libavcodec/eac3dec.c
60203130
 /*
  * E-AC-3 decoder
  * Copyright (c) 2007 Bartlomiej Wolowiec <bartek.wolowiec@gmail.com>
  * Copyright (c) 2008 Justin Ruggles
  *
  * This file is part of FFmpeg.
  *
  * FFmpeg is free software; you can redistribute it and/or
0c3021ea
  * modify it under the terms of the GNU Lesser General Public
60203130
  * License as published by the Free Software Foundation; either
0c3021ea
  * version 2.1 of the License, or (at your option) any later version.
60203130
  *
  * FFmpeg is distributed in the hope that it will be useful,
  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
0c3021ea
  * Lesser General Public License for more details.
60203130
  *
0c3021ea
  * You should have received a copy of the GNU Lesser General Public
60203130
  * License along with FFmpeg; if not, write to the Free Software
  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  */
 
137707e5
 /*
  * There are several features of E-AC-3 that this decoder does not yet support.
  *
  * Enhanced Coupling
  *     No known samples exist.  If any ever surface, this feature should not be
  *     too difficult to implement.
  *
  * Reduced Sample Rates
  *     No known samples exist.  The spec also does not give clear information
  *     on how this is to be implemented.
  *
  * Dependent Streams
  *     Only the independent stream is currently decoded. Any dependent
  *     streams are skipped.  We have only come across two examples of this, and
  *     they are both just test streams, one for HD-DVD and the other for
  *     Blu-ray.
  *
  * Transient Pre-noise Processing
  *     This is side information which a decoder should use to reduce artifacts
  *     caused by transients.  There are samples which are known to have this
  *     information, but this decoder currently ignores it.
  */
 
 
60203130
 #include "avcodec.h"
dbbec0c2
 #include "internal.h"
11d6f38c
 #include "aac_ac3_parser.h"
60203130
 #include "ac3.h"
 #include "ac3_parser.h"
 #include "ac3dec.h"
 #include "ac3dec_data.h"
31b69928
 #include "eac3_data.h"
60203130
 
 /** gain adaptive quantization mode */
 typedef enum {
     EAC3_GAQ_NO =0,
     EAC3_GAQ_12,
     EAC3_GAQ_14,
     EAC3_GAQ_124
 } EAC3GaqMode;
 
 #define EAC3_SR_CODE_REDUCED  3
 
7b05b509
 static void ff_eac3_apply_spectral_extension(AC3DecodeContext *s)
ca6e7708
 {
     int bin, bnd, ch, i;
     uint8_t wrapflag[SPX_MAX_BANDS]={1,0,}, num_copy_sections, copy_sizes[SPX_MAX_BANDS];
     float rms_energy[SPX_MAX_BANDS];
 
     /* Set copy index mapping table. Set wrap flags to apply a notch filter at
        wrap points later on. */
     bin = s->spx_dst_start_freq;
     num_copy_sections = 0;
     for (bnd = 0; bnd < s->num_spx_bands; bnd++) {
         int copysize;
         int bandsize = s->spx_band_sizes[bnd];
         if (bin + bandsize > s->spx_src_start_freq) {
             copy_sizes[num_copy_sections++] = bin - s->spx_dst_start_freq;
             bin = s->spx_dst_start_freq;
             wrapflag[bnd] = 1;
         }
         for (i = 0; i < bandsize; i += copysize) {
             if (bin == s->spx_src_start_freq) {
                 copy_sizes[num_copy_sections++] = bin - s->spx_dst_start_freq;
                 bin = s->spx_dst_start_freq;
             }
             copysize = FFMIN(bandsize - i, s->spx_src_start_freq - bin);
             bin += copysize;
         }
     }
     copy_sizes[num_copy_sections++] = bin - s->spx_dst_start_freq;
 
     for (ch = 1; ch <= s->fbw_channels; ch++) {
         if (!s->channel_uses_spx[ch])
             continue;
 
