libavcodec/aacsbr_fixed.c
f85bc147
 /*
  * Copyright (c) 2013
  *      MIPS Technologies, Inc., California.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  * 3. Neither the name of the MIPS Technologies, Inc., nor the names of its
  *    contributors may be used to endorse or promote products derived from
  *    this software without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE MIPS TECHNOLOGIES, INC. ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE MIPS TECHNOLOGIES, INC. BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  *
  * AAC Spectral Band Replication decoding functions (fixed-point)
  * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
  * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
  *
  * This file is part of FFmpeg.
  *
  * FFmpeg is free software; you can redistribute it and/or
  * modify it under the terms of the GNU Lesser General Public
  * License as published by the Free Software Foundation; either
  * version 2.1 of the License, or (at your option) any later version.
  *
  * FFmpeg is distributed in the hope that it will be useful,
  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  * Lesser General Public License for more details.
  *
  * You should have received a copy of the GNU Lesser General Public
  * License along with FFmpeg; if not, write to the Free Software
  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  */
 
 /**
  * @file
  * AAC Spectral Band Replication decoding functions (fixed-point)
  * Note: Rounding-to-nearest used unless otherwise stated
  * @author Robert Swain ( rob opendot cl )
  * @author Stanislav Ocovaj ( stanislav.ocovaj imgtec com )
  */
 #define USE_FIXED 1
 
 #include "aac.h"
 #include "sbr.h"
 #include "aacsbr.h"
 #include "aacsbrdata.h"
 #include "aacsbr_fixed_tablegen.h"
 #include "fft.h"
 #include "aacps.h"
 #include "sbrdsp.h"
 #include "libavutil/internal.h"
 #include "libavutil/libm.h"
 #include "libavutil/avassert.h"
 
 #include <stdint.h>
 #include <float.h>
 #include <math.h>
 
 static VLC vlc_sbr[10];
 static void aacsbr_func_ptr_init(AACSBRContext *c);
 static const int CONST_LN2       = Q31(0.6931471806/256);  // ln(2)/256
 static const int CONST_RECIP_LN2 = Q31(0.7213475204);      // 0.5/ln(2)
 static const int CONST_076923    = Q31(0.76923076923076923077f);
 
e10ef328
 static const int fixed_log_table[10] =
f85bc147
 {
     Q31(1.0/2), Q31(1.0/3), Q31(1.0/4), Q31(1.0/5), Q31(1.0/6),
     Q31(1.0/7), Q31(1.0/8), Q31(1.0/9), Q31(1.0/10), Q31(1.0/11)
 };
 
 static int fixed_log(int x)
 {
     int i, ret, xpow, tmp;
 
     ret = x;
     xpow = x;
     for (i=0; i<10; i+=2){
         xpow = (int)(((int64_t)xpow * x + 0x40000000) >> 31);
         tmp = (int)(((int64_t)xpow * fixed_log_table[i] + 0x40000000) >> 31);
         ret -= tmp;
 
         xpow = (int)(((int64_t)xpow * x + 0x40000000) >> 31);
         tmp = (int)(((int64_t)xpow * fixed_log_table[i+1] + 0x40000000) >> 31);
         ret += tmp;
     }
 
     return ret;
 }
 
e10ef328
 static const int fixed_exp_table[7] =
f85bc147
 {
     Q31(1.0/2), Q31(1.0/6), Q31(1.0/24), Q31(1.0/120),
     Q31(1.0/720), Q31(1.0/5040), Q31(1.0/40320)
 };
 
 static int fixed_exp(int x)
 {
     int i, ret, xpow, tmp;
 
     ret = 0x800000 + x;
     xpow = x;
     for (i=0; i<7; i++){
         xpow = (int)(((int64_t)xpow * x + 0x400000) >> 23);
         tmp = (int)(((int64_t)xpow * fixed_exp_table[i] + 0x40000000) >> 31);
         ret += tmp;
     }
 
     return ret;
 }
 
 static void make_bands(int16_t* bands, int start, int stop, int num_bands)
 {
     int k, previous, present;
     int base, prod, nz = 0;
 
     base = (stop << 23) / start;
     while (base < 0x40000000){
         base <<= 1;
         nz++;
     }
     base = fixed_log(base - 0x80000000);
     base = (((base + 0x80) >> 8) + (8-nz)*CONST_LN2) / num_bands;
     base = fixed_exp(base);
 
     previous = start;
     prod = start << 23;
 
     for (k = 0; k < num_bands-1; k++) {
         prod = (int)(((int64_t)prod * base + 0x400000) >> 23);
         present = (prod + 0x400000) >> 23;
         bands[k] = present - previous;
         previous = present;
     }
     bands[num_bands-1] = stop - previous;
 }
 
