libavcodec/dca_xll.c
217e4ff4
 /*
  * DCA XLL extension
  *
  * Copyright (C) 2012 Paul B Mahol
  * Copyright (C) 2014 Niels Möller
  *
20900107
  * This file is part of FFmpeg.
217e4ff4
  *
20900107
  * FFmpeg is free software; you can redistribute it and/or
217e4ff4
  * modify it under the terms of the GNU Lesser General Public
  * License as published by the Free Software Foundation; either
  * version 2.1 of the License, or (at your option) any later version.
  *
20900107
  * FFmpeg is distributed in the hope that it will be useful,
217e4ff4
  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  * Lesser General Public License for more details.
  *
  * You should have received a copy of the GNU Lesser General Public
20900107
  * License along with FFmpeg; if not, write to the Free Software
217e4ff4
  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  */
 
 #include "libavutil/attributes.h"
 #include "libavutil/common.h"
 #include "libavutil/internal.h"
 
 #include "avcodec.h"
 #include "dca.h"
 #include "dcadata.h"
 #include "get_bits.h"
 #include "unary.h"
 
 /* Sign as bit 0 */
 static inline int get_bits_sm(GetBitContext *s, unsigned n)
 {
     int x = get_bits(s, n);
     if (x & 1)
         return -(x >> 1) - 1;
     else
         return x >> 1;
 }
 
 /* Return -1 on error. */
 static int32_t get_dmix_coeff(DCAContext *s, int inverse)
 {
     unsigned code = get_bits(&s->gb, 9);
     int32_t sign = (int32_t) (code >> 8) - 1;
     unsigned idx = code & 0xff;
     int inv_offset = FF_DCA_DMIXTABLE_SIZE -FF_DCA_INV_DMIXTABLE_SIZE;
     if (idx >= FF_DCA_DMIXTABLE_SIZE) {
         av_log(s->avctx, AV_LOG_ERROR,
                "XLL: Invalid channel set downmix code %x\n", code);
         return -1;
     } else if (!inverse) {
         return (ff_dca_dmixtable[idx] ^ sign) - sign;
     } else if (idx < inv_offset) {
         av_log(s->avctx, AV_LOG_ERROR,
                "XLL: Invalid channel set inverse downmix code %x\n", code);
         return -1;
     } else {
         return (ff_dca_inv_dmixtable[idx - inv_offset] ^ sign) - sign;
     }
 }
 
 static int32_t dca_get_dmix_coeff(DCAContext *s)
 {
     return get_dmix_coeff(s, 0);
 }
 
 static int32_t dca_get_inv_dmix_coeff(DCAContext *s)
 {
     return get_dmix_coeff(s, 1);
 }
 
 /* parse XLL header */
 int ff_dca_xll_decode_header(DCAContext *s)
 {
     int hdr_pos, hdr_size;
     av_unused int version, frame_size;
     int i, chset_index;
 
     /* get bit position of sync header */
     hdr_pos    = get_bits_count(&s->gb) - 32;
 
     version    = get_bits(&s->gb, 4) + 1;
     hdr_size   = get_bits(&s->gb, 8) + 1;
 
     frame_size = get_bits_long(&s->gb, get_bits(&s->gb, 5) + 1) + 1;
 
     s->xll_channels          =
     s->xll_residual_channels = 0;
     s->xll_nch_sets          = get_bits(&s->gb, 4) + 1;
     s->xll_segments          = 1 << get_bits(&s->gb, 4);
     s->xll_log_smpl_in_seg   = get_bits(&s->gb, 4);
     s->xll_smpl_in_seg       = 1 << s->xll_log_smpl_in_seg;
     s->xll_bits4seg_size     = get_bits(&s->gb, 5) + 1;
     s->xll_banddata_crc      = get_bits(&s->gb, 2);
     s->xll_scalable_lsb      = get_bits1(&s->gb);
     s->xll_bits4ch_mask      = get_bits(&s->gb, 5) + 1;
 
