmpeg is distributed in the hope that it will be useful,
  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  * Lesser General Public License for more details.
  *
  * You should have received a copy of the GNU Lesser General Public
  * License along with FFmpeg; if not, write to the Free Software
  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  */
1c3ae1ab
 
cb377ec5
 /**
ba87f080
  * @file
cb377ec5
  * QCELP decoder
  * @author Reynaldo H. Verdejo Pinochet
8e36385a
  * @remark FFmpeg merging spearheaded by Kenan Gillet
9e00c20e
  * @remark Development mentored by Benjamin Larson
cb377ec5
  */
 
 #include <stddef.h>
 
1fa0284c
 #include "libavutil/avassert.h"
a903f8f0
 #include "libavutil/channel_layout.h"
d56668bd
 #include "libavutil/float_dsp.h"
cb377ec5
 #include "avcodec.h"
dbbec0c2
 #include "internal.h"
9106a698
 #include "get_bits.h"
cb377ec5
 #include "qcelpdata.h"
 #include "celp_filters.h"
805a83d5
 #include "acelp_filters.h"
95e83257
 #include "acelp_vectors.h"
33ae681f
 #include "lsp.h"
cb377ec5
 
25c2d76b
 typedef enum {
adbfc605
     I_F_Q = -1,    /**< insufficient frame quality */
061f407e
     SILENCE,
     RATE_OCTAVE,
     RATE_QUARTER,
     RATE_HALF,
     RATE_FULL
 } qcelp_packet_rate;
 
7f9f771e
 typedef struct QCELPContext {
640760da
     GetBitContext     gb;
     qcelp_packet_rate bitrate;
adbfc605
     QCELPFrame        frame;    /**< unpacked data frame */
cf139541
 
     uint8_t  erasure_count;
adbfc605
     uint8_t  octave_count;      /**< count the consecutive RATE_OCTAVE frames */
cf139541
     float    prev_lspf[10];
adbfc605
     float    predictor_lspf[10];/**< LSP predictor for RATE_OCTAVE and I_F_Q */
cf139541
     float    pitch_synthesis_filter_mem[303];
     float    pitch_pre_filter_mem[303];
     float    rnd_fir_filter_mem[180];
     float    formant_mem[170];
     float    last_codebook_gain;
     int      prev_g1[2];
     int      prev_bitrate;
     float    pitch_gain[4];
     uint8_t  pitch_lag[4];
     uint16_t first16bits;
5a3e9f2c
     uint8_t  warned_buf_mismatch_bitrate;
805a83d5
 
     /* postfilter */
     float    postfilter_synth_mem[10];
     float    postfilter_agc_mem;
     float    postfilter_tilt_mem;
640760da
 } QCELPContext;
 
061f407e
 /**
39ded680
  * Initialize the speech codec according to the specification.
  *
  * TIA/EIA/IS-733 2.4.9
  */
1b321c5c
 static av_cold int qcelp_decode_init(AVCodecContext *avctx)
 {
39ded680
     QCELPContext *q = avctx->priv_data;
     int i;
 
e3d6ab57
     avctx->channels       = 1;
     avctx->channel_layout = AV_CH_LAYOUT_MONO;
     avctx->sample_fmt     = AV_SAMPLE_FMT_FLT;
39ded680
 
25c2d76b
     for (i = 0; i < 10; i++)
4a2ef394
         q->prev_lspf[i] = (i + 1) / 11.0;
39ded680
 
     return 0;
 }
 
 /**
49bd8e4b
  * Decode the 10 quantized LSP frequencies from the LSPV/LSP
  * transmission codes of any bitrate and check for badly received packets.
148c31b9
  *
  * @param q the context
  * @param lspf line spectral pair frequencies
  *
  * @return 0 on success, -1 if the packet is badly received
  *
  * TIA/EIA/IS-733 2.4.3.2.6.2-2, 2.4.8.7.3
  */
1b321c5c
 static int decode_lspf(QCELPContext *q, float *lspf)
 {
148c31b9
     int i;
cf139541
     float tmp_lspf, smooth, erasure_coeff;
     const float *predictors;
148c31b9
 
dd376b1a
     if (q->bitrate == RATE_OCTAVE || q->bitrate == I_F_Q) {
2fd29184
         predictors = q->prev_bitrate != RATE_OCTAVE &&
                      q->prev_bitrate != I_F_Q ? q->prev_lspf
                                               : q->predictor_lspf;
148c31b9
 
dd376b1a
         if (q->bitrate == RATE_OCTAVE) {
148c31b9
             q->octave_count++;
 