 /// Dequantization and stereo decoding (14496-3 sp04 p203)
 static void sbr_dequant(SpectralBandReplication *sbr, int id_aac)
 {
     int k, e;
     int ch;
 
     if (id_aac == TYPE_CPE && sbr->bs_coupling) {
         int alpha      = sbr->data[0].bs_amp_res ?  2 :  1;
         int pan_offset = sbr->data[0].bs_amp_res ? 12 : 24;
         for (e = 1; e <= sbr->data[0].bs_num_env; e++) {
             for (k = 0; k < sbr->n[sbr->data[0].bs_freq_res[e]]; k++) {
                 SoftFloat temp1, temp2, fac;
 
                 temp1.exp = sbr->data[0].env_facs[e][k].mant * alpha + 14;
                 if (temp1.exp & 1)
                   temp1.mant = 759250125;
                 else
                   temp1.mant = 0x20000000;
                 temp1.exp = (temp1.exp >> 1) + 1;
46f83b05
                 if (temp1.exp > 66) { // temp1 > 1E20
                     av_log(NULL, AV_LOG_ERROR, "envelope scalefactor overflow in dequant\n");
                     temp1 = FLOAT_1;
                 }
f85bc147
 
                 temp2.exp = (pan_offset - sbr->data[1].env_facs[e][k].mant) * alpha;
                 if (temp2.exp & 1)
                   temp2.mant = 759250125;
                 else
                   temp2.mant = 0x20000000;
                 temp2.exp = (temp2.exp >> 1) + 1;
                 fac   = av_div_sf(temp1, av_add_sf(FLOAT_1, temp2));
                 sbr->data[0].env_facs[e][k] = fac;
                 sbr->data[1].env_facs[e][k] = av_mul_sf(fac, temp2);
             }
         }
         for (e = 1; e <= sbr->data[0].bs_num_noise; e++) {
             for (k = 0; k < sbr->n_q; k++) {
                 SoftFloat temp1, temp2, fac;
 
                 temp1.exp = NOISE_FLOOR_OFFSET - \
                     sbr->data[0].noise_facs[e][k].mant + 2;
                 temp1.mant = 0x20000000;
46f83b05
                 if (temp1.exp > 66) { // temp1 > 1E20
                     av_log(NULL, AV_LOG_ERROR, "envelope scalefactor overflow in dequant\n");
                     temp1 = FLOAT_1;
                 }
f85bc147
                 temp2.exp = 12 - sbr->data[1].noise_facs[e][k].mant + 1;
                 temp2.mant = 0x20000000;
                 fac   = av_div_sf(temp1, av_add_sf(FLOAT_1, temp2));
                 sbr->data[0].noise_facs[e][k] = fac;
                 sbr->data[1].noise_facs[e][k] = av_mul_sf(fac, temp2);
             }
         }
     } else { // SCE or one non-coupled CPE
         for (ch = 0; ch < (id_aac == TYPE_CPE) + 1; ch++) {
             int alpha = sbr->data[ch].bs_amp_res ? 2 : 1;
             for (e = 1; e <= sbr->data[ch].bs_num_env; e++)
                 for (k = 0; k < sbr->n[sbr->data[ch].bs_freq_res[e]]; k++){
                     SoftFloat temp1;
 