     if (s->xll_scalable_lsb) {
         s->xll_fixed_lsb_width = get_bits(&s->gb, 4);
         if (s->xll_fixed_lsb_width)
             av_log(s->avctx, AV_LOG_WARNING,
                    "XLL: fixed lsb width = %d, non-zero not supported.\n",
                    s->xll_fixed_lsb_width);
     }
     /* skip to the end of the common header */
     i = get_bits_count(&s->gb);
     if (hdr_pos + hdr_size * 8 > i)
         skip_bits_long(&s->gb, hdr_pos + hdr_size * 8 - i);
 
     for (chset_index = 0; chset_index < s->xll_nch_sets; chset_index++) {
         XllChSetSubHeader *chset = &s->xll_chsets[chset_index];
         hdr_pos  = get_bits_count(&s->gb);
         hdr_size = get_bits(&s->gb, 10) + 1;
 
         chset->channels           = get_bits(&s->gb, 4) + 1;
         chset->residual_encode    = get_bits(&s->gb, chset->channels);
         chset->bit_resolution     = get_bits(&s->gb, 5) + 1;
         chset->bit_width          = get_bits(&s->gb, 5) + 1;
         chset->sampling_frequency = ff_dca_sampling_freqs[get_bits(&s->gb, 4)];
         chset->samp_freq_interp   = get_bits(&s->gb, 2);
         chset->replacement_set    = get_bits(&s->gb, 2);
         if (chset->replacement_set)
             chset->active_replace_set = get_bits(&s->gb, 1);
 
         if (s->one2one_map_chtospkr) {
             chset->primary_ch_set              = get_bits(&s->gb, 1);
             chset->downmix_coeff_code_embedded = get_bits(&s->gb, 1);
             if (chset->downmix_coeff_code_embedded) {
                 chset->downmix_embedded = get_bits(&s->gb, 1);
                 if (chset->primary_ch_set) {
                     chset->downmix_type = get_bits(&s->gb, 3);
                     if (chset->downmix_type > 6) {
                         av_log(s->avctx, AV_LOG_ERROR,
                                "XLL: Invalid channel set downmix type\n");
                         return AVERROR_INVALIDDATA;
                     }
                 }
             }
             chset->hier_chset = get_bits(&s->gb, 1);
 
             if (chset->downmix_coeff_code_embedded) {
                 /* nDownmixCoeffs is specified as N * M. For a primary
                  * channel set, it appears that N = number of
                  * channels, and M is the number of downmix channels.
                  *
                  * For a non-primary channel set, N is specified as
                  * number of channels + 1, and M is derived from the
                  * channel set hierarchy, and at least in simple cases
                  * M is the number of channels in preceding channel
                  * sets. */
                 if (chset->primary_ch_set) {
                     static const char dmix_table[7] = { 1, 2, 2, 3, 3, 4, 4 };
                     chset->downmix_ncoeffs = chset->channels * dmix_table[chset->downmix_type];
                 } else
                     chset->downmix_ncoeffs = (chset->channels + 1) * s->xll_channels;
 
                 if (chset->downmix_ncoeffs > DCA_XLL_DMIX_NCOEFFS_MAX) {
                     avpriv_request_sample(s->avctx,
                                           "XLL: More than %d downmix coefficients",
                                           DCA_XLL_DMIX_NCOEFFS_MAX);
                     return AVERROR_PATCHWELCOME;
                 } else if (chset->primary_ch_set) {
                     for (i = 0; i < chset->downmix_ncoeffs; i++)
                         if ((chset->downmix_coeffs[i] = dca_get_dmix_coeff(s)) == -1)
                             return AVERROR_INVALIDDATA;
                 } else {
                     unsigned c, r;
                     for (c = 0, i = 0; c < s->xll_channels; c++, i += chset->channels + 1) {
                         if ((chset->downmix_coeffs[i] = dca_get_inv_dmix_coeff(s)) == -1)
                             return AVERROR_INVALIDDATA;
                         for (r = 1; r <= chset->channels; r++) {
                             int32_t coeff = dca_get_dmix_coeff(s);
                             if (coeff == -1)
                                 return AVERROR_INVALIDDATA;
                             chset->downmix_coeffs[i + r] =
                                 (chset->downmix_coeffs[i] * (int64_t) coeff + (1 << 15)) >> 16;
                         }
                     }
                 }
             }
             chset->ch_mask_enabled = get_bits(&s->gb, 1);
             if (chset->ch_mask_enabled)
                 chset->ch_mask = get_bits(&s->gb, s->xll_bits4ch_mask);
             else
                 /* Skip speaker configuration bits */
                 skip_bits_long(&s->gb, 25 * chset->channels);
         } else {
             chset->primary_ch_set              = 1;
             chset->downmix_coeff_code_embedded = 0;
             /* Spec: NumChHierChSet = 0, NumDwnMixCodeCoeffs = 0, whatever that means. */
             chset->mapping_coeffs_present = get_bits(&s->gb, 1);
             if (chset->mapping_coeffs_present) {
                 avpriv_report_missing_feature(s->avctx, "XLL: mapping coefficients");
                 return AVERROR_PATCHWELCOME;
             }
         }
         if (chset->sampling_frequency > 96000)
             chset->num_freq_bands = 2 * (1 + get_bits(&s->gb, 1));
         else
             chset->num_freq_bands = 1;
 
