libavcodec/vc2enc.c
ec9e87c9
 /*
  * Copyright (C) 2016 Open Broadcast Systems Ltd.
  * Author        2016 Rostislav Pehlivanov <atomnuker@gmail.com>
  *
  * This file is part of FFmpeg.
  *
  * FFmpeg is free software; you can redistribute it and/or
  * modify it under the terms of the GNU Lesser General Public
  * License as published by the Free Software Foundation; either
  * version 2.1 of the License, or (at your option) any later version.
  *
  * FFmpeg is distributed in the hope that it will be useful,
  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  * Lesser General Public License for more details.
  *
  * You should have received a copy of the GNU Lesser General Public
  * License along with FFmpeg; if not, write to the Free Software
  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  */
 
 #include "libavutil/ffversion.h"
 #include "libavutil/pixdesc.h"
 #include "libavutil/opt.h"
 #include "dirac.h"
 #include "put_bits.h"
 #include "internal.h"
 
 #include "vc2enc_dwt.h"
 #include "diractab.h"
 
 /* Quantizations above this usually zero coefficients and lower the quality */
 #define MAX_QUANT_INDEX 100
 
 #define COEF_LUT_TAB 2048
 
 enum VC2_QM {
     VC2_QM_DEF = 0,
     VC2_QM_COL,
     VC2_QM_FLAT,
 
     VC2_QM_NB
 };
 
 typedef struct SubBand {
     dwtcoef *buf;
     ptrdiff_t stride;
     int width;
     int height;
 } SubBand;
 
 typedef struct Plane {
     SubBand band[MAX_DWT_LEVELS][4];
     dwtcoef *coef_buf;
     int width;
     int height;
     int dwt_width;
     int dwt_height;
     ptrdiff_t coef_stride;
 } Plane;
 
 typedef struct SliceArgs {
     PutBitContext pb;
     void *ctx;
     int x;
     int y;
     int quant_idx;
     int bits_ceil;
     int bytes;
 } SliceArgs;
 
 typedef struct TransformArgs {
     void *ctx;
     Plane *plane;
     void *idata;
     ptrdiff_t istride;
     int field;
     VC2TransformContext t;
 } TransformArgs;
 
 typedef struct VC2EncContext {
     AVClass *av_class;
     PutBitContext pb;
     Plane plane[3];
     AVCodecContext *avctx;
     DiracVersionInfo ver;
 
     SliceArgs *slice_args;
     TransformArgs transform_args[3];
 
     /* For conversion from unsigned pixel values to signed */
     int diff_offset;
     int bpp;
 
     /* Picture number */
     uint32_t picture_number;
 
     /* Base video format */
     int base_vf;
     int level;
     int profile;
 
     /* Quantization matrix */
     uint8_t quant[MAX_DWT_LEVELS][4];
 
     /* Coefficient LUT */
     uint32_t *coef_lut_val;
     uint8_t  *coef_lut_len;
 
     int num_x; /* #slices horizontally */
     int num_y; /* #slices vertically */
     int prefix_bytes;
     int size_scaler;
     int chroma_x_shift;
     int chroma_y_shift;
 
     /* Rate control stuff */
     int slice_max_bytes;
     int q_ceil;
     int q_start;
 
     /* Options */
     double tolerance;
     int wavelet_idx;
     int wavelet_depth;
     int strict_compliance;
     int slice_height;
     int slice_width;
     int interlaced;
     enum VC2_QM quant_matrix;
 
     /* Parse code state */
     uint32_t next_parse_offset;
     enum DiracParseCodes last_parse_code;
 } VC2EncContext;
 
 static av_always_inline void put_padding(PutBitContext *pb, int bytes)
 {
     int bits = bytes*8;
     if (!bits)
         return;
     while (bits > 31) {
         put_bits(pb, 31, 0);
         bits -= 31;
     }
     if (bits)
         put_bits(pb, bits, 0);
 }
 
 static av_always_inline void put_vc2_ue_uint(PutBitContext *pb, uint32_t val)
 {
     int i;
     int pbits = 0, bits = 0, topbit = 1, maxval = 1;
 
     if (!val++) {
         put_bits(pb, 1, 1);
         return;
     }
 
     while (val > maxval) {
         topbit <<= 1;
         maxval <<= 1;
         maxval |=  1;
     }
 
     bits = ff_log2(topbit);
 
     for (i = 0; i < bits; i++) {
         topbit >>= 1;
         pbits <<= 2;
         if (val & topbit)
             pbits |= 0x1;
     }
 
     put_bits(pb, bits*2 + 1, (pbits << 1) | 1);
 }
 
 static av_always_inline int count_vc2_ue_uint(uint16_t val)
 {
     int topbit = 1, maxval = 1;
 
     if (!val++)
         return 1;
 
     while (val > maxval) {
         topbit <<= 1;
         maxval <<= 1;
         maxval |=  1;
     }
 
     return ff_log2(topbit)*2 + 1;
 }
 
 static av_always_inline void get_vc2_ue_uint(uint16_t val, uint8_t *nbits,
                                                uint32_t *eval)
 {
     int i;
     int pbits = 0, bits = 0, topbit = 1, maxval = 1;
 
     if (!val++) {
         *nbits = 1;
         *eval = 1;
         return;
     }
 
     while (val > maxval) {
         topbit <<= 1;
         maxval <<= 1;
         maxval |=  1;
     }
 
     bits = ff_log2(topbit);
 
     for (i = 0; i < bits; i++) {
         topbit >>= 1;
         pbits <<= 2;
         if (val & topbit)
             pbits |= 0x1;
     }
 
     *nbits = bits*2 + 1;
     *eval = (pbits << 1) | 1;
 }
 
 /* VC-2 10.4 - parse_info() */
 static void encode_parse_info(VC2EncContext *s, enum DiracParseCodes pcode)
 {
     uint32_t cur_pos, dist;
 
     avpriv_align_put_bits(&s->pb);
 
     cur_pos = put_bits_count(&s->pb) >> 3;
 