                     temp1.exp = alpha * sbr->data[ch].env_facs[e][k].mant + 12;
                     if (temp1.exp & 1)
                         temp1.mant = 759250125;
                     else
                         temp1.mant = 0x20000000;
                     temp1.exp = (temp1.exp >> 1) + 1;
46f83b05
                     if (temp1.exp > 66) { // temp1 > 1E20
                         av_log(NULL, AV_LOG_ERROR, "envelope scalefactor overflow in dequant\n");
                         temp1 = FLOAT_1;
                     }
f85bc147
                     sbr->data[ch].env_facs[e][k] = temp1;
                 }
             for (e = 1; e <= sbr->data[ch].bs_num_noise; e++)
                 for (k = 0; k < sbr->n_q; k++){
                     sbr->data[ch].noise_facs[e][k].exp = NOISE_FLOOR_OFFSET - \
                         sbr->data[ch].noise_facs[e][k].mant + 1;
                     sbr->data[ch].noise_facs[e][k].mant = 0x20000000;
                 }
         }
     }
 }
 
 /** High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering
  * (14496-3 sp04 p214)
  * Warning: This routine does not seem numerically stable.
  */
 static void sbr_hf_inverse_filter(SBRDSPContext *dsp,
                                   int (*alpha0)[2], int (*alpha1)[2],
                                   const int X_low[32][40][2], int k0)
 {
     int k;
     int shift, round;
 
     for (k = 0; k < k0; k++) {
         SoftFloat phi[3][2][2];
         SoftFloat a00, a01, a10, a11;
         SoftFloat dk;
 
         dsp->autocorrelate(X_low[k], phi);
 
         dk = av_sub_sf(av_mul_sf(phi[2][1][0], phi[1][0][0]),
              av_mul_sf(av_add_sf(av_mul_sf(phi[1][1][0], phi[1][1][0]),
              av_mul_sf(phi[1][1][1], phi[1][1][1])), FLOAT_0999999));
 
         if (!dk.mant) {
             a10 = FLOAT_0;
             a11 = FLOAT_0;
         } else {
             SoftFloat temp_real, temp_im;
             temp_real = av_sub_sf(av_sub_sf(av_mul_sf(phi[0][0][0], phi[1][1][0]),
                                             av_mul_sf(phi[0][0][1], phi[1][1][1])),
                                   av_mul_sf(phi[0][1][0], phi[1][0][0]));
             temp_im   = av_sub_sf(av_add_sf(av_mul_sf(phi[0][0][0], phi[1][1][1]),
                                             av_mul_sf(phi[0][0][1], phi[1][1][0])),
                                   av_mul_sf(phi[0][1][1], phi[1][0][0]));
 
             a10 = av_div_sf(temp_real, dk);
             a11 = av_div_sf(temp_im,   dk);
         }
 
         if (!phi[1][0][0].mant) {
             a00 = FLOAT_0;
             a01 = FLOAT_0;
         } else {
             SoftFloat temp_real, temp_im;
             temp_real = av_add_sf(phi[0][0][0],
                                   av_add_sf(av_mul_sf(a10, phi[1][1][0]),
                                             av_mul_sf(a11, phi[1][1][1])));
             temp_im   = av_add_sf(phi[0][0][1],
                                   av_sub_sf(av_mul_sf(a11, phi[1][1][0]),
                                             av_mul_sf(a10, phi[1][1][1])));
 
             temp_real.mant = -temp_real.mant;
             temp_im.mant   = -temp_im.mant;
             a00 = av_div_sf(temp_real, phi[1][0][0]);
             a01 = av_div_sf(temp_im,   phi[1][0][0]);
         }
 
         shift = a00.exp;
         if (shift >= 3)
             alpha0[k][0] = 0x7fffffff;
         else {
             a00.mant <<= 1;
             shift = 2-shift;
             if (shift == 0)
                 alpha0[k][0] = a00.mant;
             else {
                 round = 1 << (shift-1);
                 alpha0[k][0] = (a00.mant + round) >> shift;
             }
         }
 
         shift = a01.exp;
         if (shift >= 3)
             alpha0[k][1] = 0x7fffffff;
         else {
             a01.mant <<= 1;
             shift = 2-shift;
             if (shift == 0)
                 alpha0[k][1] = a01.mant;
             else {
                 round = 1 << (shift-1);
                 alpha0[k][1] = (a01.mant + round) >> shift;
             }
         }
         shift = a10.exp;
         if (shift >= 3)
             alpha1[k][0] = 0x7fffffff;
         else {
             a10.mant <<= 1;
             shift = 2-shift;
             if (shift == 0)
                 alpha1[k][0] = a10.mant;
             else {
                 round = 1 << (shift-1);
                 alpha1[k][0] = (a10.mant + round) >> shift;
             }
         }
 
