libavcodec/aacpsy.c
bf689db0
 /*
  * AAC encoder psychoacoustic model
  * Copyright (C) 2008 Konstantin Shishkov
  *
  * This file is part of FFmpeg.
  *
  * FFmpeg is free software; you can redistribute it and/or
  * modify it under the terms of the GNU Lesser General Public
  * License as published by the Free Software Foundation; either
  * version 2.1 of the License, or (at your option) any later version.
  *
  * FFmpeg is distributed in the hope that it will be useful,
  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  * Lesser General Public License for more details.
  *
  * You should have received a copy of the GNU Lesser General Public
  * License along with FFmpeg; if not, write to the Free Software
  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  */
 
 /**
ba87f080
  * @file
bf689db0
  * AAC encoder psychoacoustic model
  */
 
6fee1b90
 #include "libavutil/attributes.h"
db1a642c
 #include "libavutil/ffmath.h"
4819d43d
 
bf689db0
 #include "avcodec.h"
 #include "aactab.h"
78e65cd7
 #include "psymodel.h"
bf689db0
 
 /***********************************
  *              TODOs:
  * try other bitrate controlling mechanism (maybe use ratecontrol.c?)
  * control quality for quality-based output
  **********************************/
 
 /**
  * constants for 3GPP AAC psychoacoustic model
  * @{
  */
4afedfd8
 #define PSY_3GPP_THR_SPREAD_HI   1.5f // spreading factor for low-to-hi threshold spreading  (15 dB/Bark)
 #define PSY_3GPP_THR_SPREAD_LOW  3.0f // spreading factor for hi-to-low threshold spreading  (30 dB/Bark)
230c1a90
 /* spreading factor for low-to-hi energy spreading, long block, > 22kbps/channel (20dB/Bark) */
 #define PSY_3GPP_EN_SPREAD_HI_L1 2.0f
 /* spreading factor for low-to-hi energy spreading, long block, <= 22kbps/channel (15dB/Bark) */
 #define PSY_3GPP_EN_SPREAD_HI_L2 1.5f
 /* spreading factor for low-to-hi energy spreading, short block (15 dB/Bark) */
 #define PSY_3GPP_EN_SPREAD_HI_S  1.5f
 /* spreading factor for hi-to-low energy spreading, long block (30dB/Bark) */
 #define PSY_3GPP_EN_SPREAD_LOW_L 3.0f
 /* spreading factor for hi-to-low energy spreading, short block (20dB/Bark) */
 #define PSY_3GPP_EN_SPREAD_LOW_S 2.0f
78e65cd7
 
 #define PSY_3GPP_RPEMIN      0.01f
 #define PSY_3GPP_RPELEV      2.0f
62147469
 
230c1a90
 #define PSY_3GPP_C1          3.0f           /* log2(8) */
 #define PSY_3GPP_C2          1.3219281f     /* log2(2.5) */
 #define PSY_3GPP_C3          0.55935729f    /* 1 - C2 / C1 */
 
 #define PSY_SNR_1DB          7.9432821e-1f  /* -1dB */
 #define PSY_SNR_25DB         3.1622776e-3f  /* -25dB */
 
 #define PSY_3GPP_SAVE_SLOPE_L  -0.46666667f
 #define PSY_3GPP_SAVE_SLOPE_S  -0.36363637f
 #define PSY_3GPP_SAVE_ADD_L    -0.84285712f
 #define PSY_3GPP_SAVE_ADD_S    -0.75f
 #define PSY_3GPP_SPEND_SLOPE_L  0.66666669f
 #define PSY_3GPP_SPEND_SLOPE_S  0.81818181f
 #define PSY_3GPP_SPEND_ADD_L   -0.35f
 #define PSY_3GPP_SPEND_ADD_S   -0.26111111f
 #define PSY_3GPP_CLIP_LO_L      0.2f
 #define PSY_3GPP_CLIP_LO_S      0.2f
 #define PSY_3GPP_CLIP_HI_L      0.95f
 #define PSY_3GPP_CLIP_HI_S      0.75f
 
 #define PSY_3GPP_AH_THR_LONG    0.5f
 #define PSY_3GPP_AH_THR_SHORT   0.63f
 
88e498a8
 #define PSY_PE_FORGET_SLOPE  511
 
230c1a90
 enum {
     PSY_3GPP_AH_NONE,
     PSY_3GPP_AH_INACTIVE,
     PSY_3GPP_AH_ACTIVE
 };
 
 #define PSY_3GPP_BITS_TO_PE(bits) ((bits) * 1.18f)
7ec74ae4
 #define PSY_3GPP_PE_TO_BITS(bits) ((bits) / 1.18f)
230c1a90
 
62147469
 /* LAME psy model constants */
 #define PSY_LAME_FIR_LEN 21         ///< LAME psy model FIR order
 #define AAC_BLOCK_SIZE_LONG 1024    ///< long block size
 #define AAC_BLOCK_SIZE_SHORT 128    ///< short block size
 #define AAC_NUM_BLOCKS_SHORT 8      ///< number of blocks in a short sequence
 #define PSY_LAME_NUM_SUBBLOCKS 3    ///< Number of sub-blocks in each short block
 
bf689db0
 /**
  * @}
  */
 
 /**
  * information for single band used by 3GPP TS26.403-inspired psychoacoustic model
  */
af00ddde
 typedef struct AacPsyBand{
f50d9377
     float energy;       ///< band energy
     float thr;          ///< energy threshold
     float thr_quiet;    ///< threshold in quiet
230c1a90
     float nz_lines;     ///< number of non-zero spectral lines
     float active_lines; ///< number of active spectral lines
     float pe;           ///< perceptual entropy
     float pe_const;     ///< constant part of the PE calculation
     float norm_fac;     ///< normalization factor for linearization
     int   avoid_holes;  ///< hole avoidance flag
af00ddde
 }AacPsyBand;
bf689db0
 
 /**
78e65cd7
  * single/pair channel context for psychoacoustic model
  */
af00ddde
 typedef struct AacPsyChannel{
     AacPsyBand band[128];               ///< bands information
     AacPsyBand prev_band[128];          ///< bands information from the previous frame
78e65cd7
 
     float       win_energy;              ///< sliding average of channel energy
     float       iir_state[2];            ///< hi-pass IIR filter state
     uint8_t     next_grouping;           ///< stored grouping scheme for the next frame (in case of 8 short window sequence)
     enum WindowSequence next_window_seq; ///< window sequence to be used in the next frame
62147469
     /* LAME psy model specific members */
     float attack_threshold;              ///< attack threshold for this channel
     float prev_energy_subshort[AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS];
     int   prev_attack;                   ///< attack value for the last short block in the previous sequence
af00ddde
 }AacPsyChannel;
78e65cd7
 