     /* Magic string */
     avpriv_put_string(&s->pb, "BBCD", 0);
 
     /* Parse code */
     put_bits(&s->pb, 8, pcode);
 
     /* Next parse offset */
     dist = cur_pos - s->next_parse_offset;
     AV_WB32(s->pb.buf + s->next_parse_offset + 5, dist);
     s->next_parse_offset = cur_pos;
     put_bits32(&s->pb, pcode == DIRAC_PCODE_END_SEQ ? 13 : 0);
 
     /* Last parse offset */
     put_bits32(&s->pb, s->last_parse_code == DIRAC_PCODE_END_SEQ ? 13 : dist);
 
     s->last_parse_code = pcode;
 }
 
 /* VC-2 11.1 - parse_parameters()
  * The level dictates what the decoder should expect in terms of resolution
  * and allows it to quickly reject whatever it can't support. Remember,
  * this codec kinda targets cheapo FPGAs without much memory. Unfortunately
  * it also limits us greatly in our choice of formats, hence the flag to disable
  * strict_compliance */
 static void encode_parse_params(VC2EncContext *s)
 {
     put_vc2_ue_uint(&s->pb, s->ver.major); /* VC-2 demands this to be 2 */
     put_vc2_ue_uint(&s->pb, s->ver.minor); /* ^^ and this to be 0       */
     put_vc2_ue_uint(&s->pb, s->profile);   /* 3 to signal HQ profile    */
     put_vc2_ue_uint(&s->pb, s->level);     /* 3 - 1080/720, 6 - 4K      */
 }
 
 /* VC-2 11.3 - frame_size() */
 static void encode_frame_size(VC2EncContext *s)
 {
     put_bits(&s->pb, 1, !s->strict_compliance);
     if (!s->strict_compliance) {
         AVCodecContext *avctx = s->avctx;
         put_vc2_ue_uint(&s->pb, avctx->width);
         put_vc2_ue_uint(&s->pb, avctx->height);
     }
 }
 
 /* VC-2 11.3.3 - color_diff_sampling_format() */
 static void encode_sample_fmt(VC2EncContext *s)
 {
     put_bits(&s->pb, 1, !s->strict_compliance);
     if (!s->strict_compliance) {
         int idx;
         if (s->chroma_x_shift == 1 && s->chroma_y_shift == 0)
             idx = 1; /* 422 */
         else if (s->chroma_x_shift == 1 && s->chroma_y_shift == 1)
             idx = 2; /* 420 */
         else
             idx = 0; /* 444 */
         put_vc2_ue_uint(&s->pb, idx);
     }
 }
 
 /* VC-2 11.3.4 - scan_format() */
 static void encode_scan_format(VC2EncContext *s)
 {
     put_bits(&s->pb, 1, !s->strict_compliance);
     if (!s->strict_compliance)
         put_vc2_ue_uint(&s->pb, s->interlaced);
 }
 
 /* VC-2 11.3.5 - frame_rate() */
 static void encode_frame_rate(VC2EncContext *s)
 {
     put_bits(&s->pb, 1, !s->strict_compliance);
     if (!s->strict_compliance) {
         AVCodecContext *avctx = s->avctx;
         put_vc2_ue_uint(&s->pb, 0);
         put_vc2_ue_uint(&s->pb, avctx->time_base.den);
         put_vc2_ue_uint(&s->pb, avctx->time_base.num);
     }
 }
 
 /* VC-2 11.3.6 - aspect_ratio() */
 static void encode_aspect_ratio(VC2EncContext *s)
 {
     put_bits(&s->pb, 1, !s->strict_compliance);
     if (!s->strict_compliance) {
         AVCodecContext *avctx = s->avctx;
         put_vc2_ue_uint(&s->pb, 0);
         put_vc2_ue_uint(&s->pb, avctx->sample_aspect_ratio.num);
         put_vc2_ue_uint(&s->pb, avctx->sample_aspect_ratio.den);
     }
 }
 
 /* VC-2 11.3.7 - clean_area() */
 static void encode_clean_area(VC2EncContext *s)
 {
     put_bits(&s->pb, 1, 0);
 }
 
 /* VC-2 11.3.8 - signal_range() */
 static void encode_signal_range(VC2EncContext *s)
 {
     int idx;
     AVCodecContext *avctx = s->avctx;
     const AVPixFmtDescriptor *fmt = av_pix_fmt_desc_get(avctx->pix_fmt);
     const int depth = fmt->comp[0].depth;
     if (depth == 8 && avctx->color_range == AVCOL_RANGE_JPEG) {
         idx = 1;
         s->bpp = 1;
         s->diff_offset = 128;
     } else if (depth == 8 && (avctx->color_range == AVCOL_RANGE_MPEG ||
                avctx->color_range == AVCOL_RANGE_UNSPECIFIED)) {
         idx = 2;
         s->bpp = 1;
         s->diff_offset = 128;
     } else if (depth == 10) {
         idx = 3;
         s->bpp = 2;
         s->diff_offset = 512;
     } else {
         idx = 4;
         s->bpp = 2;
         s->diff_offset = 2048;
     }
     put_bits(&s->pb, 1, !s->strict_compliance);
     if (!s->strict_compliance)
         put_vc2_ue_uint(&s->pb, idx);
 }
 
 /* VC-2 11.3.9 - color_spec() */
 static void encode_color_spec(VC2EncContext *s)
 {
     AVCodecContext *avctx = s->avctx;
     put_bits(&s->pb, 1, !s->strict_compliance);
     if (!s->strict_compliance) {
         int val;
         put_vc2_ue_uint(&s->pb, 0);
 