         if (chset->num_freq_bands > 1) {
             avpriv_report_missing_feature(s->avctx, "XLL: num_freq_bands > 1");
             return AVERROR_PATCHWELCOME;
         }
 
         if (get_bits(&s->gb, 1)) { /* pw_ch_decor_enabled */
             int bits = av_ceil_log2(chset->channels);
             for (i = 0; i < chset->channels; i++) {
                 unsigned j = get_bits(&s->gb, bits);
                 if (j >= chset->channels) {
                     av_log(s->avctx, AV_LOG_ERROR,
                            "Original channel order value %u too large, only %d channels.\n",
                            j, chset->channels);
                     return AVERROR_INVALIDDATA;
                 }
                 chset->orig_chan_order[0][i]     = j;
                 chset->orig_chan_order_inv[0][j] = i;
             }
             for (i = 0; i < chset->channels / 2; i++) {
                 if (get_bits(&s->gb, 1)) /* bChPFlag */
                     chset->pw_ch_pairs_coeffs[0][i] = get_bits_sm(&s->gb, 7);
                 else
                     chset->pw_ch_pairs_coeffs[0][i] = 0;
             }
         } else {
             for (i = 0; i < chset->channels; i++)
                 chset->orig_chan_order[0][i]     =
                 chset->orig_chan_order_inv[0][i] = i;
             for (i = 0; i < chset->channels / 2; i++)
                 chset->pw_ch_pairs_coeffs[0][i] = 0;
         }
         /* Adaptive prediction order */
         chset->adapt_order_max[0] = 0;
         for (i = 0; i < chset->channels; i++) {
             chset->adapt_order[0][i] = get_bits(&s->gb, 4);
             if (chset->adapt_order_max[0] < chset->adapt_order[0][i])
                 chset->adapt_order_max[0] = chset->adapt_order[0][i];
         }
         /* Fixed prediction order, used in case the adaptive order
          * above is zero */
         for (i = 0; i < chset->channels; i++)
             chset->fixed_order[0][i] =
                 chset->adapt_order[0][i] ? 0 : get_bits(&s->gb, 2);
 
         for (i = 0; i < chset->channels; i++) {
             unsigned j;
             for (j = 0; j < chset->adapt_order[0][i]; j++)
                 chset->lpc_refl_coeffs_q_ind[0][i][j] = get_bits(&s->gb, 8);
         }
 
         if (s->xll_scalable_lsb) {
             chset->lsb_fsize[0] = get_bits(&s->gb, s->xll_bits4seg_size);
 
             for (i = 0; i < chset->channels; i++)
                 chset->scalable_lsbs[0][i] = get_bits(&s->gb, 4);
             for (i = 0; i < chset->channels; i++)
                 chset->bit_width_adj_per_ch[0][i] = get_bits(&s->gb, 4);
         } else {
             memset(chset->scalable_lsbs[0], 0,
                    chset->channels * sizeof(chset->scalable_lsbs[0][0]));
             memset(chset->bit_width_adj_per_ch[0], 0,
                    chset->channels * sizeof(chset->bit_width_adj_per_ch[0][0]));
         }
 
         s->xll_channels          += chset->channels;
         s->xll_residual_channels += chset->channels -
                                     av_popcount(chset->residual_encode);
 