 /**
bf689db0
  * psychoacoustic model frame type-dependent coefficients
  */
af00ddde
 typedef struct AacPsyCoeffs{
b7c96769
     float ath;           ///< absolute threshold of hearing per bands
     float barks;         ///< Bark value for each spectral band in long frame
     float spread_low[2]; ///< spreading factor for low-to-high threshold spreading in long frame
     float spread_hi [2]; ///< spreading factor for high-to-low threshold spreading in long frame
     float min_snr;       ///< minimal SNR
af00ddde
 }AacPsyCoeffs;
bf689db0
 
 /**
78e65cd7
  * 3GPP TS26.403-inspired psychoacoustic model specific data
  */
af00ddde
 typedef struct AacPsyContext{
230c1a90
     int chan_bitrate;     ///< bitrate per channel
     int frame_bits;       ///< average bits per frame
     int fill_level;       ///< bit reservoir fill level
     struct {
         float min;        ///< minimum allowed PE for bit factor calculation
         float max;        ///< maximum allowed PE for bit factor calculation
         float previous;   ///< allowed PE of the previous frame
         float correction; ///< PE correction factor
     } pe;
b7c96769
     AacPsyCoeffs psy_coef[2][64];
af00ddde
     AacPsyChannel *ch;
01ecb717
     float global_quality; ///< normalized global quality taken from avctx
af00ddde
 }AacPsyContext;
78e65cd7
 
 /**
62147469
  * LAME psy model preset struct
  */
7f9f771e
 typedef struct PsyLamePreset {
62147469
     int   quality;  ///< Quality to map the rest of the vaules to.
      /* This is overloaded to be both kbps per channel in ABR mode, and
       * requested quality in constant quality mode.
       */
     float st_lrm;   ///< short threshold for L, R, and M channels
 } PsyLamePreset;
 
 /**
  * LAME psy model preset table for ABR
  */
 static const PsyLamePreset psy_abr_map[] = {
 /* TODO: Tuning. These were taken from LAME. */
 /* kbps/ch st_lrm   */
     {  8,  6.60},
     { 16,  6.60},
     { 24,  6.60},
     { 32,  6.60},
     { 40,  6.60},
     { 48,  6.60},
     { 56,  6.60},
     { 64,  6.40},
     { 80,  6.00},
     { 96,  5.60},
     {112,  5.20},
     {128,  5.20},
     {160,  5.20}
 };
 
 /**
 * LAME psy model preset table for constant quality
 */
 static const PsyLamePreset psy_vbr_map[] = {
 /* vbr_q  st_lrm    */
     { 0,  4.20},
     { 1,  4.20},
     { 2,  4.20},
     { 3,  4.20},
     { 4,  4.20},
     { 5,  4.20},
     { 6,  4.20},
     { 7,  4.20},
     { 8,  4.20},
     { 9,  4.20},
     {10,  4.20}
 };
 
 /**
  * LAME psy model FIR coefficient table
  */
 static const float psy_fir_coeffs[] = {
     -8.65163e-18 * 2, -0.00851586 * 2, -6.74764e-18 * 2, 0.0209036 * 2,
     -3.36639e-17 * 2, -0.0438162 * 2,  -1.54175e-17 * 2, 0.0931738 * 2,
     -5.52212e-17 * 2, -0.313819 * 2
 };
 
e54eb8db
 #if ARCH_MIPS
 #   include "mips/aacpsy_mips.h"
 #endif /* ARCH_MIPS */
 
62147469
 /**
58c42af7
  * Calculate the ABR attack threshold from the above LAME psymodel table.
62147469
  */
 static float lame_calc_attack_threshold(int bitrate)
 {
     /* Assume max bitrate to start with */
     int lower_range = 12, upper_range = 12;
     int lower_range_kbps = psy_abr_map[12].quality;
     int upper_range_kbps = psy_abr_map[12].quality;
     int i;
 
     /* Determine which bitrates the value specified falls between.
      * If the loop ends without breaking our above assumption of 320kbps was correct.
      */
     for (i = 1; i < 13; i++) {
         if (FFMAX(bitrate, psy_abr_map[i].quality) != bitrate) {
             upper_range = i;
             upper_range_kbps = psy_abr_map[i    ].quality;
             lower_range = i - 1;
             lower_range_kbps = psy_abr_map[i - 1].quality;
             break; /* Upper range found */
         }
     }
 
     /* Determine which range the value specified is closer to */
     if ((upper_range_kbps - bitrate) > (bitrate - lower_range_kbps))
         return psy_abr_map[lower_range].st_lrm;
     return psy_abr_map[upper_range].st_lrm;
 }
 
 /**
  * LAME psy model specific initialization
  */
6fee1b90
 static av_cold void lame_window_init(AacPsyContext *ctx, AVCodecContext *avctx)
 {
276df9d8
     int i, j;
62147469
 
     for (i = 0; i < avctx->channels; i++) {
         AacPsyChannel *pch = &ctx->ch[i];
 
7c6eb0a1
         if (avctx->flags & AV_CODEC_FLAG_QSCALE)
62147469
             pch->attack_threshold = psy_vbr_map[avctx->global_quality / FF_QP2LAMBDA].st_lrm;
         else
             pch->attack_threshold = lame_calc_attack_threshold(avctx->bit_rate / avctx->channels / 1000);
 
276df9d8
         for (j = 0; j < AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS; j++)
             pch->prev_energy_subshort[j] = 10.0f;
62147469
     }
 }
 
 /**
bf689db0
  * Calculate Bark value for given line.
  */
78e65cd7
 static av_cold float calc_bark(float f)
bf689db0
 {
     return 13.3f * atanf(0.00076f * f) + 3.5f * atanf((f / 7500.0f) * (f / 7500.0f));
 }
78e65cd7
 