25c2d76b
             for (i = 0; i < 10; i++) {
148c31b9
                 q->predictor_lspf[i] =
640760da
                              lspf[i] = (q->frame.lspv[i] ?  QCELP_LSP_SPREAD_FACTOR
25c2d76b
                                                          : -QCELP_LSP_SPREAD_FACTOR) +
                                         predictors[i] * QCELP_LSP_OCTAVE_PREDICTOR   +
                                         (i + 1) * ((1 - QCELP_LSP_OCTAVE_PREDICTOR) / 11);
148c31b9
             }
2fd29184
             smooth = q->octave_count < 10 ? .875 : 0.1;
dd376b1a
         } else {
cf139541
             erasure_coeff = QCELP_LSP_OCTAVE_PREDICTOR;
148c31b9
 
1fa0284c
             av_assert2(q->bitrate == I_F_Q);
148c31b9
 
25c2d76b
             if (q->erasure_count > 1)
2fd29184
                 erasure_coeff *= q->erasure_count < 4 ? 0.9 : 0.7;
148c31b9
 
25c2d76b
             for (i = 0; i < 10; i++) {
148c31b9
                 q->predictor_lspf[i] =
25c2d76b
                              lspf[i] = (i + 1) * (1 - erasure_coeff) / 11 +
                                        erasure_coeff * predictors[i];
148c31b9
             }
             smooth = 0.125;
         }
 
         // Check the stability of the LSP frequencies.
         lspf[0] = FFMAX(lspf[0], QCELP_LSP_SPREAD_FACTOR);
25c2d76b
         for (i = 1; i < 10; i++)
2fd29184
             lspf[i] = FFMAX(lspf[i], lspf[i - 1] + QCELP_LSP_SPREAD_FACTOR);
148c31b9
 
2fd29184
         lspf[9] = FFMIN(lspf[9], 1.0 - QCELP_LSP_SPREAD_FACTOR);
25c2d76b
         for (i = 9; i > 0; i--)
2fd29184
             lspf[i - 1] = FFMIN(lspf[i - 1], lspf[i] - QCELP_LSP_SPREAD_FACTOR);
148c31b9
 
         // Low-pass filter the LSP frequencies.
25c2d76b
         ff_weighted_vector_sumf(lspf, lspf, q->prev_lspf, smooth, 1.0 - smooth, 10);
dd376b1a
     } else {
148c31b9
         q->octave_count = 0;
 
4a2ef394
         tmp_lspf = 0.0;
dd376b1a
         for (i = 0; i < 5; i++) {
25c2d76b
             lspf[2 * i + 0] = tmp_lspf += qcelp_lspvq[i][q->frame.lspv[i]][0] * 0.0001;
             lspf[2 * i + 1] = tmp_lspf += qcelp_lspvq[i][q->frame.lspv[i]][1] * 0.0001;
148c31b9
         }
 
         // Check for badly received packets.
dd376b1a
         if (q->bitrate == RATE_QUARTER) {
25c2d76b
             if (lspf[9] <= .70 || lspf[9] >= .97)
148c31b9
                 return -1;
25c2d76b
             for (i = 3; i < 10; i++)
                 if (fabs(lspf[i] - lspf[i - 2]) < .08)
148c31b9
                     return -1;
dd376b1a
         } else {
25c2d76b
             if (lspf[9] <= .66 || lspf[9] >= .985)
148c31b9
                 return -1;
25c2d76b
             for (i = 4; i < 10; i++)
                 if (fabs(lspf[i] - lspf[i - 4]) < .0931)
148c31b9
                     return -1;
         }
     }
     return 0;
 }
 
 /**
49bd8e4b
  * Convert codebook transmission codes to GAIN and INDEX.
640760da
  *
  * @param q the context
  * @param gain array holding the decoded gain
  *
  * TIA/EIA/IS-733 2.4.6.2
  */
25c2d76b
 static void decode_gain_and_index(QCELPContext *q, float *gain)
 {
     int i, subframes_count, g1[16];
640760da
     float slope;
 
dd376b1a
     if (q->bitrate >= RATE_QUARTER) {
         switch (q->bitrate) {
25c2d76b
         case RATE_FULL: subframes_count = 16; break;
         case RATE_HALF: subframes_count =  4; break;
         default:        subframes_count =  5;
640760da
         }
25c2d76b
         for (i = 0; i < subframes_count; i++) {
640760da
             g1[i] = 4 * q->frame.cbgain[i];
25c2d76b
             if (q->bitrate == RATE_FULL && !((i + 1) & 3)) {
                 g1[i] += av_clip((g1[i - 1] + g1[i - 2] + g1[i - 3]) / 3 - 6, 0, 32);
640760da
             }
 
             gain[i] = qcelp_g12ga[g1[i]];
 
dd376b1a
             if (q->frame.cbsign[i]) {
640760da
                 gain[i] = -gain[i];
25c2d76b
                 q->frame.cindex[i] = (q->frame.cindex[i] - 89) & 127;
640760da
             }
         }
 