         /* primaries */
         put_bits(&s->pb, 1, 1);
         if (avctx->color_primaries == AVCOL_PRI_BT470BG)
             val = 2;
         else if (avctx->color_primaries == AVCOL_PRI_SMPTE170M)
             val = 1;
         else if (avctx->color_primaries == AVCOL_PRI_SMPTE240M)
             val = 1;
         else
             val = 0;
         put_vc2_ue_uint(&s->pb, val);
 
         /* color matrix */
         put_bits(&s->pb, 1, 1);
         if (avctx->colorspace == AVCOL_SPC_RGB)
             val = 3;
         else if (avctx->colorspace == AVCOL_SPC_YCOCG)
             val = 2;
         else if (avctx->colorspace == AVCOL_SPC_BT470BG)
             val = 1;
         else
             val = 0;
         put_vc2_ue_uint(&s->pb, val);
 
         /* transfer function */
         put_bits(&s->pb, 1, 1);
         if (avctx->color_trc == AVCOL_TRC_LINEAR)
             val = 2;
         else if (avctx->color_trc == AVCOL_TRC_BT1361_ECG)
             val = 1;
         else
             val = 0;
         put_vc2_ue_uint(&s->pb, val);
     }
 }
 
 /* VC-2 11.3 - source_parameters() */
 static void encode_source_params(VC2EncContext *s)
 {
     encode_frame_size(s);
     encode_sample_fmt(s);
     encode_scan_format(s);
     encode_frame_rate(s);
     encode_aspect_ratio(s);
     encode_clean_area(s);
     encode_signal_range(s);
     encode_color_spec(s);
 }
 
 /* VC-2 11 - sequence_header() */
 static void encode_seq_header(VC2EncContext *s)
 {
     avpriv_align_put_bits(&s->pb);
     encode_parse_params(s);
     put_vc2_ue_uint(&s->pb, s->base_vf);
     encode_source_params(s);
     put_vc2_ue_uint(&s->pb, s->interlaced); /* Frames or fields coding */
 }
 
 /* VC-2 12.1 - picture_header() */
 static void encode_picture_header(VC2EncContext *s)
 {
     avpriv_align_put_bits(&s->pb);
     put_bits32(&s->pb, s->picture_number++);
 }
 
 /* VC-2 12.3.4.1 - slice_parameters() */
 static void encode_slice_params(VC2EncContext *s)
 {
     put_vc2_ue_uint(&s->pb, s->num_x);
     put_vc2_ue_uint(&s->pb, s->num_y);
     put_vc2_ue_uint(&s->pb, s->prefix_bytes);
     put_vc2_ue_uint(&s->pb, s->size_scaler);
 }
 
 /* 1st idx = LL, second - vertical, third - horizontal, fourth - total */
 const uint8_t vc2_qm_col_tab[][4] = {
     {20,  9, 15,  4},
     { 0,  6,  6,  4},
     { 0,  3,  3,  5},
     { 0,  3,  5,  1},
     { 0, 11, 10, 11}
 };
 
 const uint8_t vc2_qm_flat_tab[][4] = {
     { 0,  0,  0,  0},
     { 0,  0,  0,  0},
     { 0,  0,  0,  0},
     { 0,  0,  0,  0},
     { 0,  0,  0,  0}
 };
 
 static void init_custom_qm(VC2EncContext *s)
 {
     int level, orientation;
 
     if (s->quant_matrix == VC2_QM_DEF) {
         for (level = 0; level < s->wavelet_depth; level++) {
             for (orientation = 0; orientation < 4; orientation++) {
                 if (level <= 3)
                     s->quant[level][orientation] = ff_dirac_default_qmat[s->wavelet_idx][level][orientation];
                 else
                     s->quant[level][orientation] = vc2_qm_col_tab[level][orientation];
             }
         }
     } else if (s->quant_matrix == VC2_QM_COL) {
         for (level = 0; level < s->wavelet_depth; level++) {
             for (orientation = 0; orientation < 4; orientation++) {
                 s->quant[level][orientation] = vc2_qm_col_tab[level][orientation];
             }
         }
     } else {
         for (level = 0; level < s->wavelet_depth; level++) {
             for (orientation = 0; orientation < 4; orientation++) {
                 s->quant[level][orientation] = vc2_qm_flat_tab[level][orientation];
             }
         }
     }
 }
 
 /* VC-2 12.3.4.2 - quant_matrix() */
 static void encode_quant_matrix(VC2EncContext *s)
 {
     int level, custom_quant_matrix = 0;
     if (s->wavelet_depth > 4 || s->quant_matrix != VC2_QM_DEF)
         custom_quant_matrix = 1;
     put_bits(&s->pb, 1, custom_quant_matrix);
     if (custom_quant_matrix) {
         init_custom_qm(s);
         put_vc2_ue_uint(&s->pb, s->quant[0][0]);
         for (level = 0; level < s->wavelet_depth; level++) {
             put_vc2_ue_uint(&s->pb, s->quant[level][1]);
             put_vc2_ue_uint(&s->pb, s->quant[level][2]);
             put_vc2_ue_uint(&s->pb, s->quant[level][3]);
         }
     } else {
         for (level = 0; level < s->wavelet_depth; level++) {
             s->quant[level][0] = ff_dirac_default_qmat[s->wavelet_idx][level][0];
             s->quant[level][1] = ff_dirac_default_qmat[s->wavelet_idx][level][1];
             s->quant[level][2] = ff_dirac_default_qmat[s->wavelet_idx][level][2];
             s->quant[level][3] = ff_dirac_default_qmat[s->wavelet_idx][level][3];
         }
     }
 }
 