 #define ATH_ADD 4
 /**
  * Calculate ATH value for given frequency.
  * Borrowed from Lame.
  */
 static av_cold float ath(float f, float add)
 {
     f /= 1000.0f;
99d61d34
     return    3.64 * pow(f, -0.8)
78e65cd7
             - 6.8  * exp(-0.6  * (f - 3.4) * (f - 3.4))
             + 6.0  * exp(-0.15 * (f - 8.7) * (f - 8.7))
             + (0.6 + 0.04 * add) * 0.001 * f * f * f * f;
 }
 
fd257dc4
 static av_cold int psy_3gpp_init(FFPsyContext *ctx) {
af00ddde
     AacPsyContext *pctx;
886385af
     float bark;
78e65cd7
     int i, j, g, start;
230c1a90
     float prev, minscale, minath, minsnr, pe_min;
f5c8d004
     int chan_bitrate = ctx->avctx->bit_rate / ((ctx->avctx->flags & AV_CODEC_FLAG_QSCALE) ? 2.0f : ctx->avctx->channels);
01ecb717
 
ca203e99
     const int bandwidth    = ctx->cutoff ? ctx->cutoff : AAC_CUTOFF(ctx->avctx);
230c1a90
     const float num_bark   = calc_bark((float)bandwidth);
78e65cd7
 
af00ddde
     ctx->model_priv_data = av_mallocz(sizeof(AacPsyContext));
074a1b37
     if (!ctx->model_priv_data)
         return AVERROR(ENOMEM);
d316f9ce
     pctx = ctx->model_priv_data;
01ecb717
     pctx->global_quality = (ctx->avctx->global_quality ? ctx->avctx->global_quality : 120) * 0.01f;
 
f5c8d004
     if (ctx->avctx->flags & AV_CODEC_FLAG_QSCALE) {
01ecb717
         /* Use the target average bitrate to compute spread parameters */
         chan_bitrate = (int)(chan_bitrate / 120.0 * (ctx->avctx->global_quality ? ctx->avctx->global_quality : 120));
     }
78e65cd7
 
230c1a90
     pctx->chan_bitrate = chan_bitrate;
01ecb717
     pctx->frame_bits   = FFMIN(2560, chan_bitrate * AAC_BLOCK_SIZE_LONG / ctx->avctx->sample_rate);
230c1a90
     pctx->pe.min       =  8.0f * AAC_BLOCK_SIZE_LONG * bandwidth / (ctx->avctx->sample_rate * 2.0f);
     pctx->pe.max       = 12.0f * AAC_BLOCK_SIZE_LONG * bandwidth / (ctx->avctx->sample_rate * 2.0f);
     ctx->bitres.size   = 6144 - pctx->frame_bits;
     ctx->bitres.size  -= ctx->bitres.size % 8;
     pctx->fill_level   = ctx->bitres.size;
ca9849ee
     minath = ath(3410 - 0.733 * ATH_ADD, ATH_ADD);
fd257dc4
     for (j = 0; j < 2; j++) {
b7c96769
         AacPsyCoeffs *coeffs = pctx->psy_coef[j];
         const uint8_t *band_sizes = ctx->bands[j];
49d3aab7
         float line_to_frequency = ctx->avctx->sample_rate / (j ? 256.f : 2048.0f);
c545876d
         float avg_chan_bits = chan_bitrate * (j ? 128.0f : 1024.0f) / ctx->avctx->sample_rate;
230c1a90
         /* reference encoder uses 2.4% here instead of 60% like the spec says */
         float bark_pe = 0.024f * PSY_3GPP_BITS_TO_PE(avg_chan_bits) / num_bark;
         float en_spread_low = j ? PSY_3GPP_EN_SPREAD_LOW_S : PSY_3GPP_EN_SPREAD_LOW_L;
         /* High energy spreading for long blocks <= 22kbps/channel and short blocks are the same. */
         float en_spread_hi  = (j || (chan_bitrate <= 22.0f)) ? PSY_3GPP_EN_SPREAD_HI_S : PSY_3GPP_EN_SPREAD_HI_L1;
 
78e65cd7
         i = 0;
         prev = 0.0;
fd257dc4
         for (g = 0; g < ctx->num_bands[j]; g++) {
b7c96769
             i += band_sizes[g];
cecaf7d7
             bark = calc_bark((i-1) * line_to_frequency);
b7c96769
             coeffs[g].barks = (bark + prev) / 2.0;
886385af
             prev = bark;
78e65cd7
         }
fd257dc4
         for (g = 0; g < ctx->num_bands[j] - 1; g++) {
b7c96769
             AacPsyCoeffs *coeff = &coeffs[g];
             float bark_width = coeffs[g+1].barks - coeffs->barks;
cb3a994b
             coeff->spread_low[0] = ff_exp10(-bark_width * PSY_3GPP_THR_SPREAD_LOW);
             coeff->spread_hi [0] = ff_exp10(-bark_width * PSY_3GPP_THR_SPREAD_HI);
             coeff->spread_low[1] = ff_exp10(-bark_width * en_spread_low);
             coeff->spread_hi [1] = ff_exp10(-bark_width * en_spread_hi);
230c1a90
             pe_min = bark_pe * bark_width;
4819d43d
             minsnr = exp2(pe_min / band_sizes[g]) - 1.5f;
230c1a90
             coeff->min_snr = av_clipf(1.0f / minsnr, PSY_SNR_25DB, PSY_SNR_1DB);
78e65cd7
         }
         start = 0;
fd257dc4
         for (g = 0; g < ctx->num_bands[j]; g++) {
cecaf7d7
             minscale = ath(start * line_to_frequency, ATH_ADD);
b7c96769
             for (i = 1; i < band_sizes[g]; i++)
cecaf7d7
                 minscale = FFMIN(minscale, ath((start + i) * line_to_frequency, ATH_ADD));
b7c96769
             coeffs[g].ath = minscale - minath;
             start += band_sizes[g];
78e65cd7
         }
     }
 
ee5145c0
     pctx->ch = av_mallocz_array(ctx->avctx->channels, sizeof(AacPsyChannel));
074a1b37
     if (!pctx->ch) {
e7a65142
         av_freep(&ctx->model_priv_data);
074a1b37
         return AVERROR(ENOMEM);
     }
62147469
 
     lame_window_init(pctx, ctx->avctx);
 
78e65cd7
     return 0;
 }
 
 /**
  * IIR filter used in block switching decision
  */
 static float iir_filter(int in, float state[2])
 {
     float ret;
 
     ret = 0.7548f * (in - state[0]) + 0.5095f * state[1];
     state[0] = in;
     state[1] = ret;
     return ret;
 }
 
 /**
  * window grouping information stored as bits (0 - new group, 1 - group continues)
  */
 static const uint8_t window_grouping[9] = {
     0xB6, 0x6C, 0xD8, 0xB2, 0x66, 0xC6, 0x96, 0x36, 0x36
 };
 
