libavcodec/wmaprodec.c
31c57185
 /*
  * Wmapro compatible decoder
  * Copyright (c) 2007 Baptiste Coudurier, Benjamin Larsson, Ulion
3cdf69ee
  * Copyright (c) 2008 - 2011 Sascha Sommer, Benjamin Larsson
31c57185
  *
  * This file is part of FFmpeg.
  *
  * FFmpeg is free software; you can redistribute it and/or
  * modify it under the terms of the GNU Lesser General Public
  * License as published by the Free Software Foundation; either
  * version 2.1 of the License, or (at your option) any later version.
  *
  * FFmpeg is distributed in the hope that it will be useful,
  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  * Lesser General Public License for more details.
  *
  * You should have received a copy of the GNU Lesser General Public
  * License along with FFmpeg; if not, write to the Free Software
  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  */
 
 /**
ba87f080
  * @file
31c57185
  * @brief wmapro decoder implementation
  * Wmapro is an MDCT based codec comparable to wma standard or AAC.
  * The decoding therefore consists of the following steps:
  * - bitstream decoding
  * - reconstruction of per-channel data
  * - rescaling and inverse quantization
  * - IMDCT
  * - windowing and overlapp-add
  *
  * The compressed wmapro bitstream is split into individual packets.
  * Every such packet contains one or more wma frames.
  * The compressed frames may have a variable length and frames may
  * cross packet boundaries.
  * Common to all wmapro frames is the number of samples that are stored in
  * a frame.
  * The number of samples and a few other decode flags are stored
  * as extradata that has to be passed to the decoder.
  *
  * The wmapro frames themselves are again split into a variable number of
  * subframes. Every subframe contains the data for 2^N time domain samples
  * where N varies between 7 and 12.
  *
  * Example wmapro bitstream (in samples):
  *
  * ||   packet 0           || packet 1 || packet 2      packets
  * ---------------------------------------------------
  * || frame 0      || frame 1       || frame 2    ||    frames
  * ---------------------------------------------------
  * ||   |      |   ||   |   |   |   ||            ||    subframes of channel 0
  * ---------------------------------------------------
  * ||      |   |   ||   |   |   |   ||            ||    subframes of channel 1
  * ---------------------------------------------------
  *
  * The frame layouts for the individual channels of a wma frame does not need
  * to be the same.
  *
  * However, if the offsets and lengths of several subframes of a frame are the
  * same, the subframes of the channels can be grouped.
  * Every group may then use special coding techniques like M/S stereo coding
  * to improve the compression ratio. These channel transformations do not
  * need to be applied to a whole subframe. Instead, they can also work on
  * individual scale factor bands (see below).
  * The coefficients that carry the audio signal in the frequency domain
  * are transmitted as huffman-coded vectors with 4, 2 and 1 elements.
  * In addition to that, the encoder can switch to a runlevel coding scheme
  * by transmitting subframe_length / 128 zero coefficients.
  *
  * Before the audio signal can be converted to the time domain, the
  * coefficients have to be rescaled and inverse quantized.
  * A subframe is therefore split into several scale factor bands that get
  * scaled individually.
  * Scale factors are submitted for every frame but they might be shared
  * between the subframes of a channel. Scale factors are initially DPCM-coded.
  * Once scale factors are shared, the differences are transmitted as runlevel
  * codes.
  * Every subframe length and offset combination in the frame layout shares a
  * common quantization factor that can be adjusted for every channel by a
  * modifier.
  * After the inverse quantization, the coefficients get processed by an IMDCT.
  * The resulting values are then windowed with a sine window and the first half
  * of the values are added to the second half of the output from the previous
  * subframe in order to reconstruct the output samples.
  */
 
cc8163e1
 #include <inttypes.h>
 
db1a642c
 #include "libavutil/ffmath.h"
284ea790
 #include "libavutil/float_dsp.h"
4424fe9c
 #include "libavutil/intfloat.h"
1db6437f
 #include "libavutil/intreadwrite.h"
c1061cc7
 #include "avcodec.h"
 #include "internal.h"
 #include "get_bits.h"
 #include "put_bits.h"
 #include "wmaprodata.h"
4538729a
 #include "sinewin.h"
c1061cc7
 #include "wma.h"
8ca6e523
 #include "wma_common.h"
c1061cc7
 
 /** current decoder limitations */
 #define WMAPRO_MAX_CHANNELS    8                             ///< max number of handled channels
 #define MAX_SUBFRAMES  32                                    ///< max number of subframes per channel
 #define MAX_BANDS      29                                    ///< max number of scale factor bands
aac4b0a4
 #define MAX_FRAMESIZE  32768                                 ///< maximum compressed frame size
1954e625
 #define XMA_MAX_STREAMS         8
 #define XMA_MAX_CHANNELS        8
 #define XMA_MAX_CHANNELS_STREAM 2
c1061cc7
 
75e4efd2
 #define WMAPRO_BLOCK_MIN_BITS  6                                           ///< log2 of min block size
b4027d97
 #define WMAPRO_BLOCK_MAX_BITS 13                                           ///< log2 of max block size
d4a217a4
 #define WMAPRO_BLOCK_MIN_SIZE (1 << WMAPRO_BLOCK_MIN_BITS)                 ///< minimum block size
c1061cc7
 #define WMAPRO_BLOCK_MAX_SIZE (1 << WMAPRO_BLOCK_MAX_BITS)                 ///< maximum block size
75e4efd2
 #define WMAPRO_BLOCK_SIZES    (WMAPRO_BLOCK_MAX_BITS - WMAPRO_BLOCK_MIN_BITS + 1) ///< possible block sizes
c1061cc7
 
 
 #define VLCBITS            9
 #define SCALEVLCBITS       8
 #define VEC4MAXDEPTH    ((HUFF_VEC4_MAXBITS+VLCBITS-1)/VLCBITS)
 #define VEC2MAXDEPTH    ((HUFF_VEC2_MAXBITS+VLCBITS-1)/VLCBITS)
 #define VEC1MAXDEPTH    ((HUFF_VEC1_MAXBITS+VLCBITS-1)/VLCBITS)
 #define SCALEMAXDEPTH   ((HUFF_SCALE_MAXBITS+SCALEVLCBITS-1)/SCALEVLCBITS)
 #define SCALERLMAXDEPTH ((HUFF_SCALE_RL_MAXBITS+VLCBITS-1)/VLCBITS)
 
 static VLC              sf_vlc;           ///< scale factor DPCM vlc
 static VLC              sf_rl_vlc;        ///< scale factor run length vlc
 static VLC              vec4_vlc;         ///< 4 coefficients per symbol
 static VLC              vec2_vlc;         ///< 2 coefficients per symbol
 static VLC              vec1_vlc;         ///< 1 coefficient per symbol
 static VLC              coef_vlc[2];      ///< coefficient run length vlc codes
03039f4c
 static float            sin64[33];        ///< sine table for decorrelation
c1061cc7
 
 /**
  * @brief frame specific decoder context for a single channel
  */
7f9f771e
 typedef struct WMAProChannelCtx {
c1061cc7
     int16_t  prev_block_len;                          ///< length of the previous block
     uint8_t  transmit_coefs;
     uint8_t  num_subframes;
     uint16_t subframe_len[MAX_SUBFRAMES];             ///< subframe length in samples
     uint16_t subframe_offset[MAX_SUBFRAMES];          ///< subframe positions in the current frame
     uint8_t  cur_subframe;                            ///< current subframe number
     uint16_t decoded_samples;                         ///< number of already processed samples
     uint8_t  grouped;                                 ///< channel is part of a group
     int      quant_step;                              ///< quantization step for the current subframe
     int8_t   reuse_sf;                                ///< share scale factors between subframes
     int8_t   scale_factor_step;                       ///< scaling step for the current subframe
     int      max_scale_factor;                        ///< maximum scale factor for the current subframe
7dca334d
     int      saved_scale_factors[2][MAX_BANDS];       ///< resampled and (previously) transmitted scale factor values
     int8_t   scale_factor_idx;                        ///< index for the transmitted scale factor values (used for resampling)
     int*     scale_factors;                           ///< pointer to the scale factor values used for decoding
c1061cc7
     uint8_t  table_idx;                               ///< index in sf_offsets for the scale factor reference block
     float*   coeffs;                                  ///< pointer to the subframe decode buffer
f62be777
     uint16_t num_vec_coeffs;                          ///< number of vector coded coefficients
9d35fa52
     DECLARE_ALIGNED(32, float, out)[WMAPRO_BLOCK_MAX_SIZE + WMAPRO_BLOCK_MAX_SIZE / 2]; ///< output buffer
c1061cc7
 } WMAProChannelCtx;
 
 /**
  * @brief channel group for channel transformations
  */
7f9f771e
 typedef struct WMAProChannelGrp {
c1061cc7
     uint8_t num_channels;                                     ///< number of channels in the group
     int8_t  transform;                                        ///< transform on / off
     int8_t  transform_band[MAX_BANDS];                        ///< controls if the transform is enabled for a certain band
     float   decorrelation_matrix[WMAPRO_MAX_CHANNELS*WMAPRO_MAX_CHANNELS];
     float*  channel_data[WMAPRO_MAX_CHANNELS];                ///< transformation coefficients
 } WMAProChannelGrp;
 
 /**
  * @brief main decoder context
  */
 typedef struct WMAProDecodeCtx {
     /* generic decoder variables */
     AVCodecContext*  avctx;                         ///< codec context for av_log
3384d765
     AVFloatDSPContext *fdsp;
c1061cc7
     uint8_t          frame_data[MAX_FRAMESIZE +
059a9348
                       AV_INPUT_BUFFER_PADDING_SIZE];///< compressed frame data
c1061cc7
     PutBitContext    pb;                            ///< context for filling the frame_data buffer
01b22147
     FFTContext       mdct_ctx[WMAPRO_BLOCK_SIZES];  ///< MDCT context per block size
9d35fa52
     DECLARE_ALIGNED(32, float, tmp)[WMAPRO_BLOCK_MAX_SIZE]; ///< IMDCT output buffer
4fe44873
     const float*     windows[WMAPRO_BLOCK_SIZES];   ///< windows for the different block sizes
c1061cc7
 
     /* frame size dependent frame information (set during initialization) */
     uint32_t         decode_flags;                  ///< used compression features
     uint8_t          len_prefix;                    ///< frame is prefixed with its length
     uint8_t          dynamic_range_compression;     ///< frame contains DRC data
     uint8_t          bits_per_sample;               ///< integer audio sample size for the unscaled IMDCT output (used to scale to [-1.0, 1.0])
     uint16_t         samples_per_frame;             ///< number of samples to output
     uint16_t         log2_frame_size;
     int8_t           lfe_channel;                   ///< lfe channel index
     uint8_t          max_num_subframes;
     uint8_t          subframe_len_bits;             ///< number of bits used for the subframe length
     uint8_t          max_subframe_len_bit;          ///< flag indicating that the subframe is of maximum size when the first subframe length bit is 1
     uint16_t         min_samples_per_subframe;
     int8_t           num_sfb[WMAPRO_BLOCK_SIZES];   ///< scale factor bands per block size
     int16_t          sfb_offsets[WMAPRO_BLOCK_SIZES][MAX_BANDS];                    ///< scale factor band offsets (multiples of 4)
     int8_t           sf_offsets[WMAPRO_BLOCK_SIZES][WMAPRO_BLOCK_SIZES][MAX_BANDS]; ///< scale factor resample matrix
     int16_t          subwoofer_cutoffs[WMAPRO_BLOCK_SIZES]; ///< subwoofer cutoff values
 