 /* VC-2 12.3 - transform_parameters() */
 static void encode_transform_params(VC2EncContext *s)
 {
     put_vc2_ue_uint(&s->pb, s->wavelet_idx);
     put_vc2_ue_uint(&s->pb, s->wavelet_depth);
 
     encode_slice_params(s);
     encode_quant_matrix(s);
 }
 
 /* VC-2 12.2 - wavelet_transform() */
 static void encode_wavelet_transform(VC2EncContext *s)
 {
     encode_transform_params(s);
     avpriv_align_put_bits(&s->pb);
     /* Continued after DWT in encode_transform_data() */
 }
 
 /* VC-2 12 - picture_parse() */
 static void encode_picture_start(VC2EncContext *s)
 {
     avpriv_align_put_bits(&s->pb);
     encode_picture_header(s);
     avpriv_align_put_bits(&s->pb);
     encode_wavelet_transform(s);
 }
 
 #define QUANT(c)  \
     c <<= 2;      \
     c /= qfactor; \
 
 static av_always_inline void coeff_quantize_get(qcoef coeff, int qfactor,
                                                 uint8_t *len, uint32_t *eval)
 {
     QUANT(coeff)
     get_vc2_ue_uint(abs(coeff), len, eval);
     if (coeff) {
         *eval = (*eval << 1) | (coeff < 0);
         *len += 1;
     }
 }
 
 static av_always_inline void coeff_quantize_encode(PutBitContext *pb, qcoef coeff,
                                                    int qfactor)
 {
     QUANT(coeff)
     put_vc2_ue_uint(pb, abs(coeff));
     if (coeff)
         put_bits(pb, 1, coeff < 0);
 }
 
 /* VC-2 13.5.5.2 - slice_band() */
 static void encode_subband(VC2EncContext *s, PutBitContext *pb, int sx, int sy,
                            SubBand *b, int quant)
 {
     int x, y;
 
     int left   = b->width  * (sx+0) / s->num_x;
     int right  = b->width  * (sx+1) / s->num_x;
     int top    = b->height * (sy+0) / s->num_y;
     int bottom = b->height * (sy+1) / s->num_y;
 
     int qfactor = ff_dirac_qscale_tab[quant];
     uint8_t  *len_lut = &s->coef_lut_len[2*quant*COEF_LUT_TAB + COEF_LUT_TAB];
     uint32_t *val_lut = &s->coef_lut_val[2*quant*COEF_LUT_TAB + COEF_LUT_TAB];
 
     dwtcoef *coeff = b->buf + top * b->stride;
 
     for (y = top; y < bottom; y++) {
         for (x = left; x < right; x++) {
             if (coeff[x] >= -COEF_LUT_TAB && coeff[x] < COEF_LUT_TAB)
                 put_bits(pb, len_lut[coeff[x]], val_lut[coeff[x]]);
             else
                 coeff_quantize_encode(pb, coeff[x], qfactor);
         }
         coeff += b->stride;
     }
 }
 
 static int count_hq_slice(VC2EncContext *s, int slice_x,
                           int slice_y, int quant_idx)
 {
     int x, y, left, right, top, bottom, qfactor;
     uint8_t quants[MAX_DWT_LEVELS][4];
     int bits = 0, p, level, orientation;
 
     bits += 8*s->prefix_bytes;
     bits += 8; /* quant_idx */
 
     for (level = 0; level < s->wavelet_depth; level++)
         for (orientation = !!level; orientation < 4; orientation++)
             quants[level][orientation] = FFMAX(quant_idx - s->quant[level][orientation], 0);
 
     for (p = 0; p < 3; p++) {
         int bytes_start, bytes_len, pad_s, pad_c;
         bytes_start = bits >> 3;
         bits += 8;
         for (level = 0; level < s->wavelet_depth; level++) {
             for (orientation = !!level; orientation < 4; orientation++) {
                 dwtcoef *buf;
                 SubBand *b = &s->plane[p].band[level][orientation];
 
                 quant_idx = quants[level][orientation];
                 qfactor = ff_dirac_qscale_tab[quant_idx];
 
                 left   = b->width  * slice_x    / s->num_x;
                 right  = b->width  *(slice_x+1) / s->num_x;
                 top    = b->height * slice_y    / s->num_y;
                 bottom = b->height *(slice_y+1) / s->num_y;
 
                 buf = b->buf + top * b->stride;
 
                 for (y = top; y < bottom; y++) {
                     for (x = left; x < right; x++) {
                         qcoef coeff = (qcoef)buf[x];
                         if (coeff >= -COEF_LUT_TAB && coeff < COEF_LUT_TAB) {
                             bits += s->coef_lut_len[2*quant_idx*COEF_LUT_TAB + coeff + COEF_LUT_TAB];
                         } else {
                             QUANT(coeff)
                             bits += count_vc2_ue_uint(abs(coeff));
                             bits += !!coeff;
                         }
                     }
                     buf += b->stride;
                 }
             }
         }
         bits += FFALIGN(bits, 8) - bits;
         bytes_len = (bits >> 3) - bytes_start - 1;
         pad_s = FFALIGN(bytes_len, s->size_scaler)/s->size_scaler;
         pad_c = (pad_s*s->size_scaler) - bytes_len;
         bits += pad_c*8;
     }
 