 /**
  * Tell encoder which window types to use.
  * @see 3GPP TS26.403 5.4.1 "Blockswitching"
  */
3a0d0ff5
 static av_unused FFPsyWindowInfo psy_3gpp_window(FFPsyContext *ctx,
                                                  const int16_t *audio,
                                                  const int16_t *la,
                                                  int channel, int prev_type)
78e65cd7
 {
     int i, j;
01ecb717
     int br               = ((AacPsyContext*)ctx->model_priv_data)->chan_bitrate;
99d61d34
     int attack_ratio     = br <= 16000 ? 18 : 10;
af00ddde
     AacPsyContext *pctx = (AacPsyContext*) ctx->model_priv_data;
     AacPsyChannel *pch  = &pctx->ch[channel];
99d61d34
     uint8_t grouping     = 0;
75ef6898
     int next_type        = pch->next_window_seq;
a92be9b8
     FFPsyWindowInfo wi  = { { 0 } };
78e65cd7
 
fd257dc4
     if (la) {
78e65cd7
         float s[8], v;
         int switch_to_eight = 0;
         float sum = 0.0, sum2 = 0.0;
         int attack_n = 0;
75ef6898
         int stay_short = 0;
fd257dc4
         for (i = 0; i < 8; i++) {
             for (j = 0; j < 128; j++) {
9b8e2a87
                 v = iir_filter(la[i*128+j], pch->iir_state);
78e65cd7
                 sum += v*v;
             }
99d61d34
             s[i]  = sum;
78e65cd7
             sum2 += sum;
         }
fd257dc4
         for (i = 0; i < 8; i++) {
             if (s[i] > pch->win_energy * attack_ratio) {
99d61d34
                 attack_n        = i + 1;
78e65cd7
                 switch_to_eight = 1;
                 break;
             }
         }
         pch->win_energy = pch->win_energy*7/8 + sum2/64;
 
         wi.window_type[1] = prev_type;
fd257dc4
         switch (prev_type) {
78e65cd7
         case ONLY_LONG_SEQUENCE:
             wi.window_type[0] = switch_to_eight ? LONG_START_SEQUENCE : ONLY_LONG_SEQUENCE;
75ef6898
             next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : ONLY_LONG_SEQUENCE;
78e65cd7
             break;
         case LONG_START_SEQUENCE:
             wi.window_type[0] = EIGHT_SHORT_SEQUENCE;
             grouping = pch->next_grouping;
75ef6898
             next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : LONG_STOP_SEQUENCE;
78e65cd7
             break;
         case LONG_STOP_SEQUENCE:
75ef6898
             wi.window_type[0] = switch_to_eight ? LONG_START_SEQUENCE : ONLY_LONG_SEQUENCE;
             next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : ONLY_LONG_SEQUENCE;
78e65cd7
             break;
         case EIGHT_SHORT_SEQUENCE:
75ef6898
             stay_short = next_type == EIGHT_SHORT_SEQUENCE || switch_to_eight;
             wi.window_type[0] = stay_short ? EIGHT_SHORT_SEQUENCE : LONG_STOP_SEQUENCE;
             grouping = next_type == EIGHT_SHORT_SEQUENCE ? pch->next_grouping : 0;
             next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : LONG_STOP_SEQUENCE;
78e65cd7
             break;
         }
75ef6898
 
78e65cd7
         pch->next_grouping = window_grouping[attack_n];
75ef6898
         pch->next_window_seq = next_type;
fd257dc4
     } else {
         for (i = 0; i < 3; i++)
78e65cd7
             wi.window_type[i] = prev_type;
         grouping = (prev_type == EIGHT_SHORT_SEQUENCE) ? window_grouping[0] : 0;
     }
 
     wi.window_shape   = 1;
fd257dc4
     if (wi.window_type[0] != EIGHT_SHORT_SEQUENCE) {
78e65cd7
         wi.num_windows = 1;
         wi.grouping[0] = 1;
fd257dc4
     } else {
78e65cd7
         int lastgrp = 0;
         wi.num_windows = 8;
fd257dc4
         for (i = 0; i < 8; i++) {
             if (!((grouping >> i) & 1))
78e65cd7
                 lastgrp = i;
             wi.grouping[lastgrp]++;
         }
     }
 
     return wi;
 }
 
230c1a90
 /* 5.6.1.2 "Calculation of Bit Demand" */
 static int calc_bit_demand(AacPsyContext *ctx, float pe, int bits, int size,
                            int short_window)
 {
     const float bitsave_slope  = short_window ? PSY_3GPP_SAVE_SLOPE_S  : PSY_3GPP_SAVE_SLOPE_L;
     const float bitsave_add    = short_window ? PSY_3GPP_SAVE_ADD_S    : PSY_3GPP_SAVE_ADD_L;
     const float bitspend_slope = short_window ? PSY_3GPP_SPEND_SLOPE_S : PSY_3GPP_SPEND_SLOPE_L;
     const float bitspend_add   = short_window ? PSY_3GPP_SPEND_ADD_S   : PSY_3GPP_SPEND_ADD_L;
     const float clip_low       = short_window ? PSY_3GPP_CLIP_LO_S     : PSY_3GPP_CLIP_LO_L;
     const float clip_high      = short_window ? PSY_3GPP_CLIP_HI_S     : PSY_3GPP_CLIP_HI_L;
88e498a8
     float clipped_pe, bit_save, bit_spend, bit_factor, fill_level, forgetful_min_pe;
230c1a90
 
     ctx->fill_level += ctx->frame_bits - bits;
     ctx->fill_level  = av_clip(ctx->fill_level, 0, size);
     fill_level = av_clipf((float)ctx->fill_level / size, clip_low, clip_high);
     clipped_pe = av_clipf(pe, ctx->pe.min, ctx->pe.max);
     bit_save   = (fill_level + bitsave_add) * bitsave_slope;
     assert(bit_save <= 0.3f && bit_save >= -0.05000001f);
     bit_spend  = (fill_level + bitspend_add) * bitspend_slope;
     assert(bit_spend <= 0.5f && bit_spend >= -0.1f);
     /* The bit factor graph in the spec is obviously incorrect.
      *      bit_spend + ((bit_spend - bit_spend))...
      * The reference encoder subtracts everything from 1, but also seems incorrect.
      *      1 - bit_save + ((bit_spend + bit_save))...
      * Hopefully below is correct.
      */
     bit_factor = 1.0f - bit_save + ((bit_spend - bit_save) / (ctx->pe.max - ctx->pe.min)) * (clipped_pe - ctx->pe.min);
88e498a8
     /* NOTE: The reference encoder attempts to center pe max/min around the current pe.
      * Here we do that by slowly forgetting pe.min when pe stays in a range that makes
      * it unlikely (ie: above the mean)
      */
230c1a90
     ctx->pe.max = FFMAX(pe, ctx->pe.max);
88e498a8
     forgetful_min_pe = ((ctx->pe.min * PSY_PE_FORGET_SLOPE)
         + FFMAX(ctx->pe.min, pe * (pe / ctx->pe.max))) / (PSY_PE_FORGET_SLOPE + 1);
     ctx->pe.min = FFMIN(pe, forgetful_min_pe);
230c1a90
 