     /* packet decode state */
20169324
     GetBitContext    pgb;                           ///< bitstream reader context for the packet
3cdf69ee
     int              next_packet_start;             ///< start offset of the next wma packet in the demuxer packet
bc7f96b1
     uint8_t          packet_offset;                 ///< frame offset in the packet
c1061cc7
     uint8_t          packet_sequence_number;        ///< current packet number
     int              num_saved_bits;                ///< saved number of bits
     int              frame_offset;                  ///< frame offset in the bit reservoir
     int              subframe_offset;               ///< subframe offset in the bit reservoir
     uint8_t          packet_loss;                   ///< set in case of bitstream error
5f28b5e7
     uint8_t          packet_done;                   ///< set when a packet is fully decoded
c1061cc7
 
     /* frame decode state */
     uint32_t         frame_num;                     ///< current frame number (not used for decoding)
     GetBitContext    gb;                            ///< bitstream reader context
     int              buf_bit_size;                  ///< buffer size in bits
     uint8_t          drc_gain;                      ///< gain for the DRC tool
     int8_t           skip_frame;                    ///< skip output step
     int8_t           parsed_all_subframes;          ///< all subframes decoded?
1954e625
     uint8_t          skip_packets;                  ///< packets to skip to find next packet in a stream (XMA1/2)
c1061cc7
 
     /* subframe/block decode state */
     int16_t          subframe_len;                  ///< current subframe length
6c43f33a
     int8_t           nb_channels;                   ///< number of channels in stream (XMA1/2)
c1061cc7
     int8_t           channels_for_cur_subframe;     ///< number of channels that contain the subframe
     int8_t           channel_indexes_for_cur_subframe[WMAPRO_MAX_CHANNELS];
     int8_t           num_bands;                     ///< number of scale factor bands
f62be777
     int8_t           transmit_num_vec_coeffs;       ///< number of vector coded coefficients is part of the bitstream
c1061cc7
     int16_t*         cur_sfb_offsets;               ///< sfb offsets for the current block
     uint8_t          table_idx;                     ///< index for the num_sfb, sfb_offsets, sf_offsets and subwoofer_cutoffs tables
     int8_t           esc_len;                       ///< length of escaped coefficients
 
     uint8_t          num_chgroups;                  ///< number of channel groups
     WMAProChannelGrp chgroup[WMAPRO_MAX_CHANNELS];  ///< channel group information
 
     WMAProChannelCtx channel[WMAPRO_MAX_CHANNELS];  ///< per channel data
 } WMAProDecodeCtx;
 
6c43f33a
 typedef struct XMADecodeCtx {
1954e625
     WMAProDecodeCtx xma[XMA_MAX_STREAMS];
     AVFrame *frames[XMA_MAX_STREAMS];
6c43f33a
     int current_stream;
1954e625
     int num_streams;
     float samples[XMA_MAX_CHANNELS][512 * 64];
     int offset[XMA_MAX_STREAMS];
     int start_channel[XMA_MAX_STREAMS];
6c43f33a
 } XMADecodeCtx;
c1061cc7
 
 /**
  *@brief helper function to print the most important members of the context
  *@param s context
  */
3dde147f
 static av_cold void dump_context(WMAProDecodeCtx *s)
c1061cc7
 {
 #define PRINT(a, b)     av_log(s->avctx, AV_LOG_DEBUG, " %s = %d\n", a, b);
cba4e606
 #define PRINT_HEX(a, b) av_log(s->avctx, AV_LOG_DEBUG, " %s = %"PRIx32"\n", a, b);
c1061cc7
 
     PRINT("ed sample bit depth", s->bits_per_sample);
     PRINT_HEX("ed decode flags", s->decode_flags);
     PRINT("samples per frame",   s->samples_per_frame);
     PRINT("log2 frame size",     s->log2_frame_size);
     PRINT("max num subframes",   s->max_num_subframes);
     PRINT("len prefix",          s->len_prefix);
6c43f33a
     PRINT("num channels",        s->nb_channels);
c1061cc7
 }
 
da136c7e
 /**
  *@brief Uninitialize the decoder and free all resources.
  *@param avctx codec context
  *@return 0 on success, < 0 otherwise
  */
6c43f33a
 static av_cold int decode_end(WMAProDecodeCtx *s)
da136c7e
 {
     int i;
 
3384d765
     av_freep(&s->fdsp);
 
b979e4a2
     for (i = 0; i < WMAPRO_BLOCK_SIZES; i++)
da136c7e
         ff_mdct_end(&s->mdct_ctx[i]);
 
     return 0;
 }
 
6c43f33a
 static av_cold int wmapro_decode_end(AVCodecContext *avctx)
 {
     WMAProDecodeCtx *s = avctx->priv_data;
 
     decode_end(s);
 
     return 0;
 }
 
b456ece5
 static av_cold int get_rate(AVCodecContext *avctx)
 {
     if (avctx->codec_id != AV_CODEC_ID_WMAPRO) { // XXX: is this really only for XMA?
         if (avctx->sample_rate > 44100)
             return 48000;
         else if (avctx->sample_rate > 32000)
             return 44100;
         else if (avctx->sample_rate > 24000)
             return 32000;
         return 24000;
     }
 
     return avctx->sample_rate;
 }
 
da136c7e
 /**
c1061cc7
  *@brief Initialize the decoder.
  *@param avctx codec context
  *@return 0 on success, -1 otherwise
  */
1954e625
 static av_cold int decode_init(WMAProDecodeCtx *s, AVCodecContext *avctx, int num_stream)
c1061cc7
 {
e0b1d660
     uint8_t *edata_ptr = avctx->extradata;
c1061cc7
     unsigned int channel_mask;
b4027d97
     int i, bits;
c1061cc7
     int log2_max_num_subframes;
     int num_possible_block_sizes;
 
b456ece5
     if (avctx->codec_id == AV_CODEC_ID_XMA1 || avctx->codec_id == AV_CODEC_ID_XMA2)
         avctx->block_align = 2048;
 
cacad1c0
     if (!avctx->block_align) {
         av_log(avctx, AV_LOG_ERROR, "block_align is not set\n");
         return AVERROR(EINVAL);
     }
 
c1061cc7
     s->avctx = avctx;
284ea790
 
c1061cc7
     init_put_bits(&s->pb, s->frame_data, MAX_FRAMESIZE);
 
f9d732c2
     avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
c1061cc7
 
4cf96c56
     /** dump the extradata */
     av_log(avctx, AV_LOG_DEBUG, "extradata:\n");
     for (i = 0; i < avctx->extradata_size; i++)
         av_log(avctx, AV_LOG_DEBUG, "[%x] ", avctx->extradata[i]);
     av_log(avctx, AV_LOG_DEBUG, "\n");
1954e625
 
     if (avctx->codec_id == AV_CODEC_ID_XMA2 && avctx->extradata_size == 34) { /* XMA2WAVEFORMATEX */
         s->decode_flags    = 0x10d6;
         s->bits_per_sample = 16;
         channel_mask       = 0; //AV_RL32(edata_ptr+2); /* not always in expected order */
         if ((num_stream+1) * XMA_MAX_CHANNELS_STREAM > avctx->channels) /* stream config is 2ch + 2ch + ... + 1/2ch */
             s->nb_channels = 1;
         else
             s->nb_channels = 2;
     } else if (avctx->codec_id == AV_CODEC_ID_XMA2) { /* XMA2WAVEFORMAT */
b456ece5
         s->decode_flags    = 0x10d6;
         s->bits_per_sample = 16;
1954e625
         channel_mask       = 0; /* would need to aggregate from all streams */
         s->nb_channels = edata_ptr[32 + ((edata_ptr[0]==3)?0:8) + 4*num_stream + 0]; /* nth stream config */
     } else if (avctx->codec_id == AV_CODEC_ID_XMA1) { /* XMAWAVEFORMAT */
b456ece5
         s->decode_flags    = 0x10d6;
         s->bits_per_sample = 16;
1954e625
         channel_mask       = 0; /* would need to aggregate from all streams */
         s->nb_channels     = edata_ptr[8 + 20*num_stream + 17]; /* nth stream config */
     } else if (avctx->codec_id == AV_CODEC_ID_WMAPRO && avctx->extradata_size >= 18) {
c1061cc7
         s->decode_flags    = AV_RL16(edata_ptr+14);
         channel_mask       = AV_RL32(edata_ptr+2);
         s->bits_per_sample = AV_RL16(edata_ptr);
1954e625
         s->nb_channels     = avctx->channels;
66e05f6f
 
         if (s->bits_per_sample > 32 || s->bits_per_sample < 1) {
             avpriv_request_sample(avctx, "bits per sample is %d", s->bits_per_sample);
             return AVERROR_PATCHWELCOME;
         }
c1061cc7
     } else {
6d97484d
         avpriv_request_sample(avctx, "Unknown extradata size");
f3298f12
         return AVERROR_PATCHWELCOME;
c1061cc7
     }
 
     /** generic init */
     s->log2_frame_size = av_log2(avctx->block_align) + 4;
7d9cb126
     if (s->log2_frame_size > 25) {
         avpriv_request_sample(avctx, "Large block align");
         return AVERROR_PATCHWELCOME;
     }
c1061cc7
 
     /** frame info */
b456ece5
     if (avctx->codec_id != AV_CODEC_ID_WMAPRO)
         s->skip_frame = 0;
     else
         s->skip_frame = 1; /* skip first frame */
 
c1061cc7
     s->packet_loss = 1;
     s->len_prefix  = (s->decode_flags & 0x40);
 
     /** get frame len */
b456ece5
     if (avctx->codec_id == AV_CODEC_ID_WMAPRO) {
         bits = ff_wma_get_frame_len_bits(avctx->sample_rate, 3, s->decode_flags);
         if (bits > WMAPRO_BLOCK_MAX_BITS) {
             avpriv_request_sample(avctx, "14-bit block sizes");
             return AVERROR_PATCHWELCOME;
         }
         s->samples_per_frame = 1 << bits;
     } else {
         s->samples_per_frame = 512;
b4027d97
     }
c1061cc7
 
     /** subframe info */
     log2_max_num_subframes       = ((s->decode_flags & 0x38) >> 3);
     s->max_num_subframes         = 1 << log2_max_num_subframes;
b86dd1bf
     if (s->max_num_subframes == 16 || s->max_num_subframes == 4)
c1061cc7
         s->max_subframe_len_bit = 1;
     s->subframe_len_bits = av_log2(log2_max_num_subframes) + 1;
 
     num_possible_block_sizes     = log2_max_num_subframes + 1;
     s->min_samples_per_subframe  = s->samples_per_frame / s->max_num_subframes;
     s->dynamic_range_compression = (s->decode_flags & 0x80);
 
     if (s->max_num_subframes > MAX_SUBFRAMES) {
cc8163e1
         av_log(avctx, AV_LOG_ERROR, "invalid number of subframes %"PRId8"\n",
c1061cc7
                s->max_num_subframes);
         return AVERROR_INVALIDDATA;
     }
 
d4a217a4
     if (s->min_samples_per_subframe < WMAPRO_BLOCK_MIN_SIZE) {
9166f483
         av_log(avctx, AV_LOG_ERROR, "min_samples_per_subframe of %d too small\n",
                s->min_samples_per_subframe);
         return AVERROR_INVALIDDATA;
     }
 