25c2d76b
         q->prev_g1[0]         = g1[i - 2];
         q->prev_g1[1]         = g1[i - 1];
         q->last_codebook_gain = qcelp_g12ga[g1[i - 1]];
640760da
 
dd376b1a
         if (q->bitrate == RATE_QUARTER) {
640760da
             // Provide smoothing of the unvoiced excitation energy.
25c2d76b
             gain[7] =       gain[4];
             gain[6] = 0.4 * gain[3] + 0.6 * gain[4];
             gain[5] =       gain[3];
             gain[4] = 0.8 * gain[2] + 0.2 * gain[3];
             gain[3] = 0.2 * gain[1] + 0.8 * gain[2];
             gain[2] =       gain[1];
             gain[1] = 0.6 * gain[0] + 0.4 * gain[1];
640760da
         }
dd376b1a
     } else if (q->bitrate != SILENCE) {
         if (q->bitrate == RATE_OCTAVE) {
25c2d76b
             g1[0] = 2 * q->frame.cbgain[0] +
                     av_clip((q->prev_g1[0] + q->prev_g1[1]) / 2 - 5, 0, 54);
640760da
             subframes_count = 8;
dd376b1a
         } else {
1fa0284c
             av_assert2(q->bitrate == I_F_Q);
640760da
 
             g1[0] = q->prev_g1[1];
dd376b1a
             switch (q->erasure_count) {
25c2d76b
             case 1 : break;
             case 2 : g1[0] -= 1; break;
             case 3 : g1[0] -= 2; break;
             default: g1[0] -= 6;
640760da
             }
25c2d76b
             if (g1[0] < 0)
640760da
                 g1[0] = 0;
             subframes_count = 4;
         }
         // This interpolation is done to produce smoother background noise.
25c2d76b
         slope = 0.5 * (qcelp_g12ga[g1[0]] - q->last_codebook_gain) / subframes_count;
         for (i = 1; i <= subframes_count; i++)
                 gain[i - 1] = q->last_codebook_gain + slope * i;
640760da
 
25c2d76b
         q->last_codebook_gain = gain[i - 2];
         q->prev_g1[0]         = q->prev_g1[1];
         q->prev_g1[1]         = g1[0];
640760da
     }
 }
 
 /**
1b321c5c
  * If the received packet is Rate 1/4 a further sanity check is made of the
  * codebook gain.
148c31b9
  *
  * @param cbgain the unpacked cbgain array
  * @return -1 if the sanity check fails, 0 otherwise
  *
  * TIA/EIA/IS-733 2.4.8.7.3
  */
1b321c5c
 static int codebook_sanity_check_for_rate_quarter(const uint8_t *cbgain)
 {
25c2d76b
     int i, diff, prev_diff = 0;
148c31b9
 
25c2d76b
     for (i = 1; i < 5; i++) {
cf139541
         diff = cbgain[i] - cbgain[i-1];
25c2d76b
         if (FFABS(diff) > 10)
1b321c5c
             return -1;
25c2d76b
         else if (FFABS(diff - prev_diff) > 12)
1b321c5c
             return -1;
         prev_diff = diff;
8372e3d2
     }
     return 0;
148c31b9
 }
 
 /**
49bd8e4b
  * Compute the scaled codebook vector Cdn From INDEX and GAIN
39ded680
  * for all rates.
  *
  * The specification lacks some information here.
  *
  * TIA/EIA/IS-733 has an omission on the codebook index determination
  * formula for RATE_FULL and RATE_HALF frames at section 2.4.8.1.1. It says
  * you have to subtract the decoded index parameter from the given scaled
  * codebook vector index 'n' to get the desired circular codebook index, but
  * it does not mention that you have to clamp 'n' to [0-9] in order to get
  * RI-compliant results.
  *
  * The reason for this mistake seems to be the fact they forgot to mention you
  * have to do these calculations per codebook subframe and adjust given
  * equation values accordingly.
  *
  * @param q the context
  * @param gain array holding the 4 pitch subframe gain values
  * @param cdn_vector array for the generated scaled codebook vector
  */
b12c7627
 static void compute_svector(QCELPContext *q, const float *gain,
1b321c5c
                             float *cdn_vector)
 {
25c2d76b
     int i, j, k;
39ded680
     uint16_t cbseed, cindex;
25c2d76b
     float *rnd, tmp_gain, fir_filter_value;
39ded680
 