01ecb717
     /* NOTE: allocate a minimum of 1/8th average frame bits, to avoid
      *   reservoir starvation from producing zero-bit frames
      */
     return FFMIN(
         ctx->frame_bits * bit_factor,
         FFMAX(ctx->frame_bits + size - bits, ctx->frame_bits / 8));
230c1a90
 }
 
 static float calc_pe_3gpp(AacPsyBand *band)
 {
     float pe, a;
 
     band->pe           = 0.0f;
     band->pe_const     = 0.0f;
     band->active_lines = 0.0f;
     if (band->energy > band->thr) {
         a  = log2f(band->energy);
         pe = a - log2f(band->thr);
         band->active_lines = band->nz_lines;
         if (pe < PSY_3GPP_C1) {
             pe = pe * PSY_3GPP_C3 + PSY_3GPP_C2;
             a  = a  * PSY_3GPP_C3 + PSY_3GPP_C2;
             band->active_lines *= PSY_3GPP_C3;
         }
         band->pe       = pe * band->nz_lines;
         band->pe_const = a  * band->nz_lines;
     }
 
     return band->pe;
 }
 
 static float calc_reduction_3gpp(float a, float desired_pe, float pe,
                                  float active_lines)
 {
     float thr_avg, reduction;
 
413b32f8
     if(active_lines == 0.0)
         return 0;
 
4819d43d
     thr_avg   = exp2f((a - pe) / (4.0f * active_lines));
     reduction = exp2f((a - desired_pe) / (4.0f * active_lines)) - thr_avg;
230c1a90
 
     return FFMAX(reduction, 0.0f);
 }
 
 static float calc_reduced_thr_3gpp(AacPsyBand *band, float min_snr,
                                    float reduction)
 {
     float thr = band->thr;
 
     if (band->energy > thr) {
1f5b5b80
         thr = sqrtf(thr);
         thr = sqrtf(thr) + reduction;
         thr *= thr;
         thr *= thr;
230c1a90
 
         /* This deviates from the 3GPP spec to match the reference encoder.
          * It performs min(thr_reduced, max(thr, energy/min_snr)) only for bands
          * that have hole avoidance on (active or inactive). It always reduces the
          * threshold of bands with hole avoidance off.
          */
         if (thr > band->energy * min_snr && band->avoid_holes != PSY_3GPP_AH_NONE) {
             thr = FFMAX(band->thr, band->energy * min_snr);
             band->avoid_holes = PSY_3GPP_AH_ACTIVE;
         }
     }
 
     return thr;
 }
 
e54eb8db
 #ifndef calc_thr_3gpp
 static void calc_thr_3gpp(const FFPsyWindowInfo *wi, const int num_bands, AacPsyChannel *pch,
ca203e99
                           const uint8_t *band_sizes, const float *coefs, const int cutoff)
78e65cd7
 {
     int i, w, g;
ca203e99
     int start = 0, wstart = 0;
fd257dc4
     for (w = 0; w < wi->num_windows*16; w += 16) {
ca203e99
         wstart = 0;
fd257dc4
         for (g = 0; g < num_bands; g++) {
af00ddde
             AacPsyBand *band = &pch->band[w+g];
f50d9377
 
230c1a90
             float form_factor = 0.0f;
1f5b5b80
             float Temp;
78e65cd7
             band->energy = 0.0f;
ca203e99
             if (wstart < cutoff) {
                 for (i = 0; i < band_sizes[g]; i++) {
                     band->energy += coefs[start+i] * coefs[start+i];
                     form_factor  += sqrtf(fabs(coefs[start+i]));
                 }
230c1a90
             }
1f5b5b80
             Temp = band->energy > 0 ? sqrtf((float)band_sizes[g] / band->energy) : 0;
f50d9377
             band->thr      = band->energy * 0.001258925f;
1f5b5b80
             band->nz_lines = form_factor * sqrtf(Temp);
230c1a90
 
f50d9377
             start += band_sizes[g];
ca203e99
             wstart += band_sizes[g];
78e65cd7
         }
     }
e54eb8db
 }
 #endif /* calc_thr_3gpp */
 
 #ifndef psy_hp_filter
 static void psy_hp_filter(const float *firbuf, float *hpfsmpl, const float *psy_fir_coeffs)
 {
     int i, j;
     for (i = 0; i < AAC_BLOCK_SIZE_LONG; i++) {
         float sum1, sum2;
         sum1 = firbuf[i + (PSY_LAME_FIR_LEN - 1) / 2];
         sum2 = 0.0;
         for (j = 0; j < ((PSY_LAME_FIR_LEN - 1) / 2) - 1; j += 2) {
             sum1 += psy_fir_coeffs[j] * (firbuf[i + j] + firbuf[i + PSY_LAME_FIR_LEN - j]);
             sum2 += psy_fir_coeffs[j + 1] * (firbuf[i + j + 1] + firbuf[i + PSY_LAME_FIR_LEN - j - 1]);
         }
0104570f
         /* NOTE: The LAME psymodel expects it's input in the range -32768 to 32768.
          *       Tuning this for normalized floats would be difficult. */
e54eb8db
         hpfsmpl[i] = (sum1 + sum2) * 32768.0f;
     }
 }
 #endif /* psy_hp_filter */
 