         /* FIXME: Parse header data for extra frequency bands. */
 
         /* Skip to end of channel set sub header. */
         i = get_bits_count(&s->gb);
         if (hdr_pos + 8 * hdr_size < i) {
             av_log(s->avctx, AV_LOG_ERROR,
                    "chset header too large, %d bits, should be <= %d bits\n",
                    i - hdr_pos, 8 * hdr_size);
             return AVERROR_INVALIDDATA;
         }
         if (hdr_pos + 8 * hdr_size > i)
             skip_bits_long(&s->gb, hdr_pos + 8 * hdr_size - i);
     }
     return 0;
 }
 
 /* parse XLL navigation table */
 int ff_dca_xll_decode_navi(DCAContext *s, int asset_end)
 {
     int nbands, band, chset, seg, data_start;
 
     /* FIXME: Supports only a single frequency band */
     nbands = 1;
 
     for (band = 0; band < nbands; band++) {
         s->xll_navi.band_size[band] = 0;
         for (seg = 0; seg < s->xll_segments; seg++) {
             /* Note: The spec, ETSI TS 102 114 V1.4.1 (2012-09), says
              * we should read a base value for segment_size from the
              * stream, before reading the sizes of the channel sets.
              * But that's apparently incorrect. */
             s->xll_navi.segment_size[band][seg] = 0;
 
             for (chset = 0; chset < s->xll_nch_sets; chset++)
                 if (band < s->xll_chsets[chset].num_freq_bands) {
                     s->xll_navi.chset_size[band][seg][chset] =
                         get_bits(&s->gb, s->xll_bits4seg_size) + 1;
                     s->xll_navi.segment_size[band][seg] +=
                         s->xll_navi.chset_size[band][seg][chset];
                 }
             s->xll_navi.band_size[band] += s->xll_navi.segment_size[band][seg];
         }
     }
     /* Align to 8 bits and skip 16-bit CRC. */
     skip_bits_long(&s->gb, 16 + ((-get_bits_count(&s->gb)) & 7));
 
     data_start = get_bits_count(&s->gb);
     if (data_start + 8 * s->xll_navi.band_size[0] > asset_end) {
         av_log(s->avctx, AV_LOG_ERROR,
                "XLL: Data in NAVI table exceeds containing asset\n"
                "start: %d (bit), size %u (bytes), end %d (bit), error %u\n",
                data_start, s->xll_navi.band_size[0], asset_end,
                data_start + 8 * s->xll_navi.band_size[0] - asset_end);
         return AVERROR_INVALIDDATA;
     }
     init_get_bits(&s->xll_navi.gb, s->gb.buffer + data_start / 8,
                   8 * s->xll_navi.band_size[0]);
     return 0;
 }
 
 static void dca_xll_inv_adapt_pred(int *samples, int nsamples, unsigned order,
                                    const int *prev, const uint8_t *q_ind)
 {
     static const uint16_t table[0x81] = {
             0,  3070,  5110,  7140,  9156, 11154, 13132, 15085,
         17010, 18904, 20764, 22588, 24373, 26117, 27818, 29474,
         31085, 32648, 34164, 35631, 37049, 38418, 39738, 41008,
         42230, 43404, 44530, 45609, 46642, 47630, 48575, 49477,
         50337, 51157, 51937, 52681, 53387, 54059, 54697, 55302,
         55876, 56421, 56937, 57426, 57888, 58326, 58741, 59132,
         59502, 59852, 60182, 60494, 60789, 61066, 61328, 61576,
         61809, 62029, 62236, 62431, 62615, 62788, 62951, 63105,
         63250, 63386, 63514, 63635, 63749, 63855, 63956, 64051,
         64140, 64224, 64302, 64376, 64446, 64512, 64573, 64631,
         64686, 64737, 64785, 64830, 64873, 64913, 64950, 64986,
         65019, 65050, 65079, 65107, 65133, 65157, 65180, 65202,
         65222, 65241, 65259, 65275, 65291, 65306, 65320, 65333,
         65345, 65357, 65368, 65378, 65387, 65396, 65405, 65413,
         65420, 65427, 65434, 65440, 65446, 65451, 65456, 65461,
         65466, 65470, 65474, 65478, 65481, 65485, 65488, 65491,
         65535, /* Final value is for the -128 corner case, see below. */
     };
     int c[DCA_XLL_AORDER_MAX];
     int64_t s;
     unsigned i, j;
 