     return bits;
 }
 
 /* Approaches the best possible quantizer asymptotically, its kinda exaustive
  * but we have a LUT to get the coefficient size in bits. Guaranteed to never
  * overshoot, which is apparently very important when streaming */
 static int rate_control(AVCodecContext *avctx, void *arg)
 {
     SliceArgs *slice_dat = arg;
     VC2EncContext *s = slice_dat->ctx;
     const int sx = slice_dat->x;
     const int sy = slice_dat->y;
     int quant_buf[2], bits_buf[2], quant = s->q_start, range = s->q_start/3;
     const int64_t top = slice_dat->bits_ceil;
     const double percent = s->tolerance;
     const double bottom = top - top*(percent/100.0f);
     int bits = count_hq_slice(s, sx, sy, quant);
     range -= range & 1; /* Make it an even number */
     while ((bits > top) || (bits < bottom)) {
         range *= bits > top ? +1 : -1;
         quant = av_clip(quant + range, 0, s->q_ceil);
         bits = count_hq_slice(s, sx, sy, quant);
         range = av_clip(range/2, 1, s->q_ceil);
         if (quant_buf[1] == quant) {
             quant = bits_buf[0] < bits ? quant_buf[0] : quant;
             bits = bits_buf[0] < bits ? bits_buf[0] : bits;
             break;
         }
         quant_buf[1] = quant_buf[0];
         quant_buf[0] = quant;
         bits_buf[1] = bits_buf[0];
         bits_buf[0] = bits;
     }
     slice_dat->quant_idx = av_clip(quant, 0, s->q_ceil);
     slice_dat->bytes = FFALIGN((bits >> 3), s->size_scaler) + 4 + s->prefix_bytes;
 
     return 0;
 }
 
 static void calc_slice_sizes(VC2EncContext *s)
 {
     int slice_x, slice_y;
     SliceArgs *enc_args = s->slice_args;
 
     for (slice_y = 0; slice_y < s->num_y; slice_y++) {
         for (slice_x = 0; slice_x < s->num_x; slice_x++) {
             SliceArgs *args = &enc_args[s->num_x*slice_y + slice_x];
             args->ctx = s;
             args->x = slice_x;
             args->y = slice_y;
             args->bits_ceil = s->slice_max_bytes << 3;
         }
     }
 
     /* Determine quantization indices and bytes per slice */
     s->avctx->execute(s->avctx, rate_control, enc_args, NULL, s->num_x*s->num_y,
                       sizeof(SliceArgs));
 }
 
 /* VC-2 13.5.3 - hq_slice */
 static int encode_hq_slice(AVCodecContext *avctx, void *arg)
 {
     SliceArgs *slice_dat = arg;
     VC2EncContext *s = slice_dat->ctx;
     PutBitContext *pb = &slice_dat->pb;
     const int slice_x = slice_dat->x;
     const int slice_y = slice_dat->y;
     const int quant_idx = slice_dat->quant_idx;
     const int slice_bytes_max = slice_dat->bytes;
     uint8_t quants[MAX_DWT_LEVELS][4];
     int p, level, orientation;
 
     avpriv_align_put_bits(pb);
     put_padding(pb, s->prefix_bytes);
     put_bits(pb, 8, quant_idx);
 
     /* Slice quantization (slice_quantizers() in the specs) */
     for (level = 0; level < s->wavelet_depth; level++)
         for (orientation = !!level; orientation < 4; orientation++)
             quants[level][orientation] = FFMAX(quant_idx - s->quant[level][orientation], 0);
 
     /* Luma + 2 Chroma planes */
     for (p = 0; p < 3; p++) {
         int bytes_start, bytes_len, pad_s, pad_c;
         bytes_start = put_bits_count(pb) >> 3;
         put_bits(pb, 8, 0);
         for (level = 0; level < s->wavelet_depth; level++) {
             for (orientation = !!level; orientation < 4; orientation++) {
                 encode_subband(s, pb, slice_x, slice_y,
                                &s->plane[p].band[level][orientation],
                                quants[level][orientation]);
             }
         }
         avpriv_align_put_bits(pb);
         bytes_len = (put_bits_count(pb) >> 3) - bytes_start - 1;
         if (p == 2) {
             int len_diff = slice_bytes_max - (put_bits_count(pb) >> 3);
             pad_s = FFALIGN((bytes_len + len_diff), s->size_scaler)/s->size_scaler;
             pad_c = (pad_s*s->size_scaler) - bytes_len;
         } else {
             pad_s = FFALIGN(bytes_len, s->size_scaler)/s->size_scaler;
             pad_c = (pad_s*s->size_scaler) - bytes_len;
         }
         pb->buf[bytes_start] = pad_s;
         put_padding(pb, pad_c);
     }
 
     return 0;
 }
 
 /* VC-2 13.5.1 - low_delay_transform_data() */
 static int encode_slices(VC2EncContext *s)
 {
     uint8_t *buf;
     int slice_x, slice_y, skip = 0;
     SliceArgs *enc_args = s->slice_args;
 
     avpriv_align_put_bits(&s->pb);
     flush_put_bits(&s->pb);
     buf = put_bits_ptr(&s->pb);
 
     for (slice_y = 0; slice_y < s->num_y; slice_y++) {
         for (slice_x = 0; slice_x < s->num_x; slice_x++) {
             SliceArgs *args = &enc_args[s->num_x*slice_y + slice_x];
             init_put_bits(&args->pb, buf + skip, args->bytes);
             s->q_start = (s->q_start + args->quant_idx)/2;
             skip += args->bytes;
         }
     }
 
     s->avctx->execute(s->avctx, encode_hq_slice, enc_args, NULL, s->num_x*s->num_y,
                       sizeof(SliceArgs));
 
     skip_put_bytes(&s->pb, skip);
 
     return 0;
 }
 
 /*
  * Transform basics for a 3 level transform
  * |---------------------------------------------------------------------|
  * |  LL-0  | HL-0  |                 |                                  |
  * |--------|-------|      HL-1       |                                  |
  * |  LH-0  | HH-0  |                 |                                  |
  * |----------------|-----------------|              HL-2                |
  * |                |                 |                                  |
  * |     LH-1       |      HH-1       |                                  |
  * |                |                 |                                  |
  * |----------------------------------|----------------------------------|
  * |                                  |                                  |
  * |                                  |                                  |
  * |                                  |                                  |
  * |              LH-2                |              HH-2                |
  * |                                  |                                  |
  * |                                  |                                  |
  * |                                  |                                  |
  * |---------------------------------------------------------------------|
  *
  * DWT transforms are generally applied by splitting the image in two vertically
  * and applying a low pass transform on the left part and a corresponding high
  * pass transform on the right hand side. This is known as the horizontal filter
  * stage.
  * After that, the same operation is performed except the image is divided
  * horizontally, with the high pass on the lower and the low pass on the higher
  * side.
  * Therefore, you're left with 4 subdivisions - known as  low-low, low-high,
  * high-low and high-high. They're referred to as orientations in the decoder
  * and encoder.
  *
  * The LL (low-low) area contains the original image downsampled by the amount
  * of levels. The rest of the areas can be thought as the details needed
  * to restore the image perfectly to its original size.
  */
 