3680b243
     if (s->avctx->sample_rate <= 0) {
         av_log(avctx, AV_LOG_ERROR, "invalid sample rate\n");
         return AVERROR_INVALIDDATA;
     }
 
6c43f33a
     if (s->nb_channels <= 0) {
002097a0
         av_log(avctx, AV_LOG_ERROR, "invalid number of channels %d\n",
6c43f33a
                s->nb_channels);
fc644340
         return AVERROR_INVALIDDATA;
1954e625
     } else if (avctx->codec_id != AV_CODEC_ID_WMAPRO && s->nb_channels > XMA_MAX_CHANNELS_STREAM) {
         av_log(avctx, AV_LOG_ERROR, "invalid number of channels per XMA stream %d\n",
                s->nb_channels);
         return AVERROR_INVALIDDATA;
6c43f33a
     } else if (s->nb_channels > WMAPRO_MAX_CHANNELS) {
6d97484d
         avpriv_request_sample(avctx,
                               "More than %d channels", WMAPRO_MAX_CHANNELS);
fc644340
         return AVERROR_PATCHWELCOME;
     }
 
     /** init previous block len */
6c43f33a
     for (i = 0; i < s->nb_channels; i++)
fc644340
         s->channel[i].prev_block_len = s->samples_per_frame;
 
c1061cc7
     /** extract lfe channel position */
     s->lfe_channel = -1;
 
     if (channel_mask & 8) {
         unsigned int mask;
         for (mask = 1; mask < 16; mask <<= 1) {
             if (channel_mask & mask)
                 ++s->lfe_channel;
         }
     }
 
     INIT_VLC_STATIC(&sf_vlc, SCALEVLCBITS, HUFF_SCALE_SIZE,
                     scale_huffbits, 1, 1,
                     scale_huffcodes, 2, 2, 616);
 
     INIT_VLC_STATIC(&sf_rl_vlc, VLCBITS, HUFF_SCALE_RL_SIZE,
                     scale_rl_huffbits, 1, 1,
                     scale_rl_huffcodes, 4, 4, 1406);
 
     INIT_VLC_STATIC(&coef_vlc[0], VLCBITS, HUFF_COEF0_SIZE,
                     coef0_huffbits, 1, 1,
                     coef0_huffcodes, 4, 4, 2108);
 
     INIT_VLC_STATIC(&coef_vlc[1], VLCBITS, HUFF_COEF1_SIZE,
                     coef1_huffbits, 1, 1,
                     coef1_huffcodes, 4, 4, 3912);
 
     INIT_VLC_STATIC(&vec4_vlc, VLCBITS, HUFF_VEC4_SIZE,
                     vec4_huffbits, 1, 1,
                     vec4_huffcodes, 2, 2, 604);
 
     INIT_VLC_STATIC(&vec2_vlc, VLCBITS, HUFF_VEC2_SIZE,
                     vec2_huffbits, 1, 1,
                     vec2_huffcodes, 2, 2, 562);
 
     INIT_VLC_STATIC(&vec1_vlc, VLCBITS, HUFF_VEC1_SIZE,
                     vec1_huffbits, 1, 1,
                     vec1_huffcodes, 2, 2, 562);
 
     /** calculate number of scale factor bands and their offsets
         for every possible block size */
     for (i = 0; i < num_possible_block_sizes; i++) {
         int subframe_len = s->samples_per_frame >> i;
         int x;
         int band = 1;
b456ece5
         int rate = get_rate(avctx);
c1061cc7
 
         s->sfb_offsets[i][0] = 0;
 
e0b1d660
         for (x = 0; x < MAX_BANDS-1 && s->sfb_offsets[i][band - 1] < subframe_len; x++) {
b456ece5
             int offset = (subframe_len * 2 * critical_freq[x]) / rate + 2;
c1061cc7
             offset &= ~3;
e0b1d660
             if (offset > s->sfb_offsets[i][band - 1])
c1061cc7
                 s->sfb_offsets[i][band++] = offset;
5dcb9903
 
             if (offset >= subframe_len)
                 break;
c1061cc7
         }
         s->sfb_offsets[i][band - 1] = subframe_len;
         s->num_sfb[i]               = band - 1;
50f0a6b4
         if (s->num_sfb[i] <= 0) {
             av_log(avctx, AV_LOG_ERROR, "num_sfb invalid\n");
             return AVERROR_INVALIDDATA;
         }
c1061cc7
     }
 
 
     /** Scale factors can be shared between blocks of different size
         as every block has a different scale factor band layout.
         The matrix sf_offsets is needed to find the correct scale factor.
      */
 
     for (i = 0; i < num_possible_block_sizes; i++) {
         int b;
         for (b = 0; b < s->num_sfb[i]; b++) {
             int x;
             int offset = ((s->sfb_offsets[i][b]
e0b1d660
                            + s->sfb_offsets[i][b + 1] - 1) << i) >> 1;
c1061cc7
             for (x = 0; x < num_possible_block_sizes; x++) {
                 int v = 0;
c1fc4ff9
                 while (s->sfb_offsets[x][v + 1] << x < offset) {
                     v++;
                     av_assert0(v < MAX_BANDS);
                 }
c1061cc7
                 s->sf_offsets[i][x][b] = v;
             }
         }
     }
 
9ccc6cec
     s->fdsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT);
     if (!s->fdsp)
         return AVERROR(ENOMEM);
 
c1061cc7
     /** init MDCT, FIXME: only init needed sizes */
     for (i = 0; i < WMAPRO_BLOCK_SIZES; i++)
75e4efd2
         ff_mdct_init(&s->mdct_ctx[i], WMAPRO_BLOCK_MIN_BITS+1+i, 1,
                      1.0 / (1 << (WMAPRO_BLOCK_MIN_BITS + i - 1))
c1061cc7
                      / (1 << (s->bits_per_sample - 1)));
 
03039f4c
     /** init MDCT windows: simple sine window */
c1061cc7
     for (i = 0; i < WMAPRO_BLOCK_SIZES; i++) {
6776061b
         const int win_idx = WMAPRO_BLOCK_MAX_BITS - i;
14b86070
         ff_init_ff_sine_windows(win_idx);
e0b1d660
         s->windows[WMAPRO_BLOCK_SIZES - i - 1] = ff_sine_windows[win_idx];
c1061cc7
     }
 
     /** calculate subwoofer cutoff values */
     for (i = 0; i < num_possible_block_sizes; i++) {
         int block_size = s->samples_per_frame >> i;
0c56f830
         int cutoff = (440*block_size + 3LL * (s->avctx->sample_rate >> 1) - 1)
c1061cc7
                      / s->avctx->sample_rate;
         s->subwoofer_cutoffs[i] = av_clip(cutoff, 4, block_size);
     }
 
     /** calculate sine values for the decorrelation matrix */
     for (i = 0; i < 33; i++)
         sin64[i] = sin(i*M_PI / 64.0);
 
     if (avctx->debug & FF_DEBUG_BITSTREAM)
         dump_context(s);
 
     avctx->channel_layout = channel_mask;
0eea2129
 
c1061cc7
     return 0;
 }
 
 /**
6c43f33a
  *@brief Initialize the decoder.
  *@param avctx codec context
  *@return 0 on success, -1 otherwise
  */
 static av_cold int wmapro_decode_init(AVCodecContext *avctx)
 {
     WMAProDecodeCtx *s = avctx->priv_data;
 
1954e625
     return decode_init(s, avctx, 0);
6c43f33a
 }
 
 /**
c1061cc7
  *@brief Decode the subframe length.
  *@param s context
  *@param offset sample offset in the frame
  *@return decoded subframe length on success, < 0 in case of an error
  */
 static int decode_subframe_length(WMAProDecodeCtx *s, int offset)
 {
     int frame_len_shift = 0;
     int subframe_len;
 
     /** no need to read from the bitstream when only one length is possible */
     if (offset == s->samples_per_frame - s->min_samples_per_subframe)
         return s->min_samples_per_subframe;
 
c99d2728
     if (get_bits_left(&s->gb) < 1)
         return AVERROR_INVALIDDATA;
 
c1061cc7
     /** 1 bit indicates if the subframe is of maximum length */
     if (s->max_subframe_len_bit) {
         if (get_bits1(&s->gb))
             frame_len_shift = 1 + get_bits(&s->gb, s->subframe_len_bits-1);
     } else
         frame_len_shift = get_bits(&s->gb, s->subframe_len_bits);
 
     subframe_len = s->samples_per_frame >> frame_len_shift;
 
     /** sanity check the length */
e0b1d660
     if (subframe_len < s->min_samples_per_subframe ||
         subframe_len > s->samples_per_frame) {
c1061cc7
         av_log(s->avctx, AV_LOG_ERROR, "broken frame: subframe_len %i\n",
                subframe_len);
         return AVERROR_INVALIDDATA;
     }
     return subframe_len;
 }
 
 /**
  *@brief Decode how the data in the frame is split into subframes.
  *       Every WMA frame contains the encoded data for a fixed number of
  *       samples per channel. The data for every channel might be split
  *       into several subframes. This function will reconstruct the list of
  *       subframes for every channel.
  *
  *       If the subframes are not evenly split, the algorithm estimates the
  *       channels with the lowest number of total samples.
  *       Afterwards, for each of these channels a bit is read from the
  *       bitstream that indicates if the channel contains a subframe with the
  *       next subframe size that is going to be read from the bitstream or not.
  *       If a channel contains such a subframe, the subframe size gets added to
  *       the channel's subframe list.
  *       The algorithm repeats these steps until the frame is properly divided
  *       between the individual channels.
  *
  *@param s context
  *@return 0 on success, < 0 in case of an error
  */
 static int decode_tilehdr(WMAProDecodeCtx *s)
 {
a92be9b8
     uint16_t num_samples[WMAPRO_MAX_CHANNELS] = { 0 };/**< sum of samples for all currently known subframes of a channel */
a20df858
     uint8_t  contains_subframe[WMAPRO_MAX_CHANNELS];  /**< flag indicating if a channel contains the current subframe */
6c43f33a
     int channels_for_cur_subframe = s->nb_channels;   /**< number of channels that contain the current subframe */
a20df858
     int fixed_channel_layout = 0;                     /**< flag indicating that all channels use the same subframe offsets and sizes */
     int min_channel_len = 0;                          /**< smallest sum of samples (channels with this length will be processed first) */
c1061cc7
     int c;
 
     /* Should never consume more than 3073 bits (256 iterations for the
6851130f
      * while loop when always the minimum amount of 128 samples is subtracted
c1061cc7
      * from missing samples in the 8 channel case).
      * 1 + BLOCK_MAX_SIZE * MAX_CHANNELS / BLOCK_MIN_SIZE * (MAX_CHANNELS  + 4)
      */
 
     /** reset tiling information */
6c43f33a
     for (c = 0; c < s->nb_channels; c++)
c1061cc7
         s->channel[c].num_subframes = 0;
 
     if (s->max_num_subframes == 1 || get_bits1(&s->gb))
         fixed_channel_layout = 1;
 
     /** loop until the frame data is split between the subframes */
     do {
         int subframe_len;
 
         /** check which channels contain the subframe */
6c43f33a
         for (c = 0; c < s->nb_channels; c++) {
c1061cc7
             if (num_samples[c] == min_channel_len) {
                 if (fixed_channel_layout || channels_for_cur_subframe == 1 ||
                    (min_channel_len == s->samples_per_frame - s->min_samples_per_subframe))
                     contains_subframe[c] = 1;
                 else
                     contains_subframe[c] = get_bits1(&s->gb);
             } else
                 contains_subframe[c] = 0;
         }
 