     for (i = 0; i < order; i++) {
         if (q_ind[i] & 1)
             /* The index value 0xff corresponds to a lookup of entry 0x80 in
              * the table, and no value is provided in the specification. */
             c[i] = -table[(q_ind[i] >> 1) + 1];
         else
             c[i] = table[q_ind[i] >> 1];
     }
     /* The description in the spec is a bit convoluted. We can convert
      * the reflected values to direct values in place, using a
      * sequence of reflections operating on two values. */
     for (i = 1; i < order; i++) {
         /* i = 1: scale c[0]
          * i = 2: reflect c[0] <-> c[1]
          * i = 3: scale c[1], reflect c[0] <-> c[2]
          * i = 4: reflect c[0] <-> c[3] reflect c[1] <-> c[2]
          * ... */
         if (i & 1)
             c[i / 2] += ((int64_t) c[i] * c[i / 2] + 0x8000) >> 16;
         for (j = 0; j < i / 2; j++) {
             int r0 = c[j];
             int r1 = c[i - j - 1];
             c[j]         += ((int64_t) c[i] * r1 + 0x8000) >> 16;
             c[i - j - 1] += ((int64_t) c[i] * r0 + 0x8000) >> 16;
         }
     }
     /* Apply predictor. */
     /* NOTE: Processing samples in this order means that the
      * predictor is applied to the newly reconstructed samples. */
     if (prev) {
         for (i = 0; i < order; i++) {
             for (j = s = 0; j < i; j++)
                 s += (int64_t) c[j] * samples[i - 1 - j];
             for (; j < order; j++)
                 s += (int64_t) c[j] * prev[DCA_XLL_AORDER_MAX + i - 1 - j];
 
979b77ee
             samples[i] -= av_clip_intp2((s + 0x8000) >> 16, 24);
217e4ff4
         }
     }
     for (i = order; i < nsamples; i++) {
         for (j = s = 0; j < order; j++)
             s += (int64_t) c[j] * samples[i - 1 - j];
 
         /* NOTE: Equations seem to imply addition, while the
          * pseudocode seems to use subtraction.*/
979b77ee
         samples[i] -= av_clip_intp2((s + 0x8000) >> 16, 24);
217e4ff4
     }
 }
 
 int ff_dca_xll_decode_audio(DCAContext *s, AVFrame *frame)
 {
     /* FIXME: Decodes only the first frequency band. */
     int seg, chset_i;
 
     /* Coding parameters for each channel set. */
     struct coding_params {
         int seg_type;
         int rice_code_flag[16];
         int pancAuxABIT[16];
         int pancABIT0[16];  /* Not sure what this is */
         int pancABIT[16];   /* Not sure what this is */
         int nSamplPart0[16];
     } param_state[16];
 
     GetBitContext *gb = &s->xll_navi.gb;
     int *history;
 
     /* Layout: First the sample buffer for one segment per channel,
      * followed by history buffers of DCA_XLL_AORDER_MAX samples for
      * each channel. */
     av_fast_malloc(&s->xll_sample_buf, &s->xll_sample_buf_size,
                    (s->xll_smpl_in_seg + DCA_XLL_AORDER_MAX) *
                    s->xll_channels * sizeof(*s->xll_sample_buf));
     if (!s->xll_sample_buf)
         return AVERROR(ENOMEM);
 
     history = s->xll_sample_buf + s->xll_smpl_in_seg * s->xll_channels;
 
     for (seg = 0; seg < s->xll_segments; seg++) {
         unsigned in_channel;
 
         for (chset_i = in_channel = 0; chset_i < s->xll_nch_sets; chset_i++) {
             /* The spec isn't very explicit, but I think the NAVI sizes are in bytes. */
             int end_pos = get_bits_count(gb) +
                           8 * s->xll_navi.chset_size[0][seg][chset_i];
             int i, j;
             struct coding_params *params = &param_state[chset_i];
             /* I think this flag means that we should keep seg_type and
              * other parameters from the previous segment. */
             int use_seg_state_code_param;
             XllChSetSubHeader *chset = &s->xll_chsets[chset_i];
             if (in_channel >= s->avctx->channels)
                 /* FIXME: Could go directly to next segment */
                 goto next_chset;
 