         shift = a11.exp;
         if (shift >= 3)
             alpha1[k][1] = 0x7fffffff;
         else {
             a11.mant <<= 1;
             shift = 2-shift;
             if (shift == 0)
                 alpha1[k][1] = a11.mant;
             else {
                 round = 1 << (shift-1);
                 alpha1[k][1] = (a11.mant + round) >> shift;
             }
         }
 
         shift = (int)(((int64_t)(alpha1[k][0]>>1) * (alpha1[k][0]>>1) + \
                        (int64_t)(alpha1[k][1]>>1) * (alpha1[k][1]>>1) + \
                        0x40000000) >> 31);
         if (shift >= 0x20000000){
             alpha1[k][0] = 0;
             alpha1[k][1] = 0;
             alpha0[k][0] = 0;
             alpha0[k][1] = 0;
         }
 
         shift = (int)(((int64_t)(alpha0[k][0]>>1) * (alpha0[k][0]>>1) + \
                        (int64_t)(alpha0[k][1]>>1) * (alpha0[k][1]>>1) + \
                        0x40000000) >> 31);
         if (shift >= 0x20000000){
             alpha1[k][0] = 0;
             alpha1[k][1] = 0;
             alpha0[k][0] = 0;
             alpha0[k][1] = 0;
         }
     }
 }
 
 /// Chirp Factors (14496-3 sp04 p214)
 static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data)
 {
     int i;
     int new_bw;
     static const int bw_tab[] = { 0, 1610612736, 1932735283, 2104533975 };
     int64_t accu;
 
     for (i = 0; i < sbr->n_q; i++) {
         if (ch_data->bs_invf_mode[0][i] + ch_data->bs_invf_mode[1][i] == 1)
             new_bw = 1288490189;
         else
             new_bw = bw_tab[ch_data->bs_invf_mode[0][i]];
 
         if (new_bw < ch_data->bw_array[i]){
             accu  = (int64_t)new_bw * 1610612736;
             accu += (int64_t)ch_data->bw_array[i] * 0x20000000;
             new_bw = (int)((accu + 0x40000000) >> 31);
         } else {
             accu  = (int64_t)new_bw * 1946157056;
             accu += (int64_t)ch_data->bw_array[i] * 201326592;
             new_bw = (int)((accu + 0x40000000) >> 31);
         }
         ch_data->bw_array[i] = new_bw < 0x2000000 ? 0 : new_bw;
     }
 }
 
 /**
  * Calculation of levels of additional HF signal components (14496-3 sp04 p219)
  * and Calculation of gain (14496-3 sp04 p219)
  */
 static void sbr_gain_calc(AACContext *ac, SpectralBandReplication *sbr,
                           SBRData *ch_data, const int e_a[2])
 {
     int e, k, m;
     // max gain limits : -3dB, 0dB, 3dB, inf dB (limiter off)
     static const SoftFloat limgain[4] = { { 760155524,  0 }, { 0x20000000,  1 },
                                             { 758351638,  1 }, { 625000000, 34 } };
 