         /** get subframe length, subframe_len == 0 is not allowed */
         if ((subframe_len = decode_subframe_length(s, min_channel_len)) <= 0)
             return AVERROR_INVALIDDATA;
 
         /** add subframes to the individual channels and find new min_channel_len */
         min_channel_len += subframe_len;
6c43f33a
         for (c = 0; c < s->nb_channels; c++) {
c1061cc7
             WMAProChannelCtx* chan = &s->channel[c];
 
             if (contains_subframe[c]) {
                 if (chan->num_subframes >= MAX_SUBFRAMES) {
                     av_log(s->avctx, AV_LOG_ERROR,
                            "broken frame: num subframes > 31\n");
                     return AVERROR_INVALIDDATA;
                 }
                 chan->subframe_len[chan->num_subframes] = subframe_len;
                 num_samples[c] += subframe_len;
                 ++chan->num_subframes;
                 if (num_samples[c] > s->samples_per_frame) {
e0b1d660
                     av_log(s->avctx, AV_LOG_ERROR, "broken frame: "
c1061cc7
                            "channel len > samples_per_frame\n");
                     return AVERROR_INVALIDDATA;
                 }
e0b1d660
             } else if (num_samples[c] <= min_channel_len) {
c1061cc7
                 if (num_samples[c] < min_channel_len) {
                     channels_for_cur_subframe = 0;
                     min_channel_len = num_samples[c];
                 }
                 ++channels_for_cur_subframe;
             }
         }
     } while (min_channel_len < s->samples_per_frame);
 
6c43f33a
     for (c = 0; c < s->nb_channels; c++) {
c1061cc7
         int i;
         int offset = 0;
         for (i = 0; i < s->channel[c].num_subframes; i++) {
54904525
             ff_dlog(s->avctx, "frame[%"PRIu32"] channel[%i] subframe[%i]"
e0b1d660
                     " len %i\n", s->frame_num, c, i,
                     s->channel[c].subframe_len[i]);
c1061cc7
             s->channel[c].subframe_offset[i] = offset;
             offset += s->channel[c].subframe_len[i];
         }
     }
 
     return 0;
 }
 
 /**
da136c7e
  *@brief Calculate a decorrelation matrix from the bitstream parameters.
  *@param s codec context
  *@param chgroup channel group for which the matrix needs to be calculated
  */
c1061cc7
 static void decode_decorrelation_matrix(WMAProDecodeCtx *s,
                                         WMAProChannelGrp *chgroup)
da136c7e
 {
     int i;
     int offset = 0;
     int8_t rotation_offset[WMAPRO_MAX_CHANNELS * WMAPRO_MAX_CHANNELS];
6c43f33a
     memset(chgroup->decorrelation_matrix, 0, s->nb_channels *
            s->nb_channels * sizeof(*chgroup->decorrelation_matrix));
da136c7e
 
b25a8818
     for (i = 0; i < chgroup->num_channels * (chgroup->num_channels - 1) >> 1; i++)
b979e4a2
         rotation_offset[i] = get_bits(&s->gb, 6);
da136c7e
 
b25a8818
     for (i = 0; i < chgroup->num_channels; i++)
da136c7e
         chgroup->decorrelation_matrix[chgroup->num_channels * i + i] =
e0b1d660
             get_bits1(&s->gb) ? 1.0 : -1.0;
da136c7e
 
b25a8818
     for (i = 1; i < chgroup->num_channels; i++) {
da136c7e
         int x;
b25a8818
         for (x = 0; x < i; x++) {
da136c7e
             int y;
b979e4a2
             for (y = 0; y < i + 1; y++) {
da136c7e
                 float v1 = chgroup->decorrelation_matrix[x * chgroup->num_channels + y];
                 float v2 = chgroup->decorrelation_matrix[i * chgroup->num_channels + y];
                 int n = rotation_offset[offset + x];
                 float sinv;
                 float cosv;
 
b25a8818
                 if (n < 32) {
da136c7e
                     sinv = sin64[n];
e0b1d660
                     cosv = sin64[32 - n];
da136c7e
                 } else {
e0b1d660
                     sinv =  sin64[64 -  n];
                     cosv = -sin64[n  - 32];
da136c7e
                 }
 
                 chgroup->decorrelation_matrix[y + x * chgroup->num_channels] =
                                                (v1 * sinv) - (v2 * cosv);
                 chgroup->decorrelation_matrix[y + i * chgroup->num_channels] =
                                                (v1 * cosv) + (v2 * sinv);
             }
         }
         offset += i;
     }
 }
 
 /**
c1061cc7
  *@brief Decode channel transformation parameters
  *@param s codec context
d5ec8ba7
  *@return >= 0 in case of success, < 0 in case of bitstream errors
c1061cc7
  */
 static int decode_channel_transform(WMAProDecodeCtx* s)
 {
     int i;
     /* should never consume more than 1921 bits for the 8 channel case
e0b1d660
      * 1 + MAX_CHANNELS * (MAX_CHANNELS + 2 + 3 * MAX_CHANNELS * MAX_CHANNELS
c1061cc7
      * + MAX_CHANNELS + MAX_BANDS + 1)
      */
 
     /** in the one channel case channel transforms are pointless */
     s->num_chgroups = 0;
6c43f33a
     if (s->nb_channels > 1) {
c1061cc7
         int remaining_channels = s->channels_for_cur_subframe;
 
         if (get_bits1(&s->gb)) {
6d97484d
             avpriv_request_sample(s->avctx,
                                   "Channel transform bit");
f3298f12
             return AVERROR_PATCHWELCOME;
c1061cc7
         }
 
         for (s->num_chgroups = 0; remaining_channels &&
e0b1d660
              s->num_chgroups < s->channels_for_cur_subframe; s->num_chgroups++) {
c1061cc7
             WMAProChannelGrp* chgroup = &s->chgroup[s->num_chgroups];
             float** channel_data = chgroup->channel_data;
             chgroup->num_channels = 0;
             chgroup->transform = 0;
 
             /** decode channel mask */
             if (remaining_channels > 2) {
                 for (i = 0; i < s->channels_for_cur_subframe; i++) {
                     int channel_idx = s->channel_indexes_for_cur_subframe[i];
                     if (!s->channel[channel_idx].grouped
                         && get_bits1(&s->gb)) {
                         ++chgroup->num_channels;
                         s->channel[channel_idx].grouped = 1;
                         *channel_data++ = s->channel[channel_idx].coeffs;
                     }
                 }
             } else {
                 chgroup->num_channels = remaining_channels;
                 for (i = 0; i < s->channels_for_cur_subframe; i++) {
                     int channel_idx = s->channel_indexes_for_cur_subframe[i];
                     if (!s->channel[channel_idx].grouped)
                         *channel_data++ = s->channel[channel_idx].coeffs;
                     s->channel[channel_idx].grouped = 1;
                 }
             }
 
             /** decode transform type */
             if (chgroup->num_channels == 2) {
                 if (get_bits1(&s->gb)) {
                     if (get_bits1(&s->gb)) {
6d97484d
                         avpriv_request_sample(s->avctx,
                                               "Unknown channel transform type");
6652338f
                         return AVERROR_PATCHWELCOME;
c1061cc7
                     }
                 } else {
                     chgroup->transform = 1;
6c43f33a
                     if (s->nb_channels == 2) {
c1061cc7
                         chgroup->decorrelation_matrix[0] =  1.0;
                         chgroup->decorrelation_matrix[1] = -1.0;
                         chgroup->decorrelation_matrix[2] =  1.0;
                         chgroup->decorrelation_matrix[3] =  1.0;
                     } else {
                         /** cos(pi/4) */
                         chgroup->decorrelation_matrix[0] =  0.70703125;
                         chgroup->decorrelation_matrix[1] = -0.70703125;
                         chgroup->decorrelation_matrix[2] =  0.70703125;
                         chgroup->decorrelation_matrix[3] =  0.70703125;
                     }
                 }
             } else if (chgroup->num_channels > 2) {
                 if (get_bits1(&s->gb)) {
                     chgroup->transform = 1;
                     if (get_bits1(&s->gb)) {
                         decode_decorrelation_matrix(s, chgroup);
                     } else {
                         /** FIXME: more than 6 coupled channels not supported */
                         if (chgroup->num_channels > 6) {
6d97484d
                             avpriv_request_sample(s->avctx,
                                                   "Coupled channels > 6");
c1061cc7
                         } else {
                             memcpy(chgroup->decorrelation_matrix,
e0b1d660
                                    default_decorrelation[chgroup->num_channels],
                                    chgroup->num_channels * chgroup->num_channels *
                                    sizeof(*chgroup->decorrelation_matrix));
c1061cc7
                         }
                     }
                 }
             }
 
             /** decode transform on / off */
             if (chgroup->transform) {
                 if (!get_bits1(&s->gb)) {
                     int i;
                     /** transform can be enabled for individual bands */
                     for (i = 0; i < s->num_bands; i++) {
                         chgroup->transform_band[i] = get_bits1(&s->gb);
                     }
                 } else {
                     memset(chgroup->transform_band, 1, s->num_bands);
                 }
             }
             remaining_channels -= chgroup->num_channels;
         }
     }
     return 0;
 }
 
 /**
85fecafe
  *@brief Extract the coefficients from the bitstream.
  *@param s codec context
  *@param c current channel number
  *@return 0 on success, < 0 in case of bitstream errors
  */
c1061cc7
 static int decode_coeffs(WMAProDecodeCtx *s, int c)
85fecafe
 {
4df254f1
     /* Integers 0..15 as single-precision floats.  The table saves a
        costly int to float conversion, and storing the values as
        integers allows fast sign-flipping. */
1db6437f
     static const uint32_t fval_tab[16] = {
4df254f1
         0x00000000, 0x3f800000, 0x40000000, 0x40400000,
         0x40800000, 0x40a00000, 0x40c00000, 0x40e00000,
         0x41000000, 0x41100000, 0x41200000, 0x41300000,
         0x41400000, 0x41500000, 0x41600000, 0x41700000,
     };
85fecafe
     int vlctable;
     VLC* vlc;
c1061cc7
     WMAProChannelCtx* ci = &s->channel[c];
85fecafe
     int rl_mode = 0;
     int cur_coeff = 0;
     int num_zeros = 0;
     const uint16_t* run;
076a9dea
     const float* level;
85fecafe
 
6a85dfc8
     ff_dlog(s->avctx, "decode coefficients for channel %i\n", c);
85fecafe
 
     vlctable = get_bits1(&s->gb);
     vlc = &coef_vlc[vlctable];
 
     if (vlctable) {
         run = coef1_run;
         level = coef1_level;
     } else {
         run = coef0_run;
         level = coef0_level;
     }
 