             if (s->avctx->sample_rate != chset->sampling_frequency) {
                 av_log(s->avctx, AV_LOG_WARNING,
                        "XLL: unexpected chset sample rate %d, expected %d\n",
                        chset->sampling_frequency, s->avctx->sample_rate);
                 goto next_chset;
             }
             if (seg != 0)
                 use_seg_state_code_param = get_bits(gb, 1);
             else
                 use_seg_state_code_param = 0;
 
             if (!use_seg_state_code_param) {
                 int num_param_sets, i;
                 unsigned bits4ABIT;
 
                 params->seg_type = get_bits(gb, 1);
                 num_param_sets   = params->seg_type ? 1 : chset->channels;
 
                 if (chset->bit_width > 16) {
                     bits4ABIT = 5;
                 } else {
                     if (chset->bit_width > 8)
                         bits4ABIT = 4;
                     else
                         bits4ABIT = 3;
                     if (s->xll_nch_sets > 1)
                         bits4ABIT++;
                 }
 
                 for (i = 0; i < num_param_sets; i++) {
                     params->rice_code_flag[i] = get_bits(gb, 1);
                     if (!params->seg_type && params->rice_code_flag[i] && get_bits(gb, 1))
                         params->pancAuxABIT[i] = get_bits(gb, bits4ABIT) + 1;
                     else
                         params->pancAuxABIT[i] = 0;
                 }
 
                 for (i = 0; i < num_param_sets; i++) {
                     if (!seg) {
                         /* Parameters for part 1 */
                         params->pancABIT0[i] = get_bits(gb, bits4ABIT);
                         if (params->rice_code_flag[i] == 0 && params->pancABIT0[i] > 0)
                             /* For linear code */
                             params->pancABIT0[i]++;
 
                         /* NOTE: In the spec, not indexed by band??? */
                         if (params->seg_type == 0)
                             params->nSamplPart0[i] = chset->adapt_order[0][i];
                         else
                             params->nSamplPart0[i] = chset->adapt_order_max[0];
                     } else
                         params->nSamplPart0[i] = 0;
 
                     /* Parameters for part 2 */
                     params->pancABIT[i] = get_bits(gb, bits4ABIT);
                     if (params->rice_code_flag[i] == 0 && params->pancABIT[i] > 0)
                         /* For linear code */
                         params->pancABIT[i]++;
                 }
             }
             for (i = 0; i < chset->channels; i++) {
                 int param_index = params->seg_type ? 0 : i;
                 int part0       = params->nSamplPart0[param_index];
c9ed48e8
                 int bits        = part0 ? params->pancABIT0[param_index] : 0;
217e4ff4
                 int *sample_buf = s->xll_sample_buf +
                                   (in_channel + i) * s->xll_smpl_in_seg;
 
                 if (!params->rice_code_flag[param_index]) {
                     /* Linear code */
                     if (bits)
                         for (j = 0; j < part0; j++)
                             sample_buf[j] = get_bits_sm(gb, bits);
                     else
                         memset(sample_buf, 0, part0 * sizeof(sample_buf[0]));
 
                     /* Second part */
                     bits = params->pancABIT[param_index];
                     if (bits)
                         for (j = part0; j < s->xll_smpl_in_seg; j++)
                             sample_buf[j] = get_bits_sm(gb, bits);
                     else
                         memset(sample_buf + part0, 0,
                                (s->xll_smpl_in_seg - part0) * sizeof(sample_buf[0]));
                 } else {
                     int aux_bits = params->pancAuxABIT[param_index];
 
                     for (j = 0; j < part0; j++) {
                         /* FIXME: Is this identical to Golomb code? */
                         int t = get_unary(gb, 1, 33) << bits;
                         /* FIXME: Could move this test outside of the loop, for efficiency. */
                         if (bits)
                             t |= get_bits(gb, bits);
                         sample_buf[j] = (t & 1) ? -(t >> 1) - 1 : (t >> 1);
                     }
 
                     /* Second part */
                     bits = params->pancABIT[param_index];
 