dd376b1a
     switch (q->bitrate) {
25c2d76b
     case RATE_FULL:
         for (i = 0; i < 16; i++) {
             tmp_gain = gain[i] * QCELP_RATE_FULL_CODEBOOK_RATIO;
             cindex   = -q->frame.cindex[i];
             for (j = 0; j < 10; j++)
84cdd2fd
                 *cdn_vector++ = tmp_gain *
                                 qcelp_rate_full_codebook[cindex++ & 127];
25c2d76b
         }
39ded680
         break;
25c2d76b
     case RATE_HALF:
         for (i = 0; i < 4; i++) {
             tmp_gain = gain[i] * QCELP_RATE_HALF_CODEBOOK_RATIO;
             cindex   = -q->frame.cindex[i];
             for (j = 0; j < 40; j++)
84cdd2fd
                 *cdn_vector++ = tmp_gain *
                                 qcelp_rate_half_codebook[cindex++ & 127];
25c2d76b
         }
39ded680
         break;
25c2d76b
     case RATE_QUARTER:
         cbseed = (0x0003 & q->frame.lspv[4]) << 14 |
                  (0x003F & q->frame.lspv[3]) <<  8 |
                  (0x0060 & q->frame.lspv[2]) <<  1 |
                  (0x0007 & q->frame.lspv[1]) <<  3 |
                  (0x0038 & q->frame.lspv[0]) >>  3;
         rnd    = q->rnd_fir_filter_mem + 20;
         for (i = 0; i < 8; i++) {
             tmp_gain = gain[i] * (QCELP_SQRT1887 / 32768.0);
             for (k = 0; k < 20; k++) {
                 cbseed = 521 * cbseed + 259;
                 *rnd   = (int16_t) cbseed;
1b321c5c
 
                     // FIR filter
25c2d76b
                 fir_filter_value = 0.0;
                 for (j = 0; j < 10; j++)
                     fir_filter_value += qcelp_rnd_fir_coefs[j] *
                                         (rnd[-j] + rnd[-20+j]);
 
                 fir_filter_value += qcelp_rnd_fir_coefs[10] * rnd[-10];
                 *cdn_vector++     = tmp_gain * fir_filter_value;
                 rnd++;
39ded680
             }
25c2d76b
         }
         memcpy(q->rnd_fir_filter_mem, q->rnd_fir_filter_mem + 160,
                20 * sizeof(float));
39ded680
         break;
25c2d76b
     case RATE_OCTAVE:
         cbseed = q->first16bits;
         for (i = 0; i < 8; i++) {
             tmp_gain = gain[i] * (QCELP_SQRT1887 / 32768.0);
             for (j = 0; j < 20; j++) {
                 cbseed        = 521 * cbseed + 259;
                 *cdn_vector++ = tmp_gain * (int16_t) cbseed;
39ded680
             }
25c2d76b
         }
39ded680
         break;
25c2d76b
     case I_F_Q:
         cbseed = -44; // random codebook index
         for (i = 0; i < 4; i++) {
             tmp_gain = gain[i] * QCELP_RATE_FULL_CODEBOOK_RATIO;
             for (j = 0; j < 40; j++)
84cdd2fd
                 *cdn_vector++ = tmp_gain *
                                 qcelp_rate_full_codebook[cbseed++ & 127];
25c2d76b
         }
39ded680
         break;
25c2d76b
     case SILENCE:
         memset(cdn_vector, 0, 160 * sizeof(float));
4f54fb54
         break;
39ded680
     }
 }
 
 /**
809e07c6
  * Apply generic gain control.
  *
  * @param v_out output vector
  * @param v_in gain-controlled vector
  * @param v_ref vector to control gain of
  *
  * TIA/EIA/IS-733 2.4.8.3, 2.4.8.6
  */
25c2d76b
 static void apply_gain_ctrl(float *v_out, const float *v_ref, const float *v_in)
1b321c5c
 {
0c50f8e6
     int i;
39ded680
 
d56668bd
     for (i = 0; i < 160; i += 40) {
         float res = avpriv_scalarproduct_float_c(v_ref + i, v_ref + i, 40);
         ff_scale_vector_to_given_sum_of_squares(v_out + i, v_in + i, res, 40);
     }
39ded680
 }
 