     /** decode vector coefficients (consumes up to 167 bits per iteration for
       4 vector coded large values) */
f62be777
     while ((s->transmit_num_vec_coeffs || !rl_mode) &&
            (cur_coeff + 3 < ci->num_vec_coeffs)) {
1db6437f
         uint32_t vals[4];
85fecafe
         int i;
         unsigned int idx;
 
         idx = get_vlc2(&s->gb, vec4_vlc.table, VLCBITS, VEC4MAXDEPTH);
 
ae925315
         if (idx == HUFF_VEC4_SIZE - 1) {
85fecafe
             for (i = 0; i < 4; i += 2) {
                 idx = get_vlc2(&s->gb, vec2_vlc.table, VLCBITS, VEC2MAXDEPTH);
ae925315
                 if (idx == HUFF_VEC2_SIZE - 1) {
1db6437f
                     uint32_t v0, v1;
4df254f1
                     v0 = get_vlc2(&s->gb, vec1_vlc.table, VLCBITS, VEC1MAXDEPTH);
                     if (v0 == HUFF_VEC1_SIZE - 1)
                         v0 += ff_wma_get_large_val(&s->gb);
                     v1 = get_vlc2(&s->gb, vec1_vlc.table, VLCBITS, VEC1MAXDEPTH);
                     if (v1 == HUFF_VEC1_SIZE - 1)
                         v1 += ff_wma_get_large_val(&s->gb);
4424fe9c
                     vals[i  ] = av_float2int(v0);
                     vals[i+1] = av_float2int(v1);
85fecafe
                 } else {
4df254f1
                     vals[i]   = fval_tab[symbol_to_vec2[idx] >> 4 ];
                     vals[i+1] = fval_tab[symbol_to_vec2[idx] & 0xF];
85fecafe
                 }
             }
         } else {
4df254f1
             vals[0] = fval_tab[ symbol_to_vec4[idx] >> 12      ];
             vals[1] = fval_tab[(symbol_to_vec4[idx] >> 8) & 0xF];
             vals[2] = fval_tab[(symbol_to_vec4[idx] >> 4) & 0xF];
             vals[3] = fval_tab[ symbol_to_vec4[idx]       & 0xF];
85fecafe
         }
 
         /** decode sign */
         for (i = 0; i < 4; i++) {
             if (vals[i]) {
1db6437f
                 uint32_t sign = get_bits1(&s->gb) - 1;
                 AV_WN32A(&ci->coeffs[cur_coeff], vals[i] ^ sign << 31);
85fecafe
                 num_zeros = 0;
             } else {
c1061cc7
                 ci->coeffs[cur_coeff] = 0;
85fecafe
                 /** switch to run level mode when subframe_len / 128 zeros
e0b1d660
                     were found in a row */
                 rl_mode |= (++num_zeros > s->subframe_len >> 8);
85fecafe
             }
             ++cur_coeff;
         }
     }
 
     /** decode run level coded coefficients */
f62be777
     if (cur_coeff < s->subframe_len) {
c1061cc7
         memset(&ci->coeffs[cur_coeff], 0,
                sizeof(*ci->coeffs) * (s->subframe_len - cur_coeff));
ae925315
         if (ff_wma_run_level_decode(s->avctx, &s->gb, vlc,
                                     level, run, 1, ci->coeffs,
                                     cur_coeff, s->subframe_len,
                                     s->subframe_len, s->esc_len, 0))
85fecafe
             return AVERROR_INVALIDDATA;
     }
 
     return 0;
 }
 
 /**
c1061cc7
  *@brief Extract scale factors from the bitstream.
  *@param s codec context
  *@return 0 on success, < 0 in case of bitstream errors
  */
 static int decode_scale_factors(WMAProDecodeCtx* s)
 {
     int i;
 
     /** should never consume more than 5344 bits
      *  MAX_CHANNELS * (1 +  MAX_BANDS * 23)
      */
 
     for (i = 0; i < s->channels_for_cur_subframe; i++) {
         int c = s->channel_indexes_for_cur_subframe[i];
         int* sf;
7dca334d
         int* sf_end;
         s->channel[c].scale_factors = s->channel[c].saved_scale_factors[!s->channel[c].scale_factor_idx];
         sf_end = s->channel[c].scale_factors + s->num_bands;
c1061cc7
 
         /** resample scale factors for the new block size
          *  as the scale factors might need to be resampled several times
          *  before some  new values are transmitted, a backup of the last
          *  transmitted scale factors is kept in saved_scale_factors
          */
         if (s->channel[c].reuse_sf) {
             const int8_t* sf_offsets = s->sf_offsets[s->table_idx][s->channel[c].table_idx];
             int b;
             for (b = 0; b < s->num_bands; b++)
                 s->channel[c].scale_factors[b] =
7dca334d
                     s->channel[c].saved_scale_factors[s->channel[c].scale_factor_idx][*sf_offsets++];
c1061cc7
         }
 
         if (!s->channel[c].cur_subframe || get_bits1(&s->gb)) {
 
             if (!s->channel[c].reuse_sf) {
                 int val;
                 /** decode DPCM coded scale factors */
                 s->channel[c].scale_factor_step = get_bits(&s->gb, 2) + 1;
                 val = 45 / s->channel[c].scale_factor_step;
                 for (sf = s->channel[c].scale_factors; sf < sf_end; sf++) {
                     val += get_vlc2(&s->gb, sf_vlc.table, SCALEVLCBITS, SCALEMAXDEPTH) - 60;
                     *sf = val;
                 }
             } else {
                 int i;
                 /** run level decode differences to the resampled factors */
                 for (i = 0; i < s->num_bands; i++) {
                     int idx;
                     int skip;
                     int val;
                     int sign;
 
                     idx = get_vlc2(&s->gb, sf_rl_vlc.table, VLCBITS, SCALERLMAXDEPTH);
 
e0b1d660
                     if (!idx) {
c1061cc7
                         uint32_t code = get_bits(&s->gb, 14);
                         val  =  code >> 6;
                         sign = (code & 1) - 1;
                         skip = (code & 0x3f) >> 1;
                     } else if (idx == 1) {
                         break;
                     } else {
                         skip = scale_rl_run[idx];
                         val  = scale_rl_level[idx];
                         sign = get_bits1(&s->gb)-1;
                     }
 
                     i += skip;
                     if (i >= s->num_bands) {
e0b1d660
                         av_log(s->avctx, AV_LOG_ERROR,
c1061cc7
                                "invalid scale factor coding\n");
                         return AVERROR_INVALIDDATA;
                     }
                     s->channel[c].scale_factors[i] += (val ^ sign) - sign;
                 }
             }
7dca334d
             /** swap buffers */
             s->channel[c].scale_factor_idx = !s->channel[c].scale_factor_idx;
c1061cc7
             s->channel[c].table_idx = s->table_idx;
             s->channel[c].reuse_sf  = 1;
         }
 
         /** calculate new scale factor maximum */
         s->channel[c].max_scale_factor = s->channel[c].scale_factors[0];
         for (sf = s->channel[c].scale_factors + 1; sf < sf_end; sf++) {
             s->channel[c].max_scale_factor =
                 FFMAX(s->channel[c].max_scale_factor, *sf);
         }
 
     }
     return 0;
 }
 
 /**
da136c7e
  *@brief Reconstruct the individual channel data.
  *@param s codec context
  */
c1061cc7
 static void inverse_channel_transform(WMAProDecodeCtx *s)
da136c7e
 {
     int i;
 
b25a8818
     for (i = 0; i < s->num_chgroups; i++) {
f53e96ed
         if (s->chgroup[i].transform) {
da136c7e
             float data[WMAPRO_MAX_CHANNELS];
             const int num_channels = s->chgroup[i].num_channels;
             float** ch_data = s->chgroup[i].channel_data;
             float** ch_end = ch_data + num_channels;
             const int8_t* tb = s->chgroup[i].transform_band;
             int16_t* sfb;
 
             /** multichannel decorrelation */
b979e4a2
             for (sfb = s->cur_sfb_offsets;
e0b1d660
                  sfb < s->cur_sfb_offsets + s->num_bands; sfb++) {
f53e96ed
                 int y;
da136c7e
                 if (*tb++ == 1) {
                     /** multiply values with the decorrelation_matrix */
b25a8818
                     for (y = sfb[0]; y < FFMIN(sfb[1], s->subframe_len); y++) {
da136c7e
                         const float* mat = s->chgroup[i].decorrelation_matrix;
b25a8818
                         const float* data_end = data + num_channels;
                         float* data_ptr = data;
da136c7e
                         float** ch;
 
b979e4a2
                         for (ch = ch_data; ch < ch_end; ch++)
e0b1d660
                             *data_ptr++ = (*ch)[y];
da136c7e
 
                         for (ch = ch_data; ch < ch_end; ch++) {
                             float sum = 0;
                             data_ptr = data;
                             while (data_ptr < data_end)
                                 sum += *data_ptr++ * *mat++;
 
                             (*ch)[y] = sum;
                         }
                     }
6c43f33a
                 } else if (s->nb_channels == 2) {
d975e5e9
                     int len = FFMIN(sfb[1], s->subframe_len) - sfb[0];
3384d765
                     s->fdsp->vector_fmul_scalar(ch_data[0] + sfb[0],
284ea790
                                                ch_data[0] + sfb[0],
                                                181.0 / 128, len);
3384d765
                     s->fdsp->vector_fmul_scalar(ch_data[1] + sfb[0],
284ea790
                                                ch_data[1] + sfb[0],
                                                181.0 / 128, len);
da136c7e
                 }
             }
         }
     }
 }
 
c1061cc7
 /**
  *@brief Apply sine window and reconstruct the output buffer.
  *@param s codec context
  */
 static void wmapro_window(WMAProDecodeCtx *s)
 {
     int i;
e0b1d660
     for (i = 0; i < s->channels_for_cur_subframe; i++) {
c1061cc7
         int c = s->channel_indexes_for_cur_subframe[i];
4fe44873
         const float* window;
c1061cc7
         int winlen = s->channel[c].prev_block_len;
         float* start = s->channel[c].coeffs - (winlen >> 1);
 
         if (s->subframe_len < winlen) {
e0b1d660
             start += (winlen - s->subframe_len) >> 1;
c1061cc7
             winlen = s->subframe_len;
         }
 
75e4efd2
         window = s->windows[av_log2(winlen) - WMAPRO_BLOCK_MIN_BITS];
c1061cc7
 
         winlen >>= 1;
 
3384d765
         s->fdsp->vector_fmul_window(start, start, start + winlen,
e034cc6c
                                    window, winlen);
c1061cc7
 
         s->channel[c].prev_block_len = s->subframe_len;
     }
 }
 
 /**
  *@brief Decode a single subframe (block).
  *@param s codec context
  *@return 0 on success, < 0 when decoding failed
  */
 static int decode_subframe(WMAProDecodeCtx *s)
 {
     int offset = s->samples_per_frame;
     int subframe_len = s->samples_per_frame;
     int i;
6c43f33a
     int total_samples   = s->samples_per_frame * s->nb_channels;
c1061cc7
     int transmit_coeffs = 0;
     int cur_subwoofer_cutoff;
 
     s->subframe_offset = get_bits_count(&s->gb);
 
     /** reset channel context and find the next block offset and size
         == the next block of the channel with the smallest number of
         decoded samples
     */
6c43f33a
     for (i = 0; i < s->nb_channels; i++) {
c1061cc7
         s->channel[i].grouped = 0;
         if (offset > s->channel[i].decoded_samples) {
             offset = s->channel[i].decoded_samples;
             subframe_len =
                 s->channel[i].subframe_len[s->channel[i].cur_subframe];
         }
     }
 
6a85dfc8
     ff_dlog(s->avctx,
e0b1d660
             "processing subframe with offset %i len %i\n", offset, subframe_len);
c1061cc7
 
     /** get a list of all channels that contain the estimated block */
     s->channels_for_cur_subframe = 0;
6c43f33a
     for (i = 0; i < s->nb_channels; i++) {
c1061cc7
         const int cur_subframe = s->channel[i].cur_subframe;
511cf612
         /** subtract already processed samples */
c1061cc7
         total_samples -= s->channel[i].decoded_samples;
 