                     /* Follow the spec's suggestion of using the
                      * buffer also to store the hybrid-rice flags. */
                     memset(sample_buf + part0, 0,
                            (s->xll_smpl_in_seg - part0) * sizeof(sample_buf[0]));
 
                     if (aux_bits > 0) {
                         /* For hybrid rice encoding, some samples are linearly
                          * coded. According to the spec, "nBits4SamplLoci" bits
                          * are used for each index, but this value is not
                          * defined. I guess we should use log2(xll_smpl_in_seg)
                          * bits. */
                         int count = get_bits(gb, s->xll_log_smpl_in_seg);
                         av_log(s->avctx, AV_LOG_DEBUG, "aux count %d (bits %d)\n",
                                count, s->xll_log_smpl_in_seg);
 
                         for (j = 0; j < count; j++)
                             sample_buf[get_bits(gb, s->xll_log_smpl_in_seg)] = 1;
                     }
                     for (j = part0; j < s->xll_smpl_in_seg; j++) {
                         if (!sample_buf[j]) {
                             int t = get_unary(gb, 1, 33);
                             if (bits)
                                 t = (t << bits) | get_bits(gb, bits);
                             sample_buf[j] = (t & 1) ? -(t >> 1) - 1 : (t >> 1);
                         } else
                             sample_buf[j] = get_bits_sm(gb, aux_bits);
                     }
                 }
             }
 
             for (i = 0; i < chset->channels; i++) {
                 unsigned adapt_order = chset->adapt_order[0][i];
                 int *sample_buf = s->xll_sample_buf +
                                   (in_channel + i) * s->xll_smpl_in_seg;
                 int *prev = history + (in_channel + i) * DCA_XLL_AORDER_MAX;
 
                 if (!adapt_order) {
                     unsigned order;
                     for (order = chset->fixed_order[0][i]; order > 0; order--) {
                         unsigned j;
                         for (j = 1; j < s->xll_smpl_in_seg; j++)
                             sample_buf[j] += sample_buf[j - 1];
                     }
                 } else
                     /* Inverse adaptive prediction, in place. */
                     dca_xll_inv_adapt_pred(sample_buf, s->xll_smpl_in_seg,
                                            adapt_order, seg ? prev : NULL,
                                            chset->lpc_refl_coeffs_q_ind[0][i]);
                 memcpy(prev, sample_buf + s->xll_smpl_in_seg - DCA_XLL_AORDER_MAX,
                        DCA_XLL_AORDER_MAX * sizeof(*prev));
             }
             for (i = 1; i < chset->channels; i += 2) {
                 int coeff = chset->pw_ch_pairs_coeffs[0][i / 2];
                 if (coeff != 0) {
                     int *sample_buf = s->xll_sample_buf +
                                       (in_channel + i) * s->xll_smpl_in_seg;
                     int *prev = sample_buf - s->xll_smpl_in_seg;
                     unsigned j;
                     for (j = 0; j < s->xll_smpl_in_seg; j++)
                         /* Shift is unspecified, but should apparently be 3. */
                         sample_buf[j] += ((int64_t) coeff * prev[j] + 4) >> 3;
                 }
             }
 
             if (s->xll_scalable_lsb) {
                 int lsb_start = end_pos - 8 * chset->lsb_fsize[0] -
                                 8 * (s->xll_banddata_crc & 2);
                 int done;
                 i = get_bits_count(gb);
                 if (i > lsb_start) {
                     av_log(s->avctx, AV_LOG_ERROR,
                            "chset data lsb exceeds NAVI size, end_pos %d, lsb_start %d, pos %d\n",
                            end_pos, lsb_start, i);
                     return AVERROR_INVALIDDATA;
                 }
                 if (i < lsb_start)
                     skip_bits_long(gb, lsb_start - i);
 
                 for (i = done = 0; i < chset->channels; i++) {
                     int bits = chset->scalable_lsbs[0][i];
                     if (bits > 0) {
                         /* The channel reordering is conceptually done
                          * before adding the lsb:s, so we need to do
                          * the inverse permutation here. */
                         unsigned pi = chset->orig_chan_order_inv[0][i];
                         int *sample_buf = s->xll_sample_buf +
                                           (in_channel + pi) * s->xll_smpl_in_seg;
                         int adj = chset->bit_width_adj_per_ch[0][i];
                         int msb_shift = bits;
                         unsigned j;
 