         /* Copy coeffs from normal bands to extension bands */
         bin = s->spx_src_start_freq;
         for (i = 0; i < num_copy_sections; i++) {
             memcpy(&s->transform_coeffs[ch][bin],
                    &s->transform_coeffs[ch][s->spx_dst_start_freq],
7b05b509
                    copy_sizes[i]*sizeof(INTFLOAT));
ca6e7708
             bin += copy_sizes[i];
         }
 
         /* Calculate RMS energy for each SPX band. */
         bin = s->spx_src_start_freq;
         for (bnd = 0; bnd < s->num_spx_bands; bnd++) {
             int bandsize = s->spx_band_sizes[bnd];
             float accum = 0.0f;
             for (i = 0; i < bandsize; i++) {
                 float coeff = s->transform_coeffs[ch][bin++];
                 accum += coeff * coeff;
             }
             rms_energy[bnd] = sqrtf(accum / bandsize);
         }
 
         /* Apply a notch filter at transitions between normal and extension
            bands and at all wrap points. */
         if (s->spx_atten_code[ch] >= 0) {
             const float *atten_tab = ff_eac3_spx_atten_tab[s->spx_atten_code[ch]];
             bin = s->spx_src_start_freq - 2;
             for (bnd = 0; bnd < s->num_spx_bands; bnd++) {
                 if (wrapflag[bnd]) {
7b05b509
                     INTFLOAT *coeffs = &s->transform_coeffs[ch][bin];
ca6e7708
                     coeffs[0] *= atten_tab[0];
                     coeffs[1] *= atten_tab[1];
                     coeffs[2] *= atten_tab[2];
                     coeffs[3] *= atten_tab[1];
                     coeffs[4] *= atten_tab[0];
                 }
                 bin += s->spx_band_sizes[bnd];
             }
         }
 
         /* Apply noise-blended coefficient scaling based on previously
            calculated RMS energy, blending factors, and SPX coordinates for
            each band. */
         bin = s->spx_src_start_freq;
         for (bnd = 0; bnd < s->num_spx_bands; bnd++) {
c57fe49d
             float nscale = s->spx_noise_blend[ch][bnd] * rms_energy[bnd] * (1.0f / INT32_MIN);
ca6e7708
             float sscale = s->spx_signal_blend[ch][bnd];
7b05b509
 #if USE_FIXED
0c3339f4
             // spx_noise_blend and spx_signal_blend are both FP.23
7b05b509
             nscale *= 1.0 / (1<<23);
0c3339f4
             sscale *= 1.0 / (1<<23);
7b05b509
 #endif
ca6e7708
             for (i = 0; i < s->spx_band_sizes[bnd]; i++) {
                 float noise  = nscale * (int32_t)av_lfg_get(&s->dith_state);
                 s->transform_coeffs[ch][bin]   *= sscale;
                 s->transform_coeffs[ch][bin++] += noise;
             }
         }
     }
 }
 
 
ae04de31
 /** lrint(M_SQRT2*cos(2*M_PI/12)*(1<<23)) */
 #define COEFF_0 10273905LL
60203130
 
ae04de31
 /** lrint(M_SQRT2*cos(0*M_PI/12)*(1<<23)) = lrint(M_SQRT2*(1<<23)) */
 #define COEFF_1 11863283LL
60203130
 
ae04de31
 /** lrint(M_SQRT2*cos(5*M_PI/12)*(1<<23)) */
 #define COEFF_2  3070444LL
60203130
 
 /**
  * Calculate 6-point IDCT of the pre-mantissas.
ae04de31
  * All calculations are 24-bit fixed-point.
60203130
  */
 static void idct6(int pre_mant[6])
 {
     int tmp;
     int even0, even1, even2, odd0, odd1, odd2;
 
     odd1 = pre_mant[1] - pre_mant[3] - pre_mant[5];
 
ae04de31
     even2 = ( pre_mant[2]                * COEFF_0) >> 23;
     tmp   = ( pre_mant[4]                * COEFF_1) >> 23;
     odd0  = ((pre_mant[1] + pre_mant[5]) * COEFF_2) >> 23;
60203130
 
     even0 = pre_mant[0] + (tmp >> 1);
     even1 = pre_mant[0] - tmp;
 
     tmp = even0;
     even0 = tmp + even2;
     even2 = tmp - even2;
 
     tmp = odd0;
     odd0 = tmp + pre_mant[1] + pre_mant[3];
     odd2 = tmp + pre_mant[5] - pre_mant[3];
 
     pre_mant[0] = even0 + odd0;
     pre_mant[1] = even1 + odd1;
     pre_mant[2] = even2 + odd2;
     pre_mant[3] = even2 - odd2;
     pre_mant[4] = even1 - odd1;
     pre_mant[5] = even0 - odd0;
 }
d82bdf68
 