         /** and count if there are multiple subframes that match our profile */
         if (offset == s->channel[i].decoded_samples &&
e0b1d660
             subframe_len == s->channel[i].subframe_len[cur_subframe]) {
c1061cc7
             total_samples -= s->channel[i].subframe_len[cur_subframe];
             s->channel[i].decoded_samples +=
                 s->channel[i].subframe_len[cur_subframe];
             s->channel_indexes_for_cur_subframe[s->channels_for_cur_subframe] = i;
             ++s->channels_for_cur_subframe;
         }
     }
 
     /** check if the frame will be complete after processing the
         estimated block */
     if (!total_samples)
         s->parsed_all_subframes = 1;
 
 
6a85dfc8
     ff_dlog(s->avctx, "subframe is part of %i channels\n",
e0b1d660
             s->channels_for_cur_subframe);
c1061cc7
 
     /** calculate number of scale factor bands and their offsets */
     s->table_idx         = av_log2(s->samples_per_frame/subframe_len);
     s->num_bands         = s->num_sfb[s->table_idx];
     s->cur_sfb_offsets   = s->sfb_offsets[s->table_idx];
     cur_subwoofer_cutoff = s->subwoofer_cutoffs[s->table_idx];
 
     /** configure the decoder for the current subframe */
38229362
     offset += s->samples_per_frame >> 1;
 
c1061cc7
     for (i = 0; i < s->channels_for_cur_subframe; i++) {
         int c = s->channel_indexes_for_cur_subframe[i];
 
38229362
         s->channel[c].coeffs = &s->channel[c].out[offset];
c1061cc7
     }
 
     s->subframe_len = subframe_len;
     s->esc_len = av_log2(s->subframe_len - 1) + 1;
 
     /** skip extended header if any */
     if (get_bits1(&s->gb)) {
         int num_fill_bits;
         if (!(num_fill_bits = get_bits(&s->gb, 2))) {
             int len = get_bits(&s->gb, 4);
43ff4aed
             num_fill_bits = get_bitsz(&s->gb, len) + 1;
c1061cc7
         }
 
         if (num_fill_bits >= 0) {
             if (get_bits_count(&s->gb) + num_fill_bits > s->num_saved_bits) {
e0b1d660
                 av_log(s->avctx, AV_LOG_ERROR, "invalid number of fill bits\n");
c1061cc7
                 return AVERROR_INVALIDDATA;
             }
 
             skip_bits_long(&s->gb, num_fill_bits);
         }
     }
 
     /** no idea for what the following bit is used */
     if (get_bits1(&s->gb)) {
6d97484d
         avpriv_request_sample(s->avctx, "Reserved bit");
f3298f12
         return AVERROR_PATCHWELCOME;
c1061cc7
     }
 
 
     if (decode_channel_transform(s) < 0)
         return AVERROR_INVALIDDATA;
 
 
     for (i = 0; i < s->channels_for_cur_subframe; i++) {
         int c = s->channel_indexes_for_cur_subframe[i];
         if ((s->channel[c].transmit_coefs = get_bits1(&s->gb)))
             transmit_coeffs = 1;
     }
 
b21ba20c
     av_assert0(s->subframe_len <= WMAPRO_BLOCK_MAX_SIZE);
c1061cc7
     if (transmit_coeffs) {
         int step;
         int quant_step = 90 * s->bits_per_sample >> 4;
f62be777
 
         /** decode number of vector coded coefficients */
         if ((s->transmit_num_vec_coeffs = get_bits1(&s->gb))) {
             int num_bits = av_log2((s->subframe_len + 3)/4) + 1;
             for (i = 0; i < s->channels_for_cur_subframe; i++) {
                 int c = s->channel_indexes_for_cur_subframe[i];
97a5addf
                 int num_vec_coeffs = get_bits(&s->gb, num_bits) << 2;
b21ba20c
                 if (num_vec_coeffs > s->subframe_len) {
97a5addf
                     av_log(s->avctx, AV_LOG_ERROR, "num_vec_coeffs %d is too large\n", num_vec_coeffs);
                     return AVERROR_INVALIDDATA;
                 }
a3e9f4c3
                 av_assert0(num_vec_coeffs + offset <= FF_ARRAY_ELEMS(s->channel[c].out));
97a5addf
                 s->channel[c].num_vec_coeffs = num_vec_coeffs;
f62be777
             }
         } else {
             for (i = 0; i < s->channels_for_cur_subframe; i++) {
                 int c = s->channel_indexes_for_cur_subframe[i];
                 s->channel[c].num_vec_coeffs = s->subframe_len;
             }
c1061cc7
         }
         /** decode quantization step */
         step = get_sbits(&s->gb, 6);
         quant_step += step;
         if (step == -32 || step == 31) {
             const int sign = (step == 31) - 1;
             int quant = 0;
             while (get_bits_count(&s->gb) + 5 < s->num_saved_bits &&
e0b1d660
                    (step = get_bits(&s->gb, 5)) == 31) {
                 quant += 31;
c1061cc7
             }
             quant_step += ((quant + step) ^ sign) - sign;
         }
         if (quant_step < 0) {
e0b1d660
             av_log(s->avctx, AV_LOG_DEBUG, "negative quant step\n");
c1061cc7
         }
 
         /** decode quantization step modifiers for every channel */
 
         if (s->channels_for_cur_subframe == 1) {
             s->channel[s->channel_indexes_for_cur_subframe[0]].quant_step = quant_step;
         } else {
             int modifier_len = get_bits(&s->gb, 3);
             for (i = 0; i < s->channels_for_cur_subframe; i++) {
                 int c = s->channel_indexes_for_cur_subframe[i];
                 s->channel[c].quant_step = quant_step;
                 if (get_bits1(&s->gb)) {
                     if (modifier_len) {
e0b1d660
                         s->channel[c].quant_step += get_bits(&s->gb, modifier_len) + 1;
c1061cc7
                     } else
                         ++s->channel[c].quant_step;
                 }
             }
         }
 
         /** decode scale factors */
         if (decode_scale_factors(s) < 0)
             return AVERROR_INVALIDDATA;
     }
 
6a85dfc8
     ff_dlog(s->avctx, "BITSTREAM: subframe header length was %i\n",
e0b1d660
             get_bits_count(&s->gb) - s->subframe_offset);
c1061cc7
 
     /** parse coefficients */
     for (i = 0; i < s->channels_for_cur_subframe; i++) {
         int c = s->channel_indexes_for_cur_subframe[i];
         if (s->channel[c].transmit_coefs &&
e0b1d660
             get_bits_count(&s->gb) < s->num_saved_bits) {
             decode_coeffs(s, c);
c1061cc7
         } else
             memset(s->channel[c].coeffs, 0,
                    sizeof(*s->channel[c].coeffs) * subframe_len);
     }
 
6a85dfc8
     ff_dlog(s->avctx, "BITSTREAM: subframe length was %i\n",
e0b1d660
             get_bits_count(&s->gb) - s->subframe_offset);
c1061cc7
 
     if (transmit_coeffs) {
26f548bb
         FFTContext *mdct = &s->mdct_ctx[av_log2(subframe_len) - WMAPRO_BLOCK_MIN_BITS];
c1061cc7
         /** reconstruct the per channel data */
         inverse_channel_transform(s);
         for (i = 0; i < s->channels_for_cur_subframe; i++) {
             int c = s->channel_indexes_for_cur_subframe[i];
             const int* sf = s->channel[c].scale_factors;
             int b;
 
             if (c == s->lfe_channel)
                 memset(&s->tmp[cur_subwoofer_cutoff], 0, sizeof(*s->tmp) *
                        (subframe_len - cur_subwoofer_cutoff));
 
             /** inverse quantization and rescaling */
             for (b = 0; b < s->num_bands; b++) {
                 const int end = FFMIN(s->cur_sfb_offsets[b+1], s->subframe_len);
                 const int exp = s->channel[c].quant_step -
                             (s->channel[c].max_scale_factor - *sf++) *
                             s->channel[c].scale_factor_step;
25ae086d
                 const float quant = ff_exp10(exp / 20.0);
d975e5e9
                 int start = s->cur_sfb_offsets[b];
3384d765
                 s->fdsp->vector_fmul_scalar(s->tmp + start,
284ea790
                                            s->channel[c].coeffs + start,
                                            quant, end - start);
c1061cc7
             }
 
26f548bb
             /** apply imdct (imdct_half == DCTIV with reverse) */
             mdct->imdct_half(mdct, s->channel[c].coeffs, s->tmp);
c1061cc7
         }
     }
 
     /** window and overlapp-add */
     wmapro_window(s);
 
     /** handled one subframe */
     for (i = 0; i < s->channels_for_cur_subframe; i++) {
         int c = s->channel_indexes_for_cur_subframe[i];
         if (s->channel[c].cur_subframe >= s->channel[c].num_subframes) {
e0b1d660
             av_log(s->avctx, AV_LOG_ERROR, "broken subframe\n");
c1061cc7
             return AVERROR_INVALIDDATA;
         }
         ++s->channel[c].cur_subframe;
     }
 
     return 0;
 }
 
 /**
  *@brief Decode one WMA frame.
  *@param s codec context
  *@return 0 if the trailer bit indicates that this is the last frame,
  *        1 if there are additional frames
  */
f4a283ee
 static int decode_frame(WMAProDecodeCtx *s, AVFrame *frame, int *got_frame_ptr)
c1061cc7
 {
     GetBitContext* gb = &s->gb;
     int more_frames = 0;
     int len = 0;
6c43f33a
     int i;
c1061cc7
 
     /** get frame length */
     if (s->len_prefix)
         len = get_bits(gb, s->log2_frame_size);
 
6a85dfc8
     ff_dlog(s->avctx, "decoding frame with length %x\n", len);
c1061cc7
 
     /** decode tile information */
     if (decode_tilehdr(s)) {
         s->packet_loss = 1;
         return 0;
     }
 
     /** read postproc transform */
6c43f33a
     if (s->nb_channels > 1 && get_bits1(gb)) {
15a8bef0
         if (get_bits1(gb)) {
6c43f33a
             for (i = 0; i < s->nb_channels * s->nb_channels; i++)
15a8bef0
                 skip_bits(gb, 4);
         }
c1061cc7
     }
 
     /** read drc info */
     if (s->dynamic_range_compression) {
         s->drc_gain = get_bits(gb, 8);
6a85dfc8
         ff_dlog(s->avctx, "drc_gain %i\n", s->drc_gain);
c1061cc7
     }
 
     /** no idea what these are for, might be the number of samples
         that need to be skipped at the beginning or end of a stream */
     if (get_bits1(gb)) {
5e1166b3
         int av_unused skip;
c1061cc7
 
         /** usually true for the first frame */
         if (get_bits1(gb)) {
             skip = get_bits(gb, av_log2(s->samples_per_frame * 2));
6a85dfc8
             ff_dlog(s->avctx, "start skip: %i\n", skip);
c1061cc7
         }
 
         /** sometimes true for the last frame */
         if (get_bits1(gb)) {
             skip = get_bits(gb, av_log2(s->samples_per_frame * 2));
6a85dfc8
             ff_dlog(s->avctx, "end skip: %i\n", skip);
c1061cc7
         }
 
     }
 
6a85dfc8
     ff_dlog(s->avctx, "BITSTREAM: frame header length was %i\n",
e0b1d660
             get_bits_count(gb) - s->frame_offset);
c1061cc7
 