 /**
cb377ec5
  * Apply filter in pitch-subframe steps.
  *
  * @param memory buffer for the previous state of the filter
  *        - must be able to contain 303 elements
  *        - the 143 first elements are from the previous state
  *        - the next 160 are for output
  * @param v_in input filter vector
  * @param gain per-subframe gain array, each element is between 0.0 and 2.0
  * @param lag per-subframe lag array, each element is
  *        - between 16 and 143 if its corresponding pfrac is 0,
  *        - between 16 and 139 otherwise
1b321c5c
  * @param pfrac per-subframe boolean array, 1 if the lag is fractional, 0
  *        otherwise
cb377ec5
  *
  * @return filter output vector
  */
1c3ae1ab
 static const float *do_pitchfilter(float memory[303], const float v_in[160],
                                    const float gain[4], const uint8_t *lag,
                                    const uint8_t pfrac[4])
 {
25c2d76b
     int i, j;
     float *v_lag, *v_out;
cb377ec5
     const float *v_len;
 
     v_out = memory + 143; // Output vector starts at memory[143].
 
dd376b1a
     for (i = 0; i < 4; i++) {
         if (gain[i]) {
cb377ec5
             v_lag = memory + 143 + 40 * i - lag[i];
dd376b1a
             for (v_len = v_in + 40; v_in < v_len; v_in++) {
                 if (pfrac[i]) { // If it is a fractional lag...
4a2ef394
                     for (j = 0, *v_out = 0.0; j < 4; j++)
84cdd2fd
                         *v_out += qcelp_hammsinc_table[j] *
                                   (v_lag[j - 4] + v_lag[3 - j]);
25c2d76b
                 } else
cb377ec5
                     *v_out = *v_lag;
 
                 *v_out = *v_in + gain[i] * *v_out;
 
                 v_lag++;
                 v_out++;
             }
dd376b1a
         } else {
cb377ec5
             memcpy(v_out, v_in, 40 * sizeof(float));
             v_in  += 40;
             v_out += 40;
         }
1c3ae1ab
     }
cb377ec5
 
     memmove(memory, memory + 160, 143 * sizeof(float));
     return memory + 143;
 }
 
200de8c6
 /**
73b458e3
  * Apply pitch synthesis filter and pitch prefilter to the scaled codebook vector.
4f54fb54
  * TIA/EIA/IS-733 2.4.5.2, 2.4.8.7.2
73b458e3
  *
  * @param q the context
  * @param cdn_vector the scaled codebook vector
  */
cf139541
 static void apply_pitch_filters(QCELPContext *q, float *cdn_vector)
 {
25c2d76b
     int i;
73b458e3
     const float *v_synthesis_filtered, *v_pre_filtered;
 
25c2d76b
     if (q->bitrate >= RATE_HALF || q->bitrate == SILENCE ||
         (q->bitrate == I_F_Q && (q->prev_bitrate >= RATE_HALF))) {
73b458e3
 
25c2d76b
         if (q->bitrate >= RATE_HALF) {
73b458e3
             // Compute gain & lag for the whole frame.
dd376b1a
             for (i = 0; i < 4; i++) {
73b458e3
                 q->pitch_gain[i] = q->frame.plag[i] ? (q->frame.pgain[i] + 1) * 0.25 : 0.0;
 
                 q->pitch_lag[i] = q->frame.plag[i] + 16;
             }
dd376b1a
         } else {
3f16ed15
             float max_pitch_gain;
 
dd376b1a
             if (q->bitrate == I_F_Q) {
a3636fa0
                   if (q->erasure_count < 3)
                       max_pitch_gain = 0.9 - 0.3 * (q->erasure_count - 1);
                   else
                       max_pitch_gain = 0.0;
dd376b1a
             } else {
1fa0284c
                 av_assert2(q->bitrate == SILENCE);
4f54fb54
                 max_pitch_gain = 1.0;
             }
25c2d76b
             for (i = 0; i < 4; i++)
73b458e3
                 q->pitch_gain[i] = FFMIN(q->pitch_gain[i], max_pitch_gain);
 
             memset(q->frame.pfrac, 0, sizeof(q->frame.pfrac));
         }
 
         // pitch synthesis filter
cf139541
         v_synthesis_filtered = do_pitchfilter(q->pitch_synthesis_filter_mem,
                                               cdn_vector, q->pitch_gain,
                                               q->pitch_lag, q->frame.pfrac);
73b458e3
 
         // pitch prefilter update
25c2d76b
         for (i = 0; i < 4; i++)
73b458e3
             q->pitch_gain[i] = 0.5 * FFMIN(q->pitch_gain[i], 1.0);
 