 /**
  * Calculate band thresholds as suggested in 3GPP TS26.403
  */
 static void psy_3gpp_analyze_channel(FFPsyContext *ctx, int channel,
                                      const float *coefs, const FFPsyWindowInfo *wi)
 {
     AacPsyContext *pctx = (AacPsyContext*) ctx->model_priv_data;
     AacPsyChannel *pch  = &pctx->ch[channel];
     int i, w, g;
     float desired_bits, desired_pe, delta_pe, reduction= NAN, spread_en[128] = {0};
     float a = 0.0f, active_lines = 0.0f, norm_fac = 0.0f;
     float pe = pctx->chan_bitrate > 32000 ? 0.0f : FFMAX(50.0f, 100.0f - pctx->chan_bitrate * 100.0f / 32000.0f);
     const int      num_bands   = ctx->num_bands[wi->num_windows == 8];
     const uint8_t *band_sizes  = ctx->bands[wi->num_windows == 8];
     AacPsyCoeffs  *coeffs      = pctx->psy_coef[wi->num_windows == 8];
     const float avoid_hole_thr = wi->num_windows == 8 ? PSY_3GPP_AH_THR_SHORT : PSY_3GPP_AH_THR_LONG;
ca203e99
     const int bandwidth        = ctx->cutoff ? ctx->cutoff : AAC_CUTOFF(ctx->avctx);
     const int cutoff           = bandwidth * 2048 / wi->num_windows / ctx->avctx->sample_rate;
e54eb8db
 
     //calculate energies, initial thresholds and related values - 5.4.2 "Threshold Calculation"
ca203e99
     calc_thr_3gpp(wi, num_bands, pch, band_sizes, coefs, cutoff);
e54eb8db
 
4afedfd8
     //modify thresholds and energies - spread, threshold in quiet, pre-echo control
fd257dc4
     for (w = 0; w < wi->num_windows*16; w += 16) {
b7c96769
         AacPsyBand *bands = &pch->band[w];
f50d9377
 
511cf612
         /* 5.4.2.3 "Spreading" & 5.4.3 "Spread Energy Calculation" */
230c1a90
         spread_en[0] = bands[0].energy;
         for (g = 1; g < num_bands; g++) {
f50d9377
             bands[g].thr   = FFMAX(bands[g].thr,    bands[g-1].thr * coeffs[g].spread_hi[0]);
230c1a90
             spread_en[w+g] = FFMAX(bands[g].energy, spread_en[w+g-1] * coeffs[g].spread_hi[1]);
         }
         for (g = num_bands - 2; g >= 0; g--) {
f50d9377
             bands[g].thr   = FFMAX(bands[g].thr,   bands[g+1].thr * coeffs[g].spread_low[0]);
230c1a90
             spread_en[w+g] = FFMAX(spread_en[w+g], spread_en[w+g+1] * coeffs[g].spread_low[1]);
         }
4afedfd8
         //5.4.2.4 "Threshold in quiet"
fd257dc4
         for (g = 0; g < num_bands; g++) {
b7c96769
             AacPsyBand *band = &bands[g];
f50d9377
 
b7c96769
             band->thr_quiet = band->thr = FFMAX(band->thr, coeffs[g].ath);
4afedfd8
             //5.4.2.5 "Pre-echo control"
7d49abdf
             if (!(wi->window_type[0] == LONG_STOP_SEQUENCE || (!w && wi->window_type[1] == LONG_START_SEQUENCE)))
b7c96769
                 band->thr = FFMAX(PSY_3GPP_RPEMIN*band->thr, FFMIN(band->thr,
                                   PSY_3GPP_RPELEV*pch->prev_band[w+g].thr_quiet));
230c1a90
 
511cf612
             /* 5.6.1.3.1 "Preparatory steps of the perceptual entropy calculation" */
230c1a90
             pe += calc_pe_3gpp(band);
             a  += band->pe_const;
             active_lines += band->active_lines;
 
             /* 5.6.1.3.3 "Selection of the bands for avoidance of holes" */
             if (spread_en[w+g] * avoid_hole_thr > band->energy || coeffs[g].min_snr > 1.0f)
                 band->avoid_holes = PSY_3GPP_AH_NONE;
             else
                 band->avoid_holes = PSY_3GPP_AH_INACTIVE;
         }
     }
 
     /* 5.6.1.3.2 "Calculation of the desired perceptual entropy" */
0bc01cc9
     ctx->ch[channel].entropy = pe;
f5c8d004
     if (ctx->avctx->flags & AV_CODEC_FLAG_QSCALE) {
01ecb717
         /* (2.5 * 120) achieves almost transparent rate, and we want to give
          * ample room downwards, so we make that equivalent to QSCALE=2.4
          */
         desired_pe = pe * (ctx->avctx->global_quality ? ctx->avctx->global_quality : 120) / (2 * 2.5f * 120.0f);
         desired_bits = FFMIN(2560, PSY_3GPP_PE_TO_BITS(desired_pe));
         desired_pe = PSY_3GPP_BITS_TO_PE(desired_bits); // reflect clipping
 
         /* PE slope smoothing */
         if (ctx->bitres.bits > 0) {
             desired_bits = FFMIN(2560, PSY_3GPP_PE_TO_BITS(desired_pe));
             desired_pe = PSY_3GPP_BITS_TO_PE(desired_bits); // reflect clipping
         }
 
         pctx->pe.max = FFMAX(pe, pctx->pe.max);
         pctx->pe.min = FFMIN(pe, pctx->pe.min);
     } else {
323d3752
         desired_bits = calc_bit_demand(pctx, pe, ctx->bitres.bits, ctx->bitres.size, wi->num_windows == 8);
         desired_pe = PSY_3GPP_BITS_TO_PE(desired_bits);
01ecb717
 
323d3752
         /* NOTE: PE correction is kept simple. During initial testing it had very
          *       little effect on the final bitrate. Probably a good idea to come
          *       back and do more testing later.
          */
         if (ctx->bitres.bits > 0)
             desired_pe *= av_clipf(pctx->pe.previous / PSY_3GPP_BITS_TO_PE(ctx->bitres.bits),
                                    0.85f, 1.15f);
01ecb717
     }
230c1a90
     pctx->pe.previous = PSY_3GPP_BITS_TO_PE(desired_bits);
7ec74ae4
     ctx->bitres.alloc = desired_bits;
230c1a90
 
     if (desired_pe < pe) {
         /* 5.6.1.3.4 "First Estimation of the reduction value" */
         for (w = 0; w < wi->num_windows*16; w += 16) {
             reduction = calc_reduction_3gpp(a, desired_pe, pe, active_lines);
             pe = 0.0f;
             a  = 0.0f;
             active_lines = 0.0f;
             for (g = 0; g < num_bands; g++) {
                 AacPsyBand *band = &pch->band[w+g];
 
                 band->thr = calc_reduced_thr_3gpp(band, coeffs[g].min_snr, reduction);
                 /* recalculate PE */
                 pe += calc_pe_3gpp(band);
                 a  += band->pe_const;
                 active_lines += band->active_lines;
             }
         }
 