 
 static int dwt_plane(AVCodecContext *avctx, void *arg)
 {
     TransformArgs *transform_dat = arg;
     VC2EncContext *s = transform_dat->ctx;
     const void *frame_data = transform_dat->idata;
     const ptrdiff_t linesize = transform_dat->istride;
     const int field = transform_dat->field;
     const Plane *p = transform_dat->plane;
     VC2TransformContext *t = &transform_dat->t;
     dwtcoef *buf = p->coef_buf;
     const int idx = s->wavelet_idx;
     const int skip = 1 + s->interlaced;
 
     int x, y, level, offset;
     ptrdiff_t pix_stride = linesize >> (s->bpp - 1);
 
     if (field == 1) {
         offset = 0;
         pix_stride <<= 1;
     } else if (field == 2) {
         offset = pix_stride;
         pix_stride <<= 1;
     } else {
         offset = 0;
     }
 
     if (s->bpp == 1) {
         const uint8_t *pix = (const uint8_t *)frame_data + offset;
         for (y = 0; y < p->height*skip; y+=skip) {
             for (x = 0; x < p->width; x++) {
                 buf[x] = pix[x] - s->diff_offset;
             }
             buf += p->coef_stride;
             pix += pix_stride;
         }
     } else {
         const uint16_t *pix = (const uint16_t *)frame_data + offset;
         for (y = 0; y < p->height*skip; y+=skip) {
             for (x = 0; x < p->width; x++) {
                 buf[x] = pix[x] - s->diff_offset;
             }
             buf += p->coef_stride;
             pix += pix_stride;
         }
     }
 
     memset(buf, 0, (p->coef_stride*p->dwt_height - p->height*p->width)*sizeof(dwtcoef));
 
     for (level = s->wavelet_depth-1; level >= 0; level--) {
         const SubBand *b = &p->band[level][0];
         t->vc2_subband_dwt[idx](t, p->coef_buf, p->coef_stride,
                                 b->width, b->height);
     }
 
     return 0;
 }
 
 static void encode_frame(VC2EncContext *s, const AVFrame *frame,
                          const char *aux_data, int field)
 {
     int i;
 
     /* Sequence header */
     encode_parse_info(s, DIRAC_PCODE_SEQ_HEADER);
     encode_seq_header(s);
 
     /* Encoder version */
     if (aux_data) {
         encode_parse_info(s, DIRAC_PCODE_AUX);
         avpriv_put_string(&s->pb, aux_data, 1);
     }
 
     /* Picture header */
     encode_parse_info(s, DIRAC_PCODE_PICTURE_HQ);
     encode_picture_start(s);
 
     for (i = 0; i < 3; i++) {
         s->transform_args[i].ctx   = s;
         s->transform_args[i].field = field;
         s->transform_args[i].plane = &s->plane[i];
         s->transform_args[i].idata = frame->data[i];
         s->transform_args[i].istride = frame->linesize[i];
     }
 
     /* Do a DWT transform */
     s->avctx->execute(s->avctx, dwt_plane, s->transform_args, NULL, 3,
                       sizeof(TransformArgs));
 
     /* Calculate per-slice quantizers and sizes */
     calc_slice_sizes(s);
 
     /* Init planes and encode slices */
     encode_slices(s);
 
     /* End sequence */
     encode_parse_info(s, DIRAC_PCODE_END_SEQ);
 }
 
 static av_cold int vc2_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
                                       const AVFrame *frame, int *got_packet_ptr)
 {
     int ret;
     int max_frame_bytes, sig_size = 256;
     VC2EncContext *s = avctx->priv_data;
     const char aux_data[] = "FFmpeg version "FFMPEG_VERSION;
     const int aux_data_size = sizeof(aux_data);
     const int header_size = 100 + aux_data_size;
     int64_t r_bitrate = avctx->bit_rate >> (s->interlaced);
 
     s->avctx = avctx;
     s->size_scaler = 1;
     s->prefix_bytes = 0;
     s->last_parse_code = 0;
     s->next_parse_offset = 0;
 
     /* Rate control */
     max_frame_bytes = (av_rescale(r_bitrate, s->avctx->time_base.num,
                                   s->avctx->time_base.den) >> 3) - header_size;
 
     /* Find an appropriate size scaler */
     while (sig_size > 255) {
         s->slice_max_bytes = FFALIGN(av_rescale(max_frame_bytes, 1,
                                      s->num_x*s->num_y), s->size_scaler);
         s->slice_max_bytes += 4 + s->prefix_bytes;
         sig_size = s->slice_max_bytes/s->size_scaler; /* Signalled slize size */
         s->size_scaler <<= 1;
     }
 
     ret = ff_alloc_packet2(avctx, avpkt, max_frame_bytes*2, 0);
     if (ret < 0) {
         av_log(avctx, AV_LOG_ERROR, "Error getting output packet.\n");
         return ret;
     } else {
         init_put_bits(&s->pb, avpkt->data, avpkt->size);
     }
 
     encode_frame(s, frame, aux_data, s->interlaced);
     if (s->interlaced)
         encode_frame(s, frame, NULL, 2);
 
     flush_put_bits(&s->pb);
     avpkt->size = put_bits_count(&s->pb) >> 3;
 