25c2d76b
         v_pre_filtered       = do_pitchfilter(q->pitch_pre_filter_mem,
                                               v_synthesis_filtered,
                                               q->pitch_gain, q->pitch_lag,
                                               q->frame.pfrac);
73b458e3
 
         apply_gain_ctrl(cdn_vector, v_synthesis_filtered, v_pre_filtered);
dd376b1a
     } else {
84cdd2fd
         memcpy(q->pitch_synthesis_filter_mem,
                cdn_vector + 17, 143 * sizeof(float));
cf139541
         memcpy(q->pitch_pre_filter_mem, cdn_vector + 17, 143 * sizeof(float));
73b458e3
         memset(q->pitch_gain, 0, sizeof(q->pitch_gain));
         memset(q->pitch_lag,  0, sizeof(q->pitch_lag));
     }
 }
 
 /**
49bd8e4b
  * Reconstruct LPC coefficients from the line spectral pair frequencies
  * and perform bandwidth expansion.
87574416
  *
  * @param lspf line spectral pair frequencies
  * @param lpc linear predictive coding coefficients
  *
e19f9952
  * @note: bandwidth_expansion_coeff could be precalculated into a table
87574416
  *        but it seems to be slower on x86
  *
  * TIA/EIA/IS-733 2.4.3.3.5
  */
3c00556f
 static void lspf2lpc(const float *lspf, float *lpc)
87574416
 {
1e1e02ea
     double lsp[10];
e19f9952
     double bandwidth_expansion_coeff = QCELP_BANDWIDTH_EXPANSION_COEFF;
25c2d76b
     int i;
87574416
 
25c2d76b
     for (i = 0; i < 10; i++)
1e1e02ea
         lsp[i] = cos(M_PI * lspf[i]);
87574416
 
e26d1318
     ff_acelp_lspd2lpc(lsp, lpc, 5);
87574416
 
dd376b1a
     for (i = 0; i < 10; i++) {
25c2d76b
         lpc[i]                    *= bandwidth_expansion_coeff;
e19f9952
         bandwidth_expansion_coeff *= QCELP_BANDWIDTH_EXPANSION_COEFF;
87574416
     }
 }
 
 /**
48966b02
  * Interpolate LSP frequencies and compute LPC coefficients
148c31b9
  * for a given bitrate & pitch subframe.
200de8c6
  *
4f54fb54
  * TIA/EIA/IS-733 2.4.3.3.4, 2.4.8.7.2
200de8c6
  *
  * @param q the context
  * @param curr_lspf LSP frequencies vector of the current frame
  * @param lpc float vector for the resulting LPC
  * @param subframe_num frame number in decoded stream
  */
0e426b7a
 static void interpolate_lpc(QCELPContext *q, const float *curr_lspf,
                             float *lpc, const int subframe_num)
1c3ae1ab
 {
200de8c6
     float interpolated_lspf[10];
     float weight;
 
25c2d76b
     if (q->bitrate >= RATE_QUARTER)
200de8c6
         weight = 0.25 * (subframe_num + 1);
25c2d76b
     else if (q->bitrate == RATE_OCTAVE && !subframe_num)
200de8c6
         weight = 0.625;
1c3ae1ab
     else
200de8c6
         weight = 1.0;
 
dd376b1a
     if (weight != 1.0) {
95e83257
         ff_weighted_vector_sumf(interpolated_lspf, curr_lspf, q->prev_lspf,
d2af5697
                                 weight, 1.0 - weight, 10);
87574416
         lspf2lpc(interpolated_lspf, lpc);
25c2d76b
     } else if (q->bitrate >= RATE_QUARTER ||
                (q->bitrate == I_F_Q && !subframe_num))
87574416
         lspf2lpc(curr_lspf, lpc);
25c2d76b
     else if (q->bitrate == SILENCE && !subframe_num)
87574416
         lspf2lpc(q->prev_lspf, lpc);
200de8c6
 }
 
6e74619e
 static qcelp_packet_rate buf_size2bitrate(const int buf_size)
1c3ae1ab
 {
dd376b1a
     switch (buf_size) {
25c2d76b
     case 35: return RATE_FULL;
     case 17: return RATE_HALF;
     case  8: return RATE_QUARTER;
     case  4: return RATE_OCTAVE;
     case  1: return SILENCE;
2ae1a9b2
     }
1c3ae1ab
 