         /* 5.6.1.3.5 "Second Estimation of the reduction value" */
         for (i = 0; i < 2; i++) {
             float pe_no_ah = 0.0f, desired_pe_no_ah;
             active_lines = a = 0.0f;
             for (w = 0; w < wi->num_windows*16; w += 16) {
                 for (g = 0; g < num_bands; g++) {
                     AacPsyBand *band = &pch->band[w+g];
 
                     if (band->avoid_holes != PSY_3GPP_AH_ACTIVE) {
                         pe_no_ah += band->pe;
                         a        += band->pe_const;
                         active_lines += band->active_lines;
                     }
                 }
             }
             desired_pe_no_ah = FFMAX(desired_pe - (pe - pe_no_ah), 0.0f);
             if (active_lines > 0.0f)
84f4be42
                 reduction = calc_reduction_3gpp(a, desired_pe_no_ah, pe_no_ah, active_lines);
230c1a90
 
             pe = 0.0f;
             for (w = 0; w < wi->num_windows*16; w += 16) {
                 for (g = 0; g < num_bands; g++) {
                     AacPsyBand *band = &pch->band[w+g];
 
                     if (active_lines > 0.0f)
                         band->thr = calc_reduced_thr_3gpp(band, coeffs[g].min_snr, reduction);
                     pe += calc_pe_3gpp(band);
e224aa41
                     if (band->thr > 0.0f)
                         band->norm_fac = band->active_lines / band->thr;
                     else
                         band->norm_fac = 0.0f;
230c1a90
                     norm_fac += band->norm_fac;
                 }
             }
             delta_pe = desired_pe - pe;
             if (fabs(delta_pe) > 0.05f * desired_pe)
                 break;
         }
 
         if (pe < 1.15f * desired_pe) {
             /* 6.6.1.3.6 "Final threshold modification by linearization" */
             norm_fac = 1.0f / norm_fac;
             for (w = 0; w < wi->num_windows*16; w += 16) {
                 for (g = 0; g < num_bands; g++) {
                     AacPsyBand *band = &pch->band[w+g];
 
                     if (band->active_lines > 0.5f) {
                         float delta_sfb_pe = band->norm_fac * norm_fac * delta_pe;
                         float thr = band->thr;
 
4819d43d
                         thr *= exp2f(delta_sfb_pe / band->active_lines);
230c1a90
                         if (thr > coeffs[g].min_snr * band->energy && band->avoid_holes == PSY_3GPP_AH_INACTIVE)
                             thr = FFMAX(band->thr, coeffs[g].min_snr * band->energy);
                         band->thr = thr;
                     }
                 }
             }
         } else {
             /* 5.6.1.3.7 "Further perceptual entropy reduction" */
             g = num_bands;
             while (pe > desired_pe && g--) {
                 for (w = 0; w < wi->num_windows*16; w+= 16) {
                     AacPsyBand *band = &pch->band[w+g];
                     if (band->avoid_holes != PSY_3GPP_AH_NONE && coeffs[g].min_snr < PSY_SNR_1DB) {
                         coeffs[g].min_snr = PSY_SNR_1DB;
                         band->thr = band->energy * PSY_SNR_1DB;
                         pe += band->active_lines * 1.5f - band->pe;
                     }
                 }
             }
             /* TODO: allow more holes (unused without mid/side) */
b7c96769
         }
     }
78e65cd7
 
b7c96769
     for (w = 0; w < wi->num_windows*16; w += 16) {
         for (g = 0; g < num_bands; g++) {
             AacPsyBand *band     = &pch->band[w+g];
0bc01cc9
             FFPsyBand  *psy_band = &ctx->ch[channel].psy_bands[w+g];
b7c96769
 
             psy_band->threshold = band->thr;
             psy_band->energy    = band->energy;
8e607c74
             psy_band->spread    = band->active_lines * 2.0f / band_sizes[g];
7ec74ae4
             psy_band->bits      = PSY_3GPP_PE_TO_BITS(band->pe);
78e65cd7
         }
     }
4afedfd8
 
78e65cd7
     memcpy(pch->prev_band, pch->band, sizeof(pch->band));
 }
 
d3a6c2ab
 static void psy_3gpp_analyze(FFPsyContext *ctx, int channel,
01344fe4
                                    const float **coeffs, const FFPsyWindowInfo *wi)
 {
     int ch;
     FFPsyChannelGroup *group = ff_psy_find_group(ctx, channel);
 
     for (ch = 0; ch < group->num_ch; ch++)
d3a6c2ab
         psy_3gpp_analyze_channel(ctx, channel + ch, coeffs[ch], &wi[ch]);
01344fe4
 }
 
78e65cd7
 static av_cold void psy_3gpp_end(FFPsyContext *apc)
 {
af00ddde
     AacPsyContext *pctx = (AacPsyContext*) apc->model_priv_data;
78e65cd7
     av_freep(&pctx->ch);
     av_freep(&apc->model_priv_data);
 }
 
62147469
 static void lame_apply_block_type(AacPsyChannel *ctx, FFPsyWindowInfo *wi, int uselongblock)
 {
     int blocktype = ONLY_LONG_SEQUENCE;
     if (uselongblock) {
         if (ctx->next_window_seq == EIGHT_SHORT_SEQUENCE)
             blocktype = LONG_STOP_SEQUENCE;
     } else {
         blocktype = EIGHT_SHORT_SEQUENCE;
         if (ctx->next_window_seq == ONLY_LONG_SEQUENCE)
             ctx->next_window_seq = LONG_START_SEQUENCE;
         if (ctx->next_window_seq == LONG_STOP_SEQUENCE)
             ctx->next_window_seq = EIGHT_SHORT_SEQUENCE;
     }
 
     wi->window_type[0] = ctx->next_window_seq;
     ctx->next_window_seq = blocktype;
 }
 