     *got_packet_ptr = 1;
 
     return 0;
 }
 
 static av_cold int vc2_encode_end(AVCodecContext *avctx)
 {
     int i;
     VC2EncContext *s = avctx->priv_data;
 
     for (i = 0; i < 3; i++) {
         ff_vc2enc_free_transforms(&s->transform_args[i].t);
         av_freep(&s->plane[i].coef_buf);
     }
 
     av_freep(&s->slice_args);
     av_freep(&s->coef_lut_len);
     av_freep(&s->coef_lut_val);
 
     return 0;
 }
 
 
 static av_cold int vc2_encode_init(AVCodecContext *avctx)
 {
     Plane *p;
     SubBand *b;
     int i, j, level, o, shift;
     VC2EncContext *s = avctx->priv_data;
 
     s->picture_number = 0;
 
     /* Total allowed quantization range */
     s->q_ceil    = MAX_QUANT_INDEX;
 
     s->ver.major = 2;
     s->ver.minor = 0;
     s->profile   = 3;
     s->level     = 3;
 
     s->base_vf   = -1;
     s->strict_compliance = 1;
 
     /* Mark unknown as progressive */
     s->interlaced = !((avctx->field_order == AV_FIELD_UNKNOWN) ||
                       (avctx->field_order == AV_FIELD_PROGRESSIVE));
 
     if (avctx->pix_fmt == AV_PIX_FMT_YUV422P10) {
         if (avctx->width == 1280 && avctx->height == 720) {
             s->level = 3;
             if (avctx->time_base.num == 1001 && avctx->time_base.den == 60000)
                 s->base_vf = 9;
             if (avctx->time_base.num == 1 && avctx->time_base.den == 50)
                 s->base_vf = 10;
         } else if (avctx->width == 1920 && avctx->height == 1080) {
             s->level = 3;
             if (s->interlaced) {
                 if (avctx->time_base.num == 1001 && avctx->time_base.den == 30000)
                     s->base_vf = 11;
                 if (avctx->time_base.num == 1 && avctx->time_base.den == 50)
                     s->base_vf = 12;
             } else {
                 if (avctx->time_base.num == 1001 && avctx->time_base.den == 60000)
                     s->base_vf = 13;
                 if (avctx->time_base.num == 1 && avctx->time_base.den == 50)
                     s->base_vf = 14;
                 if (avctx->time_base.num == 1001 && avctx->time_base.den == 24000)
                     s->base_vf = 21;
             }
         } else if (avctx->width == 3840 && avctx->height == 2160) {
             s->level = 6;
             if (avctx->time_base.num == 1001 && avctx->time_base.den == 60000)
                 s->base_vf = 17;
             if (avctx->time_base.num == 1 && avctx->time_base.den == 50)
                 s->base_vf = 18;
         }
     }
 
     if (s->interlaced && s->base_vf <= 0) {
         av_log(avctx, AV_LOG_ERROR, "Interlacing not supported with non standard formats!\n");
         return AVERROR_UNKNOWN;
     }
 
     if (s->interlaced)
         av_log(avctx, AV_LOG_WARNING, "Interlacing enabled!\n");
 
     if ((s->slice_width  & (s->slice_width  - 1)) ||
         (s->slice_height & (s->slice_height - 1))) {
         av_log(avctx, AV_LOG_ERROR, "Slice size is not a power of two!\n");
         return AVERROR_UNKNOWN;
     }
 
     if ((s->slice_width > avctx->width) ||
         (s->slice_height > avctx->height)) {
         av_log(avctx, AV_LOG_ERROR, "Slice size is bigger than the image!\n");
         return AVERROR_UNKNOWN;
     }
 
     if (s->base_vf <= 0) {
         if (avctx->strict_std_compliance <= FF_COMPLIANCE_UNOFFICIAL) {
             s->strict_compliance = s->base_vf = 0;
             av_log(avctx, AV_LOG_WARNING, "Disabling strict compliance\n");
         } else {
             av_log(avctx, AV_LOG_WARNING, "Given format does not strictly comply with "
                    "the specifications, please add a -strict -1 flag to use it\n");
             return AVERROR_UNKNOWN;
         }
     } else {
         av_log(avctx, AV_LOG_INFO, "Selected base video format = %i\n", s->base_vf);
     }
 
     avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_x_shift, &s->chroma_y_shift);
 
     /* Planes initialization */
     for (i = 0; i < 3; i++) {
         int w, h;
         p = &s->plane[i];
         p->width      = avctx->width  >> (i ? s->chroma_x_shift : 0);
         p->height     = avctx->height >> (i ? s->chroma_y_shift : 0);
         if (s->interlaced)
             p->height >>= 1;
         p->dwt_width  = w = FFALIGN(p->width,  (1 << s->wavelet_depth));
         p->dwt_height = h = FFALIGN(p->height, (1 << s->wavelet_depth));
         p->coef_stride = FFALIGN(p->dwt_width, 32);
         p->coef_buf = av_malloc(p->coef_stride*p->dwt_height*sizeof(dwtcoef));
         if (!p->coef_buf)
             goto alloc_fail;
         for (level = s->wavelet_depth-1; level >= 0; level--) {
             w = w >> 1;
             h = h >> 1;
             for (o = 0; o < 4; o++) {
                 b = &p->band[level][o];
                 b->width  = w;
                 b->height = h;
                 b->stride = p->coef_stride;
                 shift = (o > 1)*b->height*b->stride + (o & 1)*b->width;
                 b->buf = p->coef_buf + shift;
             }
         }
 
         /* DWT init */
         if (ff_vc2enc_init_transforms(&s->transform_args[i].t,
                                         s->plane[0].coef_stride,
                                         s->plane[0].dwt_height))
             goto alloc_fail;
     }
 