7b05b509
 static void ff_eac3_decode_transform_coeffs_aht_ch(AC3DecodeContext *s, int ch)
d82bdf68
 {
     int bin, blk, gs;
     int end_bap, gaq_mode;
     GetBitContext *gbc = &s->gbc;
     int gaq_gain[AC3_MAX_COEFS];
 
     gaq_mode = get_bits(gbc, 2);
     end_bap = (gaq_mode < 2) ? 12 : 17;
 
     /* if GAQ gain is used, decode gain codes for bins with hebap between
        8 and end_bap */
     gs = 0;
     if (gaq_mode == EAC3_GAQ_12 || gaq_mode == EAC3_GAQ_14) {
         /* read 1-bit GAQ gain codes */
         for (bin = s->start_freq[ch]; bin < s->end_freq[ch]; bin++) {
             if (s->bap[ch][bin] > 7 && s->bap[ch][bin] < end_bap)
                 gaq_gain[gs++] = get_bits1(gbc) << (gaq_mode-1);
         }
     } else if (gaq_mode == EAC3_GAQ_124) {
         /* read 1.67-bit GAQ gain codes (3 codes in 5 bits) */
         int gc = 2;
         for (bin = s->start_freq[ch]; bin < s->end_freq[ch]; bin++) {
             if (s->bap[ch][bin] > 7 && s->bap[ch][bin] < 17) {
                 if (gc++ == 2) {
                     int group_code = get_bits(gbc, 5);
                     if (group_code > 26) {
                         av_log(s->avctx, AV_LOG_WARNING, "GAQ gain group code out-of-range\n");
                         group_code = 26;
                     }
                     gaq_gain[gs++] = ff_ac3_ungroup_3_in_5_bits_tab[group_code][0];
                     gaq_gain[gs++] = ff_ac3_ungroup_3_in_5_bits_tab[group_code][1];
                     gaq_gain[gs++] = ff_ac3_ungroup_3_in_5_bits_tab[group_code][2];
                     gc = 0;
                 }
             }
         }
     }
 
     gs=0;
     for (bin = s->start_freq[ch]; bin < s->end_freq[ch]; bin++) {
         int hebap = s->bap[ch][bin];
         int bits = ff_eac3_bits_vs_hebap[hebap];
         if (!hebap) {
             /* zero-mantissa dithering */
             for (blk = 0; blk < 6; blk++) {
ae04de31
                 s->pre_mantissa[ch][bin][blk] = (av_lfg_get(&s->dith_state) & 0x7FFFFF) - 0x400000;
d82bdf68
             }
         } else if (hebap < 8) {
             /* Vector Quantization */
             int v = get_bits(gbc, bits);
             for (blk = 0; blk < 6; blk++) {
067485b6
                 s->pre_mantissa[ch][bin][blk] = ff_eac3_mantissa_vq[hebap][v][blk] * (1 << 8);
d82bdf68
             }
         } else {
             /* Gain Adaptive Quantization */
             int gbits, log_gain;
             if (gaq_mode != EAC3_GAQ_NO && hebap < end_bap) {
                 log_gain = gaq_gain[gs++];
             } else {
                 log_gain = 0;
             }
             gbits = bits - log_gain;
 