     for (e = 0; e < ch_data->bs_num_env; e++) {
         int delta = !((e == e_a[1]) || (e == e_a[0]));
         for (k = 0; k < sbr->n_lim; k++) {
             SoftFloat gain_boost, gain_max;
8364d607
             SoftFloat sum[2];
             sum[0] = sum[1] = FLOAT_0;
f85bc147
             for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
                 const SoftFloat temp = av_div_sf(sbr->e_origmapped[e][m],
                                             av_add_sf(FLOAT_1, sbr->q_mapped[e][m]));
                 sbr->q_m[e][m] = av_sqrt_sf(av_mul_sf(temp, sbr->q_mapped[e][m]));
                 sbr->s_m[e][m] = av_sqrt_sf(av_mul_sf(temp, av_int2sf(ch_data->s_indexmapped[e + 1][m], 0)));
                 if (!sbr->s_mapped[e][m]) {
                     if (delta) {
                       sbr->gain[e][m] = av_sqrt_sf(av_div_sf(sbr->e_origmapped[e][m],
                                             av_mul_sf(av_add_sf(FLOAT_1, sbr->e_curr[e][m]),
                                             av_add_sf(FLOAT_1, sbr->q_mapped[e][m]))));
                     } else {
                       sbr->gain[e][m] = av_sqrt_sf(av_div_sf(sbr->e_origmapped[e][m],
                                             av_add_sf(FLOAT_1, sbr->e_curr[e][m])));
                     }
                 } else {
                     sbr->gain[e][m] = av_sqrt_sf(
                                         av_div_sf(
                                             av_mul_sf(sbr->e_origmapped[e][m], sbr->q_mapped[e][m]),
                                             av_mul_sf(
                                                 av_add_sf(FLOAT_1, sbr->e_curr[e][m]),
                                                 av_add_sf(FLOAT_1, sbr->q_mapped[e][m]))));
                 }
             }
             for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
                 sum[0] = av_add_sf(sum[0], sbr->e_origmapped[e][m]);
                 sum[1] = av_add_sf(sum[1], sbr->e_curr[e][m]);
             }
             gain_max = av_mul_sf(limgain[sbr->bs_limiter_gains],
                             av_sqrt_sf(
                                 av_div_sf(
                                     av_add_sf(FLOAT_EPSILON, sum[0]),
                                     av_add_sf(FLOAT_EPSILON, sum[1]))));
             if (av_gt_sf(gain_max, FLOAT_100000))
               gain_max = FLOAT_100000;
             for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
                 SoftFloat q_m_max = av_div_sf(
                                         av_mul_sf(sbr->q_m[e][m], gain_max),
                                         sbr->gain[e][m]);
                 if (av_gt_sf(sbr->q_m[e][m], q_m_max))
                   sbr->q_m[e][m] = q_m_max;
                 if (av_gt_sf(sbr->gain[e][m], gain_max))
                   sbr->gain[e][m] = gain_max;
             }
             sum[0] = sum[1] = FLOAT_0;
             for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
                 sum[0] = av_add_sf(sum[0], sbr->e_origmapped[e][m]);
                 sum[1] = av_add_sf(sum[1],
                             av_mul_sf(
                                 av_mul_sf(sbr->e_curr[e][m],
                                           sbr->gain[e][m]),
                                 sbr->gain[e][m]));
                 sum[1] = av_add_sf(sum[1],
                             av_mul_sf(sbr->s_m[e][m], sbr->s_m[e][m]));
                 if (delta && !sbr->s_m[e][m].mant)
                   sum[1] = av_add_sf(sum[1],
                                 av_mul_sf(sbr->q_m[e][m], sbr->q_m[e][m]));
             }
             gain_boost = av_sqrt_sf(
                             av_div_sf(
                                 av_add_sf(FLOAT_EPSILON, sum[0]),
                                 av_add_sf(FLOAT_EPSILON, sum[1])));
             if (av_gt_sf(gain_boost, FLOAT_1584893192))
               gain_boost = FLOAT_1584893192;
 
             for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
                 sbr->gain[e][m] = av_mul_sf(sbr->gain[e][m], gain_boost);
                 sbr->q_m[e][m]  = av_mul_sf(sbr->q_m[e][m], gain_boost);
                 sbr->s_m[e][m]  = av_mul_sf(sbr->s_m[e][m], gain_boost);
             }
         }
     }
 }
 
 /// Assembling HF Signals (14496-3 sp04 p220)
 static void sbr_hf_assemble(int Y1[38][64][2],
                             const int X_high[64][40][2],
                             SpectralBandReplication *sbr, SBRData *ch_data,
                             const int e_a[2])
 {
     int e, i, j, m;
     const int h_SL = 4 * !sbr->bs_smoothing_mode;
     const int kx = sbr->kx[1];
     const int m_max = sbr->m[1];
     static const SoftFloat h_smooth[5] = {
       { 715827883, -1 },
       { 647472402, -1 },
       { 937030863, -2 },
       { 989249804, -3 },
       { 546843842, -4 },
     };
     SoftFloat (*g_temp)[48] = ch_data->g_temp, (*q_temp)[48] = ch_data->q_temp;
     int indexnoise = ch_data->f_indexnoise;
     int indexsine  = ch_data->f_indexsine;
 