     /** reset subframe states */
     s->parsed_all_subframes = 0;
6c43f33a
     for (i = 0; i < s->nb_channels; i++) {
c1061cc7
         s->channel[i].decoded_samples = 0;
         s->channel[i].cur_subframe    = 0;
         s->channel[i].reuse_sf        = 0;
     }
 
     /** decode all subframes */
     while (!s->parsed_all_subframes) {
         if (decode_subframe(s) < 0) {
             s->packet_loss = 1;
             return 0;
         }
     }
 
f9d732c2
     /** copy samples to the output buffer */
6c43f33a
     for (i = 0; i < s->nb_channels; i++)
f4a283ee
         memcpy(frame->extended_data[i], s->channel[i].out,
f9d732c2
                s->samples_per_frame * sizeof(*s->channel[i].out));
c1061cc7
 
6c43f33a
     for (i = 0; i < s->nb_channels; i++) {
c1061cc7
         /** reuse second half of the IMDCT output for the next frame */
         memcpy(&s->channel[i].out[0],
                &s->channel[i].out[s->samples_per_frame],
                s->samples_per_frame * sizeof(*s->channel[i].out) >> 1);
     }
 
     if (s->skip_frame) {
         s->skip_frame = 0;
0eea2129
         *got_frame_ptr = 0;
08149b2b
         av_frame_unref(frame);
0eea2129
     } else {
         *got_frame_ptr = 1;
     }
c1061cc7
 
8b5a780e
     if (s->len_prefix) {
d7fa58c0
         if (len != (get_bits_count(gb) - s->frame_offset) + 2) {
             /** FIXME: not sure if this is always an error */
             av_log(s->avctx, AV_LOG_ERROR,
cc8163e1
                    "frame[%"PRIu32"] would have to skip %i bits\n",
                    s->frame_num,
d7fa58c0
                    len - (get_bits_count(gb) - s->frame_offset) - 1);
             s->packet_loss = 1;
             return 0;
         }
c1061cc7
 
d7fa58c0
         /** skip the rest of the frame data */
         skip_bits_long(gb, len - (get_bits_count(gb) - s->frame_offset) - 1);
8b5a780e
     } else {
         while (get_bits_count(gb) < s->num_saved_bits && get_bits1(gb) == 0) {
         }
     }
c1061cc7
 
     /** decode trailer bit */
     more_frames = get_bits1(gb);
 
     ++s->frame_num;
     return more_frames;
 }
 
 /**
  *@brief Calculate remaining input buffer length.
  *@param s codec context
  *@param gb bitstream reader context
  *@return remaining size in bits
  */
e0b1d660
 static int remaining_bits(WMAProDecodeCtx *s, GetBitContext *gb)
c1061cc7
 {
     return s->buf_bit_size - get_bits_count(gb);
 }
 
 /**
  *@brief Fill the bit reservoir with a (partial) frame.
  *@param s codec context
  *@param gb bitstream reader context
  *@param len length of the partial frame
da9cea77
  *@param append decides whether to reset the buffer or not
c1061cc7
  */
 static void save_bits(WMAProDecodeCtx *s, GetBitContext* gb, int len,
e0b1d660
                       int append)
c1061cc7
 {
     int buflen;
 
     /** when the frame data does not need to be concatenated, the input buffer
6851130f
         is reset and additional bits from the previous frame are copied
c1061cc7
         and skipped later so that a fast byte copy is possible */
 
     if (!append) {
         s->frame_offset = get_bits_count(gb) & 7;
         s->num_saved_bits = s->frame_offset;
         init_put_bits(&s->pb, s->frame_data, MAX_FRAMESIZE);
     }
 
780d4547
     buflen = (put_bits_count(&s->pb) + len + 8) >> 3;
c1061cc7
 
     if (len <= 0 || buflen > MAX_FRAMESIZE) {
6d97484d
         avpriv_request_sample(s->avctx, "Too small input buffer");
e0b1d660
         s->packet_loss = 1;
         return;
c1061cc7
     }
 
3e33db3f
     av_assert0(len <= put_bits_left(&s->pb));
e30b068e
 
c1061cc7
     s->num_saved_bits += len;
     if (!append) {
9f51c682
         avpriv_copy_bits(&s->pb, gb->buffer + (get_bits_count(gb) >> 3),
e0b1d660
                      s->num_saved_bits);
c1061cc7
     } else {
         int align = 8 - (get_bits_count(gb) & 7);
         align = FFMIN(align, len);
         put_bits(&s->pb, align, get_bits(gb, align));
         len -= align;
9f51c682
         avpriv_copy_bits(&s->pb, gb->buffer + (get_bits_count(gb) >> 3), len);
c1061cc7
     }
     skip_bits_long(gb, len);
 
     {
e0b1d660
         PutBitContext tmp = s->pb;
         flush_put_bits(&tmp);
c1061cc7
     }
 
     init_get_bits(&s->gb, s->frame_data, s->num_saved_bits);
     skip_bits(&s->gb, s->frame_offset);
 }
 
6c43f33a
 static int decode_packet(AVCodecContext *avctx, WMAProDecodeCtx *s,
                          void *data, int *got_frame_ptr, AVPacket *avpkt)
c1061cc7
 {
9244370a
     GetBitContext* gb  = &s->pgb;
     const uint8_t* buf = avpkt->data;
     int buf_size       = avpkt->size;
c1061cc7
     int num_bits_prev_frame;
     int packet_sequence_number;
 
0eea2129
     *got_frame_ptr = 0;
c1061cc7
 
5f28b5e7
     if (s->packet_done || s->packet_loss) {
         s->packet_done = 0;
7551a559
 
9244370a
         /** sanity check for the buffer length */
b456ece5
         if (avctx->codec_id == AV_CODEC_ID_WMAPRO && buf_size < avctx->block_align) {
4c0080b7
             av_log(avctx, AV_LOG_ERROR, "Input packet too small (%d < %d)\n",
                    buf_size, avctx->block_align);
             return AVERROR_INVALIDDATA;
         }
c1061cc7
 
b456ece5
         if (avctx->codec_id == AV_CODEC_ID_WMAPRO) {
             s->next_packet_start = buf_size - avctx->block_align;
             buf_size = avctx->block_align;
         } else {
             s->next_packet_start = buf_size - FFMIN(buf_size, avctx->block_align);
             buf_size = FFMIN(buf_size, avctx->block_align);
         }
3cdf69ee
         s->buf_bit_size = buf_size << 3;
c1061cc7
 
9244370a
         /** parse packet header */
         init_get_bits(gb, buf, s->buf_bit_size);
9c664280
         if (avctx->codec_id != AV_CODEC_ID_XMA2) {
b456ece5
             packet_sequence_number = get_bits(gb, 4);
             skip_bits(gb, 2);
         } else {
6c43f33a
             int num_frames = get_bits(gb, 6);
             ff_dlog(avctx, "packet[%d]: number of frames %d\n", avctx->frame_number, num_frames);
b456ece5
             packet_sequence_number = 0;
         }
c1061cc7
 
9244370a
         /** get number of bits that need to be added to the previous frame */
         num_bits_prev_frame = get_bits(gb, s->log2_frame_size);
b456ece5
         if (avctx->codec_id != AV_CODEC_ID_WMAPRO) {
             skip_bits(gb, 3);
             s->skip_packets = get_bits(gb, 8);
6c43f33a
             ff_dlog(avctx, "packet[%d]: skip packets %d\n", avctx->frame_number, s->skip_packets);
b456ece5
         }
 
6a85dfc8
         ff_dlog(avctx, "packet[%d]: nbpf %x\n", avctx->frame_number,
9244370a
                 num_bits_prev_frame);
c1061cc7
 
9244370a
         /** check for packet loss */
1daa08bd
         if (avctx->codec_id == AV_CODEC_ID_WMAPRO && !s->packet_loss &&
9244370a
             ((s->packet_sequence_number + 1) & 0xF) != packet_sequence_number) {
             s->packet_loss = 1;
cc8163e1
             av_log(avctx, AV_LOG_ERROR,
                    "Packet loss detected! seq %"PRIx8" vs %x\n",
9244370a
                    s->packet_sequence_number, packet_sequence_number);
         }
         s->packet_sequence_number = packet_sequence_number;
 
         if (num_bits_prev_frame > 0) {
f7346719
             int remaining_packet_bits = s->buf_bit_size - get_bits_count(gb);
             if (num_bits_prev_frame >= remaining_packet_bits) {
                 num_bits_prev_frame = remaining_packet_bits;
                 s->packet_done = 1;
             }
 
9244370a
             /** append the previous frame data to the remaining data from the
                 previous packet to create a full frame */
             save_bits(s, gb, num_bits_prev_frame, 1);
6a85dfc8
             ff_dlog(avctx, "accumulated %x bits of frame data\n",
9244370a
                     s->num_saved_bits - s->frame_offset);
 
             /** decode the cross packet frame if it is valid */
             if (!s->packet_loss)
f4a283ee
                 decode_frame(s, data, got_frame_ptr);
9244370a
         } else if (s->num_saved_bits - s->frame_offset) {
6a85dfc8
             ff_dlog(avctx, "ignoring %x previously saved bits\n",
9244370a
                     s->num_saved_bits - s->frame_offset);
         }
c1061cc7
 
8b5a780e
         if (s->packet_loss) {
             /** reset number of saved bits so that the decoder
                 does not start to decode incomplete frames in the
                 s->len_prefix == 0 case */
             s->num_saved_bits = 0;
             s->packet_loss = 0;
         }
7551a559
     } else {
5f28b5e7
         int frame_size;
3cdf69ee
         s->buf_bit_size = (avpkt->size - s->next_packet_start) << 3;
bc7f96b1
         init_get_bits(gb, avpkt->data, s->buf_bit_size);
         skip_bits(gb, s->packet_offset);
8b5a780e
         if (s->len_prefix && remaining_bits(s, gb) > s->log2_frame_size &&
5f28b5e7
             (frame_size = show_bits(gb, s->log2_frame_size)) &&
             frame_size <= remaining_bits(s, gb)) {
20169324
             save_bits(s, gb, frame_size, 0);
c7a76056
             if (!s->packet_loss)
                 s->packet_done = !decode_frame(s, data, got_frame_ptr);
8b5a780e
         } else if (!s->len_prefix
                    && s->num_saved_bits > get_bits_count(&s->gb)) {
             /** when the frames do not have a length prefix, we don't know
                 the compressed length of the individual frames
                 however, we know what part of a new packet belongs to the
                 previous frame
                 therefore we save the incoming packet first, then we append
                 the "previous frame" data from the next packet so that
                 we get a buffer that only contains full frames */
f4a283ee
             s->packet_done = !decode_frame(s, data, got_frame_ptr);
6c43f33a
         } else {
5f28b5e7
             s->packet_done = 1;
6c43f33a
         }
c1061cc7
     }
 
7ad698e2
     if (remaining_bits(s, gb) < 0) {
         av_log(avctx, AV_LOG_ERROR, "Overread %d\n", -remaining_bits(s, gb));
         s->packet_loss = 1;
     }
 