             for (blk = 0; blk < 6; blk++) {
                 int mant = get_sbits(gbc, gbits);
37a1cc48
                 if (log_gain && mant == -(1 << (gbits-1))) {
d82bdf68
                     /* large mantissa */
                     int b;
9907c780
                     int mbits = bits - (2 - log_gain);
                     mant = get_sbits(gbc, mbits);
067485b6
                     mant = ((unsigned)mant) << (23 - (mbits - 1));
d82bdf68
                     /* remap mantissa value to correct for asymmetric quantization */
                     if (mant >= 0)
cab4e4e8
                         b = 1 << (23 - log_gain);
d82bdf68
                     else
067485b6
                         b = ff_eac3_gaq_remap_2_4_b[hebap-8][log_gain-1] * (1 << 8);
724b8f6a
                     mant += ((ff_eac3_gaq_remap_2_4_a[hebap-8][log_gain-1] * (int64_t)mant) >> 15) + b;
d82bdf68
                 } else {
                     /* small mantissa, no GAQ, or Gk=1 */
87eb3749
                     mant *= (1 << 24 - bits);
d82bdf68
                     if (!log_gain) {
                         /* remap mantissa value for no GAQ or Gk=1 */
724b8f6a
                         mant += (ff_eac3_gaq_remap_1[hebap-8] * (int64_t)mant) >> 15;
d82bdf68
                     }
                 }
                 s->pre_mantissa[ch][bin][blk] = mant;
             }
         }
         idct6(s->pre_mantissa[ch][bin]);
     }
 }
 
7b05b509
 static int ff_eac3_parse_header(AC3DecodeContext *s)
d82bdf68
 {
     int i, blk, ch;
     int ac3_exponent_strategy, parse_aht_info, parse_spx_atten_data;
     int parse_transient_proc_info;
     int num_cpl_blocks;
     GetBitContext *gbc = &s->gbc;
 
     /* An E-AC-3 stream can have multiple independent streams which the
        application can select from. each independent stream can also contain
        dependent streams which are used to add or replace channels. */
     if (s->frame_type == EAC3_FRAME_TYPE_DEPENDENT) {
fef2147b
         if (!s->eac3_frame_dependent_found) {
             s->eac3_frame_dependent_found = 1;
             avpriv_request_sample(s->avctx, "Dependent substream decoding");
         }
11d6f38c
         return AAC_AC3_PARSE_ERROR_FRAME_TYPE;
d82bdf68
     } else if (s->frame_type == EAC3_FRAME_TYPE_RESERVED) {
         av_log(s->avctx, AV_LOG_ERROR, "Reserved frame type\n");
11d6f38c
         return AAC_AC3_PARSE_ERROR_FRAME_TYPE;
d82bdf68
     }
 
     /* The substream id indicates which substream this frame belongs to. each
        independent stream has its own substream id, and the dependent streams
        associated to an independent stream have matching substream id's. */
     if (s->substreamid) {
         /* only decode substream with id=0. skip any additional substreams. */
fef2147b
         if (!s->eac3_subsbtreamid_found) {
             s->eac3_subsbtreamid_found = 1;
             avpriv_request_sample(s->avctx, "Additional substreams");
         }
11d6f38c
         return AAC_AC3_PARSE_ERROR_FRAME_TYPE;
d82bdf68
     }
 
     if (s->bit_alloc_params.sr_code == EAC3_SR_CODE_REDUCED) {
         /* The E-AC-3 specification does not tell how to handle reduced sample
            rates in bit allocation.  The best assumption would be that it is
            handled like AC-3 DolbyNet, but we cannot be sure until we have a
            sample which utilizes this feature. */
12e25ed2
         avpriv_request_sample(s->avctx, "Reduced sampling rate");
717addec
         return AVERROR_PATCHWELCOME;
d82bdf68
     }
     skip_bits(gbc, 5); // skip bitstream id
 
     /* volume control params */
     for (i = 0; i < (s->channel_mode ? 1 : 2); i++) {
96cd6f67
         s->dialog_normalization[i] = -get_bits(gbc, 5);
         if (s->dialog_normalization[i] == 0) {
             s->dialog_normalization[i] = -31;
         }
         if (s->target_level != 0) {
             s->level_gain[i] = powf(2.0f,
                 (float)(s->target_level - s->dialog_normalization[i])/6.0f);
         }
         s->compression_exists[i] = get_bits1(gbc);
         if (s->compression_exists[i]) {
             s->heavy_dynamic_range[i] = AC3_HEAVY_RANGE(get_bits(gbc, 8));
d82bdf68
         }
     }
 