6e74619e
     return I_F_Q;
2ae1a9b2
 }
 
061f407e
 /**
  * Determine the bitrate from the frame size and/or the first byte of the frame.
  *
  * @param avctx the AV codec context
  * @param buf_size length of the buffer
  * @param buf the bufffer
  *
  * @return the bitrate on success,
  *         I_F_Q  if the bitrate cannot be satisfactorily determined
  *
  * TIA/EIA/IS-733 2.4.8.7.1
  */
25c2d76b
 static qcelp_packet_rate determine_bitrate(AVCodecContext *avctx,
                                            const int buf_size,
                                            const uint8_t **buf)
cf139541
 {
061f407e
     qcelp_packet_rate bitrate;
 
dd376b1a
     if ((bitrate = buf_size2bitrate(buf_size)) >= 0) {
         if (bitrate > **buf) {
5a3e9f2c
             QCELPContext *q = avctx->priv_data;
dd376b1a
             if (!q->warned_buf_mismatch_bitrate) {
cf139541
             av_log(avctx, AV_LOG_WARNING,
                    "Claimed bitrate and buffer size mismatch.\n");
5a3e9f2c
                 q->warned_buf_mismatch_bitrate = 1;
             }
061f407e
             bitrate = **buf;
dd376b1a
         } else if (bitrate < **buf) {
cf139541
             av_log(avctx, AV_LOG_ERROR,
                    "Buffer is too small for the claimed bitrate.\n");
061f407e
             return I_F_Q;
         }
         (*buf)++;
dd376b1a
     } else if ((bitrate = buf_size2bitrate(buf_size + 1)) >= 0) {
061f407e
         av_log(avctx, AV_LOG_WARNING,
b295bce1
                "Bitrate byte missing, guessing bitrate from packet size.\n");
25c2d76b
     } else
061f407e
         return I_F_Q;
 
dd376b1a
     if (bitrate == SILENCE) {
6d97484d
         // FIXME: Remove this warning when tested with samples.
         avpriv_request_sample(avctx, "Blank frame handling");
061f407e
     }
     return bitrate;
 }
 
cb377ec5
 static void warn_insufficient_frame_quality(AVCodecContext *avctx,
1c3ae1ab
                                             const char *message)
 {
25c2d76b
     av_log(avctx, AV_LOG_WARNING, "Frame #%d, IFQ: %s\n",
            avctx->frame_number, message);
cb377ec5
 }
200de8c6
 
805a83d5
 static void postfilter(QCELPContext *q, float *samples, float *lpc)
 {
     static const float pow_0_775[10] = {
         0.775000, 0.600625, 0.465484, 0.360750, 0.279582,
         0.216676, 0.167924, 0.130141, 0.100859, 0.078166
     }, pow_0_625[10] = {
         0.625000, 0.390625, 0.244141, 0.152588, 0.095367,
         0.059605, 0.037253, 0.023283, 0.014552, 0.009095
     };
     float lpc_s[10], lpc_p[10], pole_out[170], zero_out[160];
     int n;
 
     for (n = 0; n < 10; n++) {
         lpc_s[n] = lpc[n] * pow_0_625[n];
         lpc_p[n] = lpc[n] * pow_0_775[n];
     }
 
     ff_celp_lp_zero_synthesis_filterf(zero_out, lpc_s,
                                       q->formant_mem + 10, 160, 10);
25c2d76b
     memcpy(pole_out, q->postfilter_synth_mem, sizeof(float) * 10);
805a83d5
     ff_celp_lp_synthesis_filterf(pole_out + 10, lpc_p, zero_out, 160, 10);
     memcpy(q->postfilter_synth_mem, pole_out + 160, sizeof(float) * 10);
 
     ff_tilt_compensation(&q->postfilter_tilt_mem, 0.3, pole_out + 10, 160);
 
     ff_adaptive_gain_control(samples, pole_out + 10,
d56668bd
                              avpriv_scalarproduct_float_c(q->formant_mem + 10,
                                                           q->formant_mem + 10,
                                                           160),
25c2d76b
                              160, 0.9375, &q->postfilter_agc_mem);
805a83d5
 }
 
0eea2129
 static int qcelp_decode_frame(AVCodecContext *avctx, void *data,
                               int *got_frame_ptr, AVPacket *avpkt)
cf139541
 {
7a00bbad
     const uint8_t *buf = avpkt->data;
25c2d76b
     int buf_size       = avpkt->size;
     QCELPContext *q    = avctx->priv_data;
1b9b6d6e
     AVFrame *frame     = data;
0eea2129
     float *outbuffer;
     int   i, ret;
cf139541
     float quantized_lspf[10], lpc[10];
     float gain[16];
     float *formant_mem;
 
0eea2129
     /* get output buffer */
1b9b6d6e
     frame->nb_samples = 160;
1ec94b0f
     if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
0eea2129
         return ret;
1b9b6d6e
     outbuffer = (float *)frame->data[0];
e43dd3d2
 
dd376b1a
     if ((q->bitrate = determine_bitrate(avctx, buf_size, &buf)) == I_F_Q) {
b295bce1
         warn_insufficient_frame_quality(avctx, "Bitrate cannot be determined.");
640760da
         goto erasure;
     }
 