5f28b5e7
     if (s->packet_done && !s->packet_loss &&
7551a559
         remaining_bits(s, gb) > 0) {
c1061cc7
         /** save the rest of the data so that it can be decoded
             with the next packet */
20169324
         save_bits(s, gb, remaining_bits(s, gb), 0);
c1061cc7
     }
 
bc7f96b1
     s->packet_offset = get_bits_count(gb) & 7;
0eea2129
     if (s->packet_loss)
         return AVERROR_INVALIDDATA;
 
     return get_bits_count(gb) >> 3;
c1061cc7
 }
 
 /**
6c43f33a
  *@brief Decode a single WMA packet.
  *@param avctx codec context
  *@param data the output buffer
  *@param avpkt input packet
  *@return number of bytes that were read from the input buffer
  */
 static int wmapro_decode_packet(AVCodecContext *avctx, void *data,
                                 int *got_frame_ptr, AVPacket *avpkt)
 {
     WMAProDecodeCtx *s = avctx->priv_data;
     AVFrame *frame = data;
     int ret;
 
     /* get output buffer */
     frame->nb_samples = s->samples_per_frame;
     if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) {
         s->packet_loss = 1;
         return 0;
     }
 
     return decode_packet(avctx, s, data, got_frame_ptr, avpkt);
 }
 
 static int xma_decode_packet(AVCodecContext *avctx, void *data,
                              int *got_frame_ptr, AVPacket *avpkt)
 {
     XMADecodeCtx *s = avctx->priv_data;
     int got_stream_frame_ptr = 0;
     AVFrame *frame = data;
     int i, ret, offset = INT_MAX;
 
1954e625
     /* decode current stream packet */
6c43f33a
     ret = decode_packet(avctx, &s->xma[s->current_stream], s->frames[s->current_stream],
                         &got_stream_frame_ptr, avpkt);
 
1954e625
     /* copy stream samples (1/2ch) to sample buffer (Nch) */
6c43f33a
     if (got_stream_frame_ptr) {
1954e625
         int start_ch = s->start_channel[s->current_stream];
         memcpy(&s->samples[start_ch + 0][s->offset[s->current_stream] * 512],
6c43f33a
                s->frames[s->current_stream]->extended_data[0], 512 * 4);
1954e625
         if (s->xma[s->current_stream].nb_channels > 1)
             memcpy(&s->samples[start_ch + 1][s->offset[s->current_stream] * 512],
96fe4432
                    s->frames[s->current_stream]->extended_data[1], 512 * 4);
6c43f33a
         s->offset[s->current_stream]++;
ce818d90
     } else if (ret < 0) {
         memset(s->offset, 0, sizeof(s->offset));
         s->current_stream = 0;
         return ret;
6c43f33a
     }
 
1954e625
     /* find next XMA packet's owner stream, and update.
      * XMA streams find their packets following packet_skips
      * (at start there is one packet per stream, then interleave non-linearly). */
6c43f33a
     if (s->xma[s->current_stream].packet_done ||
         s->xma[s->current_stream].packet_loss) {
1954e625
 
         /* select stream with 0 skip_packets (= uses next packet) */
         if (s->xma[s->current_stream].skip_packets != 0) {
1daa08bd
             int min[2];
 
             min[0] = s->xma[0].skip_packets;
             min[1] = i = 0;
 
1954e625
             for (i = 1; i < s->num_streams; i++) {
1daa08bd
                 if (s->xma[i].skip_packets < min[0]) {
                     min[0] = s->xma[i].skip_packets;
1954e625
                     min[1] = i;
1daa08bd
                 }
             }
 
             s->current_stream = min[1];
6c43f33a
         }
1daa08bd
 
1954e625
         /* all other streams skip next packet */
         for (i = 0; i < s->num_streams; i++) {
6c43f33a
             s->xma[i].skip_packets = FFMAX(0, s->xma[i].skip_packets - 1);
         }
 
1954e625
         /* copy samples from buffer to output if possible */
         for (i = 0; i < s->num_streams; i++) {
6c43f33a
             offset = FFMIN(offset, s->offset[i]);
         }
         if (offset > 0) {
1954e625
             int bret;
 
6c43f33a
             frame->nb_samples = 512 * offset;
             if ((bret = ff_get_buffer(avctx, frame, 0)) < 0)
                 return bret;
 
1954e625
             /* copy samples buffer (Nch) to frame samples (Nch), move unconsumed samples */
             for (i = 0; i < s->num_streams; i++) {
                 int start_ch = s->start_channel[i];
                 memcpy(frame->extended_data[start_ch + 0], s->samples[start_ch + 0], frame->nb_samples * 4);
                 if (s->xma[i].nb_channels > 1)
                     memcpy(frame->extended_data[start_ch + 1], s->samples[start_ch + 1], frame->nb_samples * 4);
 
6c43f33a
                 s->offset[i] -= offset;
                 if (s->offset[i]) {
1954e625
                     memmove(s->samples[start_ch + 0], s->samples[start_ch + 0] + frame->nb_samples, s->offset[i] * 4 * 512);
                     if (s->xma[i].nb_channels > 1)
                         memmove(s->samples[start_ch + 1], s->samples[start_ch + 1] + frame->nb_samples, s->offset[i] * 4 * 512);
6c43f33a
                 }
             }
 
             *got_frame_ptr = 1;
         }
     }
 
     return ret;
 }
 
 static av_cold int xma_decode_init(AVCodecContext *avctx)
 {
     XMADecodeCtx *s = avctx->priv_data;
1954e625
     int i, ret, start_channels = 0;
6c43f33a
 
1954e625
     if (avctx->channels <= 0 || avctx->extradata_size == 0)
45f4bf94
         return AVERROR_INVALIDDATA;
 
1954e625
     /* get stream config */
     if (avctx->codec_id == AV_CODEC_ID_XMA2 && avctx->extradata_size == 34) { /* XMA2WAVEFORMATEX */
         s->num_streams = (avctx->channels + 1) / 2;
     } else if (avctx->codec_id == AV_CODEC_ID_XMA2 && avctx->extradata_size >= 2) { /* XMA2WAVEFORMAT */
         s->num_streams = avctx->extradata[1];
         if (avctx->extradata_size != (32 + ((avctx->extradata[0]==3)?0:8) + 4*s->num_streams)) {
             av_log(avctx, AV_LOG_ERROR, "Incorrect XMA2 extradata size\n");
             return AVERROR(EINVAL);
         }
     } else if (avctx->codec_id == AV_CODEC_ID_XMA1 && avctx->extradata_size >= 4) { /* XMAWAVEFORMAT */
         s->num_streams = avctx->extradata[4];
         if (avctx->extradata_size != (8 + 20*s->num_streams)) {
             av_log(avctx, AV_LOG_ERROR, "Incorrect XMA1 extradata size\n");
             return AVERROR(EINVAL);
         }
     } else {
         av_log(avctx, AV_LOG_ERROR, "Incorrect XMA config\n");
         return AVERROR(EINVAL);
     }
 
     /* encoder supports up to 64 streams / 64*2 channels (would have to alloc arrays) */
     if (avctx->channels > XMA_MAX_CHANNELS || s->num_streams > XMA_MAX_STREAMS) {
         avpriv_request_sample(avctx, "More than %d channels in %d streams", XMA_MAX_CHANNELS, s->num_streams);
         return AVERROR_PATCHWELCOME;
     }
 
     /* init all streams (several streams of 1/2ch make Nch files) */
     for (i = 0; i < s->num_streams; i++) {
         ret = decode_init(&s->xma[i], avctx, i);
45f4bf94
         if (ret < 0)
             return ret;
6c43f33a
         s->frames[i] = av_frame_alloc();
         if (!s->frames[i])
             return AVERROR(ENOMEM);
         s->frames[i]->nb_samples = 512;
         if ((ret = ff_get_buffer(avctx, s->frames[i], 0)) < 0) {
             return AVERROR(ENOMEM);
         }
 
1954e625
         s->start_channel[i] = start_channels;
         start_channels += s->xma[i].nb_channels;
6c43f33a
     }
 
     return ret;
 }
 
 static av_cold int xma_decode_end(AVCodecContext *avctx)
 {
     XMADecodeCtx *s = avctx->priv_data;
     int i;
 
1954e625
     for (i = 0; i < s->num_streams; i++) {
6c43f33a
         decode_end(&s->xma[i]);
         av_frame_free(&s->frames[i]);
     }
 
     return 0;
 }
 
18cfcc64
 static void flush(WMAProDecodeCtx *s)
c1061cc7
 {
     int i;
     /** reset output buffer as a part of it is used during the windowing of a
         new frame */
6c43f33a
     for (i = 0; i < s->nb_channels; i++)
c1061cc7
         memset(s->channel[i].out, 0, s->samples_per_frame *
                sizeof(*s->channel[i].out));
     s->packet_loss = 1;
18cfcc64
     s->skip_packets = 0;
 }
 
 
 /**
  *@brief Clear decoder buffers (for seeking).
  *@param avctx codec context
  */
 static void wmapro_flush(AVCodecContext *avctx)
 {
     WMAProDecodeCtx *s = avctx->priv_data;
 
     flush(s);
 }
 
 static void xma_flush(AVCodecContext *avctx)
 {
     XMADecodeCtx *s = avctx->priv_data;
     int i;
1954e625
 
     for (i = 0; i < s->num_streams; i++)
18cfcc64
         flush(&s->xma[i]);
 
     memset(s->offset, 0, sizeof(s->offset));
     s->current_stream = 0;
c1061cc7
 }
 
 
 /**
  *@brief wmapro decoder
  */
e7e2df27
 AVCodec ff_wmapro_decoder = {
ec6402b7
     .name           = "wmapro",
b2bed932
     .long_name      = NULL_IF_CONFIG_SMALL("Windows Media Audio 9 Professional"),
ec6402b7
     .type           = AVMEDIA_TYPE_AUDIO,
36ef5369
     .id             = AV_CODEC_ID_WMAPRO,
ec6402b7
     .priv_data_size = sizeof(WMAProDecodeCtx),
6c43f33a
     .init           = wmapro_decode_init,
     .close          = wmapro_decode_end,
     .decode         = wmapro_decode_packet,
def97856
     .capabilities   = AV_CODEC_CAP_SUBFRAMES | AV_CODEC_CAP_DR1,
18cfcc64
     .flush          = wmapro_flush,
f9d732c2
     .sample_fmts    = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
                                                       AV_SAMPLE_FMT_NONE },
c1061cc7
 };
b456ece5
 
 AVCodec ff_xma1_decoder = {
     .name           = "xma1",
     .long_name      = NULL_IF_CONFIG_SMALL("Xbox Media Audio 1"),
     .type           = AVMEDIA_TYPE_AUDIO,
     .id             = AV_CODEC_ID_XMA1,
6c43f33a
     .priv_data_size = sizeof(XMADecodeCtx),
     .init           = xma_decode_init,
     .close          = xma_decode_end,
     .decode         = xma_decode_packet,
b456ece5
     .capabilities   = AV_CODEC_CAP_SUBFRAMES | AV_CODEC_CAP_DR1,
     .sample_fmts    = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
                                                       AV_SAMPLE_FMT_NONE },
 };
 
 AVCodec ff_xma2_decoder = {
     .name           = "xma2",
     .long_name      = NULL_IF_CONFIG_SMALL("Xbox Media Audio 2"),
     .type           = AVMEDIA_TYPE_AUDIO,
     .id             = AV_CODEC_ID_XMA2,
6c43f33a
     .priv_data_size = sizeof(XMADecodeCtx),
     .init           = xma_decode_init,
     .close          = xma_decode_end,
     .decode         = xma_decode_packet,
18cfcc64
     .flush          = xma_flush,
b456ece5
     .capabilities   = AV_CODEC_CAP_SUBFRAMES | AV_CODEC_CAP_DR1,
     .sample_fmts    = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
                                                       AV_SAMPLE_FMT_NONE },
 };