     /* dependent stream channel map */
     if (s->frame_type == EAC3_FRAME_TYPE_DEPENDENT) {
         if (get_bits1(gbc)) {
             skip_bits(gbc, 16); // skip custom channel map
         }
     }
 
     /* mixing metadata */
     if (get_bits1(gbc)) {
         /* center and surround mix levels */
         if (s->channel_mode > AC3_CHMODE_STEREO) {
c229f571
             s->preferred_downmix = get_bits(gbc, 2);
d82bdf68
             if (s->channel_mode & 1) {
                 /* if three front channels exist */
c229f571
                 s->center_mix_level_ltrt = get_bits(gbc, 3);
0d43b114
                 s->center_mix_level      = get_bits(gbc, 3);
d82bdf68
             }
             if (s->channel_mode & 4) {
                 /* if a surround channel exists */
ade75fb8
                 s->surround_mix_level_ltrt = av_clip(get_bits(gbc, 3), 3, 7);
0d43b114
                 s->surround_mix_level      = av_clip(get_bits(gbc, 3), 3, 7);
d82bdf68
             }
         }
 
         /* lfe mix level */
c229f571
         if (s->lfe_on && (s->lfe_mix_level_exists = get_bits1(gbc))) {
             s->lfe_mix_level = get_bits(gbc, 5);
d82bdf68
         }
 
         /* info for mixing with other streams and substreams */
         if (s->frame_type == EAC3_FRAME_TYPE_INDEPENDENT) {
             for (i = 0; i < (s->channel_mode ? 1 : 2); i++) {
                 // TODO: apply program scale factor
                 if (get_bits1(gbc)) {
                     skip_bits(gbc, 6);  // skip program scale factor
                 }
             }
             if (get_bits1(gbc)) {
                 skip_bits(gbc, 6);  // skip external program scale factor
             }
             /* skip mixing parameter data */
             switch(get_bits(gbc, 2)) {
                 case 1: skip_bits(gbc, 5);  break;
                 case 2: skip_bits(gbc, 12); break;
                 case 3: {
                     int mix_data_size = (get_bits(gbc, 5) + 2) << 3;
                     skip_bits_long(gbc, mix_data_size);
                     break;
                 }
             }
             /* skip pan information for mono or dual mono source */
             if (s->channel_mode < AC3_CHMODE_STEREO) {
                 for (i = 0; i < (s->channel_mode ? 1 : 2); i++) {
                     if (get_bits1(gbc)) {
                         /* note: this is not in the ATSC A/52B specification
                            reference: ETSI TS 102 366 V1.1.1
                                       section: E.1.3.1.25 */
                         skip_bits(gbc, 8);  // skip pan mean direction index
                         skip_bits(gbc, 6);  // skip reserved paninfo bits
                     }
                 }
             }
             /* skip mixing configuration information */
             if (get_bits1(gbc)) {
                 for (blk = 0; blk < s->num_blocks; blk++) {
                     if (s->num_blocks == 1 || get_bits1(gbc)) {
                         skip_bits(gbc, 5);
                     }
                 }
             }
         }
     }
 
     /* informational metadata */
     if (get_bits1(gbc)) {
be187388
         s->bitstream_mode = get_bits(gbc, 3);
d82bdf68
         skip_bits(gbc, 2); // skip copyright bit and original bitstream bit
         if (s->channel_mode == AC3_CHMODE_STEREO) {
13345fc1
             s->dolby_surround_mode  = get_bits(gbc, 2);
             s->dolby_headphone_mode = get_bits(gbc, 2);
d82bdf68
         }
         if (s->channel_mode >= AC3_CHMODE_2F2R) {
13345fc1
             s->dolby_surround_ex_mode = get_bits(gbc, 2);
d82bdf68
         }
         for (i = 0; i < (s->channel_mode ? 1 : 2); i++) {
             if (get_bits1(gbc)) {
                 skip_bits(gbc, 8); // skip mix level, room type, and A/D converter type
             }
         }
         if (s->bit_alloc_params.sr_code != EAC3_SR_CODE_REDUCED) {
             skip_bits1(gbc); // skip source sample rate code
         }
     }
 