     if (sbr->reset) {
         for (i = 0; i < h_SL; i++) {
             memcpy(g_temp[i + 2*ch_data->t_env[0]], sbr->gain[0], m_max * sizeof(sbr->gain[0][0]));
             memcpy(q_temp[i + 2*ch_data->t_env[0]], sbr->q_m[0],  m_max * sizeof(sbr->q_m[0][0]));
         }
     } else if (h_SL) {
         for (i = 0; i < 4; i++) {
             memcpy(g_temp[i + 2 * ch_data->t_env[0]],
                    g_temp[i + 2 * ch_data->t_env_num_env_old],
                    sizeof(g_temp[0]));
             memcpy(q_temp[i + 2 * ch_data->t_env[0]],
                    q_temp[i + 2 * ch_data->t_env_num_env_old],
                    sizeof(q_temp[0]));
         }
     }
 
     for (e = 0; e < ch_data->bs_num_env; e++) {
         for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
             memcpy(g_temp[h_SL + i], sbr->gain[e], m_max * sizeof(sbr->gain[0][0]));
             memcpy(q_temp[h_SL + i], sbr->q_m[e],  m_max * sizeof(sbr->q_m[0][0]));
         }
     }
 
     for (e = 0; e < ch_data->bs_num_env; e++) {
         for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
             SoftFloat g_filt_tab[48];
             SoftFloat q_filt_tab[48];
             SoftFloat *g_filt, *q_filt;
 
             if (h_SL && e != e_a[0] && e != e_a[1]) {
                 g_filt = g_filt_tab;
                 q_filt = q_filt_tab;
                 for (m = 0; m < m_max; m++) {
                     const int idx1 = i + h_SL;
                     g_filt[m].mant = g_filt[m].exp = 0;
                     q_filt[m].mant = q_filt[m].exp = 0;
                     for (j = 0; j <= h_SL; j++) {
                         g_filt[m] = av_add_sf(g_filt[m],
                                         av_mul_sf(g_temp[idx1 - j][m],
                                             h_smooth[j]));
                         q_filt[m] = av_add_sf(q_filt[m],
                                         av_mul_sf(q_temp[idx1 - j][m],
                                             h_smooth[j]));
                     }
                 }
             } else {
                 g_filt = g_temp[i + h_SL];
                 q_filt = q_temp[i];
             }
 
             sbr->dsp.hf_g_filt(Y1[i] + kx, X_high + kx, g_filt, m_max,
                                i + ENVELOPE_ADJUSTMENT_OFFSET);
 
             if (e != e_a[0] && e != e_a[1]) {
                 sbr->dsp.hf_apply_noise[indexsine](Y1[i] + kx, sbr->s_m[e],
                                                    q_filt, indexnoise,
                                                    kx, m_max);
             } else {
                 int idx = indexsine&1;
                 int A = (1-((indexsine+(kx & 1))&2));
                 int B = (A^(-idx)) + idx;
                 int *out = &Y1[i][kx][idx];
                 int shift, round;
 
                 SoftFloat *in  = sbr->s_m[e];
                 for (m = 0; m+1 < m_max; m+=2) {
                   shift = 22 - in[m  ].exp;
                   round = 1 << (shift-1);
                   out[2*m  ] += (in[m  ].mant * A + round) >> shift;
 
                   shift = 22 - in[m+1].exp;
                   round = 1 << (shift-1);
                   out[2*m+2] += (in[m+1].mant * B + round) >> shift;
                 }
                 if(m_max&1)
                 {
                   shift = 22 - in[m  ].exp;
                   round = 1 << (shift-1);
 
                   out[2*m  ] += (in[m  ].mant * A + round) >> shift;
                 }
             }
             indexnoise = (indexnoise + m_max) & 0x1ff;
             indexsine = (indexsine + 1) & 3;
         }
     }
     ch_data->f_indexnoise = indexnoise;
     ch_data->f_indexsine  = indexsine;
 }
 
 #include "aacsbr_template.c"