                         if (adj > 0)
                             msb_shift += adj - 1;
 
                         for (j = 0; j < s->xll_smpl_in_seg; j++)
                             sample_buf[j] = (sample_buf[j] << msb_shift) +
                                             (get_bits(gb, bits) << adj);
 
                         done += bits * s->xll_smpl_in_seg;
                     }
                 }
                 if (done > 8 * chset->lsb_fsize[0]) {
                     av_log(s->avctx, AV_LOG_ERROR,
                            "chset lsb exceeds lsb_size\n");
                     return AVERROR_INVALIDDATA;
                 }
             }
 
             /* Store output. */
             for (i = 0; i < chset->channels; i++) {
                 int *sample_buf = s->xll_sample_buf +
                                   (in_channel + i) * s->xll_smpl_in_seg;
                 int shift = 1 - chset->bit_resolution;
                 int out_channel = chset->orig_chan_order[0][i];
                 float *out;
 
                 /* XLL uses the channel order C, L, R, and we want L,
                  * R, C. FIXME: Generalize. */
                 if (chset->ch_mask_enabled &&
                     (chset->ch_mask & 7) == 7 && out_channel < 3)
                     out_channel = out_channel ? out_channel - 1 : 2;
 
                 out_channel += in_channel;
                 if (out_channel >= s->avctx->channels)
                     continue;
 
                 out  = (float *) frame->extended_data[out_channel];
                 out += seg * s->xll_smpl_in_seg;
 
                 /* NOTE: A one bit means residual encoding is *not* used. */
                 if ((chset->residual_encode >> i) & 1) {
                     /* Replace channel samples.
                      * FIXME: Most likely not the right thing to do. */
                     for (j = 0; j < s->xll_smpl_in_seg; j++)
                         out[j] = ldexpf(sample_buf[j], shift);
                 } else {
                     /* Add residual signal to core channel */
                     for (j = 0; j < s->xll_smpl_in_seg; j++)
                         out[j] += ldexpf(sample_buf[j], shift);
                 }
             }
 
             if (chset->downmix_coeff_code_embedded &&
                 !chset->primary_ch_set && chset->hier_chset) {
                 /* Undo hierarchical downmix of earlier channels. */
                 unsigned mix_channel;
                 for (mix_channel = 0; mix_channel < in_channel; mix_channel++) {
                     float *mix_buf;
                     const int *col;
                     float coeff;
                     unsigned row;
                     /* Similar channel reorder C, L, R vs L, R, C reorder. */
                     if (chset->ch_mask_enabled &&
                         (chset->ch_mask & 7) == 7 && mix_channel < 3)
                         mix_buf = (float *) frame->extended_data[mix_channel ? mix_channel - 1 : 2];
                     else
                         mix_buf = (float *) frame->extended_data[mix_channel];
 
                     mix_buf += seg * s->xll_smpl_in_seg;
                     col = &chset->downmix_coeffs[mix_channel * (chset->channels + 1)];
 
                     /* Scale */
                     coeff = ldexpf(col[0], -16);
                     for (j = 0; j < s->xll_smpl_in_seg; j++)
                         mix_buf[j] *= coeff;
 
                     for (row = 0;
                          row < chset->channels && in_channel + row < s->avctx->channels;
                          row++)
                         if (col[row + 1]) {
                             const float *new_channel =
                                 (const float *) frame->extended_data[in_channel + row];
                             new_channel += seg * s->xll_smpl_in_seg;
                             coeff        = ldexpf(col[row + 1], -15);
                             for (j = 0; j < s->xll_smpl_in_seg; j++)
                                 mix_buf[j] -= coeff * new_channel[j];
                         }
                 }
             }
 
 next_chset:
             in_channel += chset->channels;
             /* Skip to next channel set using the NAVI info. */
             i = get_bits_count(gb);
             if (i > end_pos) {
                 av_log(s->avctx, AV_LOG_ERROR,
                        "chset data exceeds NAVI size\n");
                 return AVERROR_INVALIDDATA;
             }
             if (i < end_pos)
                 skip_bits_long(gb, end_pos - i);
         }
     }
     return 0;
 }