     /* converter synchronization flag
        If frames are less than six blocks, this bit should be turned on
        once every 6 blocks to indicate the start of a frame set.
        reference: RFC 4598, Section 2.1.3  Frame Sets */
     if (s->frame_type == EAC3_FRAME_TYPE_INDEPENDENT && s->num_blocks != 6) {
         skip_bits1(gbc); // skip converter synchronization flag
     }
 
     /* original frame size code if this stream was converted from AC-3 */
     if (s->frame_type == EAC3_FRAME_TYPE_AC3_CONVERT &&
             (s->num_blocks == 6 || get_bits1(gbc))) {
         skip_bits(gbc, 6); // skip frame size code
     }
 
     /* additional bitstream info */
     if (get_bits1(gbc)) {
         int addbsil = get_bits(gbc, 6);
         for (i = 0; i < addbsil + 1; i++) {
             skip_bits(gbc, 8); // skip additional bit stream info
         }
     }
 
     /* audio frame syntax flags, strategy data, and per-frame data */
 
     if (s->num_blocks == 6) {
         ac3_exponent_strategy = get_bits1(gbc);
         parse_aht_info        = get_bits1(gbc);
     } else {
         /* less than 6 blocks, so use AC-3-style exponent strategy syntax, and
            do not use AHT */
         ac3_exponent_strategy = 1;
         parse_aht_info = 0;
     }
 
     s->snr_offset_strategy    = get_bits(gbc, 2);
     parse_transient_proc_info = get_bits1(gbc);
 
     s->block_switch_syntax = get_bits1(gbc);
     if (!s->block_switch_syntax)
         memset(s->block_switch, 0, sizeof(s->block_switch));
 
     s->dither_flag_syntax = get_bits1(gbc);
     if (!s->dither_flag_syntax) {
         for (ch = 1; ch <= s->fbw_channels; ch++)
             s->dither_flag[ch] = 1;
     }
     s->dither_flag[CPL_CH] = s->dither_flag[s->lfe_ch] = 0;
 
     s->bit_allocation_syntax = get_bits1(gbc);
     if (!s->bit_allocation_syntax) {
         /* set default bit allocation parameters */
         s->bit_alloc_params.slow_decay = ff_ac3_slow_decay_tab[2];
         s->bit_alloc_params.fast_decay = ff_ac3_fast_decay_tab[1];
         s->bit_alloc_params.slow_gain  = ff_ac3_slow_gain_tab [1];
         s->bit_alloc_params.db_per_bit = ff_ac3_db_per_bit_tab[2];
         s->bit_alloc_params.floor      = ff_ac3_floor_tab     [7];
     }
 
     s->fast_gain_syntax  = get_bits1(gbc);
     s->dba_syntax        = get_bits1(gbc);
     s->skip_syntax       = get_bits1(gbc);
     parse_spx_atten_data = get_bits1(gbc);
 
2d38081b
     /* coupling strategy occurrence and coupling use per block */
d82bdf68
     num_cpl_blocks = 0;
     if (s->channel_mode > 1) {
         for (blk = 0; blk < s->num_blocks; blk++) {
             s->cpl_strategy_exists[blk] = (!blk || get_bits1(gbc));
             if (s->cpl_strategy_exists[blk]) {
                 s->cpl_in_use[blk] = get_bits1(gbc);
             } else {
                 s->cpl_in_use[blk] = s->cpl_in_use[blk-1];
             }
             num_cpl_blocks += s->cpl_in_use[blk];
         }
     } else {
         memset(s->cpl_in_use, 0, sizeof(s->cpl_in_use));
     }
 