     /* Slices */
     s->num_x = s->plane[0].dwt_width/s->slice_width;
     s->num_y = s->plane[0].dwt_height/s->slice_height;
 
     s->slice_args = av_malloc(s->num_x*s->num_y*sizeof(SliceArgs));
     if (!s->slice_args)
         goto alloc_fail;
 
     /* Lookup tables */
     s->coef_lut_len = av_malloc(2*COEF_LUT_TAB*s->q_ceil*sizeof(*s->coef_lut_len));
     if (!s->coef_lut_len)
         goto alloc_fail;
 
     s->coef_lut_val = av_malloc(2*COEF_LUT_TAB*s->q_ceil*sizeof(*s->coef_lut_val));
     if (!s->coef_lut_val)
         goto alloc_fail;
 
     for (i = 0; i < s->q_ceil; i++) {
         for (j = -COEF_LUT_TAB; j < COEF_LUT_TAB; j++) {
             uint8_t  *len_lut = &s->coef_lut_len[2*i*COEF_LUT_TAB + COEF_LUT_TAB];
             uint32_t *val_lut = &s->coef_lut_val[2*i*COEF_LUT_TAB + COEF_LUT_TAB];
             coeff_quantize_get(j, ff_dirac_qscale_tab[i], &len_lut[j], &val_lut[j]);
         }
     }
 
     return 0;
 
 alloc_fail:
     vc2_encode_end(avctx);
     av_log(avctx, AV_LOG_ERROR, "Unable to allocate memory!\n");
     return AVERROR(ENOMEM);
 }
 
 #define VC2ENC_FLAGS (AV_OPT_FLAG_ENCODING_PARAM | AV_OPT_FLAG_VIDEO_PARAM)
 static const AVOption vc2enc_options[] = {
     {"tolerance",     "Max undershoot in percent", offsetof(VC2EncContext, tolerance), AV_OPT_TYPE_DOUBLE, {.dbl = 10.0f}, 0.0f, 45.0f, VC2ENC_FLAGS, "tolerance"},
     {"slice_width",   "Slice width",  offsetof(VC2EncContext, slice_width), AV_OPT_TYPE_INT, {.i64 = 128}, 32, 1024, VC2ENC_FLAGS, "slice_width"},
     {"slice_height",  "Slice height", offsetof(VC2EncContext, slice_height), AV_OPT_TYPE_INT, {.i64 = 64}, 8, 1024, VC2ENC_FLAGS, "slice_height"},
     {"wavelet_depth", "Transform depth", offsetof(VC2EncContext, wavelet_depth), AV_OPT_TYPE_INT, {.i64 = 5}, 1, 5, VC2ENC_FLAGS, "wavelet_depth"},
     {"wavelet_type",  "Transform type",  offsetof(VC2EncContext, wavelet_idx), AV_OPT_TYPE_INT, {.i64 = VC2_TRANSFORM_9_7}, 0, VC2_TRANSFORMS_NB, VC2ENC_FLAGS, "wavelet_idx"},
         {"9_7",       "Deslauriers-Dubuc (9,7)", 0, AV_OPT_TYPE_CONST, {.i64 = VC2_TRANSFORM_9_7}, INT_MIN, INT_MAX, VC2ENC_FLAGS, "wavelet_idx"},
         {"5_3",       "LeGall (5,3)",            0, AV_OPT_TYPE_CONST, {.i64 = VC2_TRANSFORM_5_3}, INT_MIN, INT_MAX, VC2ENC_FLAGS, "wavelet_idx"},
     {"qm", "Custom quantization matrix", offsetof(VC2EncContext, quant_matrix), AV_OPT_TYPE_INT, {.i64 = VC2_QM_DEF}, 0, VC2_QM_NB, VC2ENC_FLAGS, "quant_matrix"},
         {"default",   "Default from the specifications", 0, AV_OPT_TYPE_CONST, {.i64 = VC2_QM_DEF}, INT_MIN, INT_MAX, VC2ENC_FLAGS, "quant_matrix"},
         {"color",     "Prevents low bitrate discoloration", 0, AV_OPT_TYPE_CONST, {.i64 = VC2_QM_COL}, INT_MIN, INT_MAX, VC2ENC_FLAGS, "quant_matrix"},
         {"flat",      "Optimize for PSNR", 0, AV_OPT_TYPE_CONST, {.i64 = VC2_QM_FLAT}, INT_MIN, INT_MAX, VC2ENC_FLAGS, "quant_matrix"},
     {NULL}
 };
 
 static const AVClass vc2enc_class = {
     .class_name = "SMPTE VC-2 encoder",
     .category = AV_CLASS_CATEGORY_ENCODER,
     .option = vc2enc_options,
     .item_name = av_default_item_name,
     .version = LIBAVUTIL_VERSION_INT
 };
 
 static const AVCodecDefault vc2enc_defaults[] = {
     { "b",              "600000000"   },
     { NULL },
 };
 
 static const enum AVPixelFormat allowed_pix_fmts[] = {
     AV_PIX_FMT_YUV420P,   AV_PIX_FMT_YUV422P,   AV_PIX_FMT_YUV444P,
     AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10,
     AV_PIX_FMT_YUV420P12, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV444P12,
     AV_PIX_FMT_NONE
 };
 
 AVCodec ff_vc2_encoder = {
     .name = "vc2",
     .long_name = NULL_IF_CONFIG_SMALL("SMPTE VC-2"),
     .type = AVMEDIA_TYPE_VIDEO,
     .id = AV_CODEC_ID_DIRAC,
     .priv_data_size = sizeof(VC2EncContext),
     .init = vc2_encode_init,
     .close = vc2_encode_end,
     .capabilities = AV_CODEC_CAP_SLICE_THREADS,
     .encode2 = vc2_encode_frame,
     .priv_class = &vc2enc_class,
     .defaults = vc2enc_defaults,
     .pix_fmts = allowed_pix_fmts
 };