25c2d76b
     if (q->bitrate == RATE_OCTAVE &&
         (q->first16bits = AV_RB16(buf)) == 0xFFFF) {
640760da
         warn_insufficient_frame_quality(avctx, "Bitrate is 1/8 and first 16 bits are on.");
         goto erasure;
     }
 
dd376b1a
     if (q->bitrate > SILENCE) {
640760da
         const QCELPBitmap *bitmaps     = qcelp_unpacking_bitmaps_per_rate[q->bitrate];
25c2d76b
         const QCELPBitmap *bitmaps_end = qcelp_unpacking_bitmaps_per_rate[q->bitrate] +
                                          qcelp_unpacking_bitmaps_lengths[q->bitrate];
         uint8_t *unpacked_data         = (uint8_t *)&q->frame;
640760da
 
e9eb94ac
         if ((ret = init_get_bits8(&q->gb, buf, buf_size)) < 0)
             return ret;
640760da
 
         memset(&q->frame, 0, sizeof(QCELPFrame));
 
25c2d76b
         for (; bitmaps < bitmaps_end; bitmaps++)
640760da
             unpacked_data[bitmaps->index] |= get_bits(&q->gb, bitmaps->bitlen) << bitmaps->bitpos;
 
         // Check for erasures/blanks on rates 1, 1/4 and 1/8.
dd376b1a
         if (q->frame.reserved) {
640760da
             warn_insufficient_frame_quality(avctx, "Wrong data in reserved frame area.");
             goto erasure;
         }
25c2d76b
         if (q->bitrate == RATE_QUARTER &&
             codebook_sanity_check_for_rate_quarter(q->frame.cbgain)) {
640760da
             warn_insufficient_frame_quality(avctx, "Codebook gain sanity check failed.");
             goto erasure;
         }
 
dd376b1a
         if (q->bitrate >= RATE_HALF) {
             for (i = 0; i < 4; i++) {
                 if (q->frame.pfrac[i] && q->frame.plag[i] >= 124) {
640760da
                     warn_insufficient_frame_quality(avctx, "Cannot initialize pitch filter.");
                     goto erasure;
                 }
             }
         }
     }
 
     decode_gain_and_index(q, gain);
     compute_svector(q, gain, outbuffer);
 
dd376b1a
     if (decode_lspf(q, quantized_lspf) < 0) {
640760da
         warn_insufficient_frame_quality(avctx, "Badly received packets in frame.");
         goto erasure;
     }
 
     apply_pitch_filters(q, outbuffer);
 
dd376b1a
     if (q->bitrate == I_F_Q) {
640760da
 erasure:
         q->bitrate = I_F_Q;
         q->erasure_count++;
         decode_gain_and_index(q, gain);
         compute_svector(q, gain, outbuffer);
         decode_lspf(q, quantized_lspf);
         apply_pitch_filters(q, outbuffer);
25c2d76b
     } else
640760da
         q->erasure_count = 0;
 
     formant_mem = q->formant_mem + 10;
dd376b1a
     for (i = 0; i < 4; i++) {
640760da
         interpolate_lpc(q, quantized_lspf, lpc, i);
84cdd2fd
         ff_celp_lp_synthesis_filterf(formant_mem, lpc,
                                      outbuffer + i * 40, 40, 10);
640760da
         formant_mem += 40;
     }
 
805a83d5
     // postfilter, as per TIA/EIA/IS-733 2.4.8.6
     postfilter(q, outbuffer, lpc);
 
     memcpy(q->formant_mem, q->formant_mem + 160, 10 * sizeof(float));
640760da
 
     memcpy(q->prev_lspf, quantized_lspf, sizeof(q->prev_lspf));
25c2d76b
     q->prev_bitrate  = q->bitrate;
640760da
 
1b9b6d6e
     *got_frame_ptr = 1;
640760da
 
04c13dca
     return buf_size;
640760da
 }
 
25c2d76b
 AVCodec ff_qcelp_decoder = {
     .name           = "qcelp",
b2bed932
     .long_name      = NULL_IF_CONFIG_SMALL("QCELP / PureVoice"),
25c2d76b
     .type           = AVMEDIA_TYPE_AUDIO,
36ef5369
     .id             = AV_CODEC_ID_QCELP,
25c2d76b
     .init           = qcelp_decode_init,
     .decode         = qcelp_decode_frame,
def97856
     .capabilities   = AV_CODEC_CAP_DR1,
200de8c6
     .priv_data_size = sizeof(QCELPContext),
 };