     /* exponent strategy data */
     if (ac3_exponent_strategy) {
         /* AC-3-style exponent strategy syntax */
         for (blk = 0; blk < s->num_blocks; blk++) {
             for (ch = !s->cpl_in_use[blk]; ch <= s->fbw_channels; ch++) {
                 s->exp_strategy[blk][ch] = get_bits(gbc, 2);
             }
         }
     } else {
         /* LUT-based exponent strategy syntax */
         for (ch = !((s->channel_mode > 1) && num_cpl_blocks); ch <= s->fbw_channels; ch++) {
e1747bfa
             int frmchexpstr = get_bits(gbc, 5);
d82bdf68
             for (blk = 0; blk < 6; blk++) {
                 s->exp_strategy[blk][ch] = ff_eac3_frm_expstr[frmchexpstr][blk];
             }
         }
     }
     /* LFE exponent strategy */
     if (s->lfe_on) {
         for (blk = 0; blk < s->num_blocks; blk++) {
             s->exp_strategy[blk][s->lfe_ch] = get_bits1(gbc);
         }
     }
     /* original exponent strategies if this stream was converted from AC-3 */
     if (s->frame_type == EAC3_FRAME_TYPE_INDEPENDENT &&
             (s->num_blocks == 6 || get_bits1(gbc))) {
1ffbafa0
         skip_bits(gbc, 5 * s->fbw_channels); // skip converter channel exponent strategy
d82bdf68
     }
 
     /* determine which channels use AHT */
     if (parse_aht_info) {
f07fe6e7
         /* For AHT to be used, all non-zero blocks must reuse exponents from
            the first block.  Furthermore, for AHT to be used in the coupling
            channel, all blocks must use coupling and use the same coupling
            strategy. */
d82bdf68
         s->channel_uses_aht[CPL_CH]=0;
         for (ch = (num_cpl_blocks != 6); ch <= s->channels; ch++) {
f07fe6e7
             int use_aht = 1;
             for (blk = 1; blk < 6; blk++) {
                 if ((s->exp_strategy[blk][ch] != EXP_REUSE) ||
                         (!ch && s->cpl_strategy_exists[blk])) {
                     use_aht = 0;
                     break;
                 }
d82bdf68
             }
f07fe6e7
             s->channel_uses_aht[ch] = use_aht && get_bits1(gbc);
d82bdf68
         }
     } else {
         memset(s->channel_uses_aht, 0, sizeof(s->channel_uses_aht));
     }
 
     /* per-frame SNR offset */
     if (!s->snr_offset_strategy) {
         int csnroffst = (get_bits(gbc, 6) - 15) << 4;
         int snroffst = (csnroffst + get_bits(gbc, 4)) << 2;
         for (ch = 0; ch <= s->channels; ch++)
             s->snr_offset[ch] = snroffst;
     }
 
     /* transient pre-noise processing data */
     if (parse_transient_proc_info) {
         for (ch = 1; ch <= s->fbw_channels; ch++) {
             if (get_bits1(gbc)) { // channel in transient processing
                 skip_bits(gbc, 10); // skip transient processing location
                 skip_bits(gbc, 8);  // skip transient processing length
             }
         }
     }
 
     /* spectral extension attenuation data */
ca6e7708
     for (ch = 1; ch <= s->fbw_channels; ch++) {
         if (parse_spx_atten_data && get_bits1(gbc)) {
             s->spx_atten_code[ch] = get_bits(gbc, 5);
         } else {
             s->spx_atten_code[ch] = -1;
e202cc25
         }
     }
d82bdf68
 
     /* block start information */
     if (s->num_blocks > 1 && get_bits1(gbc)) {
         /* reference: Section E2.3.2.27
            nblkstrtbits = (numblks - 1) * (4 + ceiling(log2(words_per_frame)))
            The spec does not say what this data is or what it's used for.
            It is likely the offset of each block within the frame. */
         int block_start_bits = (s->num_blocks-1) * (4 + av_log2(s->frame_size-2));
3e7aa8fa
         skip_bits_long(gbc, block_start_bits);
12e25ed2
         avpriv_request_sample(s->avctx, "Block start info");
d82bdf68
     }
 
     /* syntax state initialization */
     for (ch = 1; ch <= s->fbw_channels; ch++) {
ca6e7708
         s->first_spx_coords[ch] = 1;
d82bdf68
         s->first_cpl_coords[ch] = 1;
     }
     s->first_cpl_leak = 1;
 
     return 0;
 }