025ccf1f
 static FFPsyWindowInfo psy_lame_window(FFPsyContext *ctx, const float *audio,
                                        const float *la, int channel, int prev_type)
62147469
 {
     AacPsyContext *pctx = (AacPsyContext*) ctx->model_priv_data;
     AacPsyChannel *pch  = &pctx->ch[channel];
     int grouping     = 0;
     int uselongblock = 1;
     int attacks[AAC_NUM_BLOCKS_SHORT + 1] = { 0 };
     int i;
a92be9b8
     FFPsyWindowInfo wi = { { 0 } };
62147469
 
     if (la) {
         float hpfsmpl[AAC_BLOCK_SIZE_LONG];
8dead2aa
         const float *pf = hpfsmpl;
62147469
         float attack_intensity[(AAC_NUM_BLOCKS_SHORT + 1) * PSY_LAME_NUM_SUBBLOCKS];
         float energy_subshort[(AAC_NUM_BLOCKS_SHORT + 1) * PSY_LAME_NUM_SUBBLOCKS];
         float energy_short[AAC_NUM_BLOCKS_SHORT + 1] = { 0 };
9b8e2a87
         const float *firbuf = la + (AAC_BLOCK_SIZE_SHORT/4 - PSY_LAME_FIR_LEN);
e54eb8db
         int att_sum = 0;
62147469
 
         /* LAME comment: apply high pass filter of fs/4 */
e54eb8db
         psy_hp_filter(firbuf, hpfsmpl, psy_fir_coeffs);
62147469
 
         /* Calculate the energies of each sub-shortblock */
         for (i = 0; i < PSY_LAME_NUM_SUBBLOCKS; i++) {
             energy_subshort[i] = pch->prev_energy_subshort[i + ((AAC_NUM_BLOCKS_SHORT - 1) * PSY_LAME_NUM_SUBBLOCKS)];
             assert(pch->prev_energy_subshort[i + ((AAC_NUM_BLOCKS_SHORT - 2) * PSY_LAME_NUM_SUBBLOCKS + 1)] > 0);
             attack_intensity[i] = energy_subshort[i] / pch->prev_energy_subshort[i + ((AAC_NUM_BLOCKS_SHORT - 2) * PSY_LAME_NUM_SUBBLOCKS + 1)];
             energy_short[0] += energy_subshort[i];
         }
 
         for (i = 0; i < AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS; i++) {
8dead2aa
             const float *const pfe = pf + AAC_BLOCK_SIZE_LONG / (AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS);
62147469
             float p = 1.0f;
             for (; pf < pfe; pf++)
6381f913
                 p = FFMAX(p, fabsf(*pf));
62147469
             pch->prev_energy_subshort[i] = energy_subshort[i + PSY_LAME_NUM_SUBBLOCKS] = p;
             energy_short[1 + i / PSY_LAME_NUM_SUBBLOCKS] += p;
843cd4a3
             /* NOTE: The indexes below are [i + 3 - 2] in the LAME source.
              *       Obviously the 3 and 2 have some significance, or this would be just [i + 1]
              *       (which is what we use here). What the 3 stands for is ambiguous, as it is both
              *       number of short blocks, and the number of sub-short blocks.
              *       It seems that LAME is comparing each sub-block to sub-block + 1 in the
              *       previous block.
62147469
              */
             if (p > energy_subshort[i + 1])
                 p = p / energy_subshort[i + 1];
             else if (energy_subshort[i + 1] > p * 10.0f)
                 p = energy_subshort[i + 1] / (p * 10.0f);
             else
                 p = 0.0;
             attack_intensity[i + PSY_LAME_NUM_SUBBLOCKS] = p;
         }
 
         /* compare energy between sub-short blocks */
         for (i = 0; i < (AAC_NUM_BLOCKS_SHORT + 1) * PSY_LAME_NUM_SUBBLOCKS; i++)
             if (!attacks[i / PSY_LAME_NUM_SUBBLOCKS])
                 if (attack_intensity[i] > pch->attack_threshold)
                     attacks[i / PSY_LAME_NUM_SUBBLOCKS] = (i % PSY_LAME_NUM_SUBBLOCKS) + 1;
 
         /* should have energy change between short blocks, in order to avoid periodic signals */
         /* Good samples to show the effect are Trumpet test songs */
         /* GB: tuned (1) to avoid too many short blocks for test sample TRUMPET */
         /* RH: tuned (2) to let enough short blocks through for test sample FSOL and SNAPS */
         for (i = 1; i < AAC_NUM_BLOCKS_SHORT + 1; i++) {
8dead2aa
             const float u = energy_short[i - 1];
             const float v = energy_short[i];
             const float m = FFMAX(u, v);
62147469
             if (m < 40000) {                          /* (2) */
                 if (u < 1.7f * v && v < 1.7f * u) {   /* (1) */
                     if (i == 1 && attacks[0] < attacks[i])
                         attacks[0] = 0;
                     attacks[i] = 0;
                 }
             }
             att_sum += attacks[i];
         }
 
         if (attacks[0] <= pch->prev_attack)
             attacks[0] = 0;
 
         att_sum += attacks[0];
         /* 3 below indicates the previous attack happened in the last sub-block of the previous sequence */
         if (pch->prev_attack == 3 || att_sum) {
             uselongblock = 0;
 
b7c96769
             for (i = 1; i < AAC_NUM_BLOCKS_SHORT + 1; i++)
                 if (attacks[i] && attacks[i-1])
                     attacks[i] = 0;
62147469
         }
     } else {
         /* We have no lookahead info, so just use same type as the previous sequence. */
         uselongblock = !(prev_type == EIGHT_SHORT_SEQUENCE);
     }
 
     lame_apply_block_type(pch, &wi, uselongblock);
 
     wi.window_type[1] = prev_type;
     if (wi.window_type[0] != EIGHT_SHORT_SEQUENCE) {
59216e05
 
62147469
         wi.num_windows  = 1;
         wi.grouping[0]  = 1;
         if (wi.window_type[0] == LONG_START_SEQUENCE)
             wi.window_shape = 0;
         else
             wi.window_shape = 1;
59216e05
 
62147469
     } else {
         int lastgrp = 0;
 
         wi.num_windows = 8;
         wi.window_shape = 0;
         for (i = 0; i < 8; i++) {
             if (!((pch->next_grouping >> i) & 1))
                 lastgrp = i;
             wi.grouping[lastgrp]++;
         }
     }
 
     /* Determine grouping, based on the location of the first attack, and save for
      * the next frame.
      * FIXME: Move this to analysis.
      * TODO: Tune groupings depending on attack location
      * TODO: Handle more than one attack in a group
      */
     for (i = 0; i < 9; i++) {
         if (attacks[i]) {
             grouping = i;
             break;
         }
     }
     pch->next_grouping = window_grouping[grouping];
 
     pch->prev_attack = attacks[8];
 
     return wi;
 }
78e65cd7
 
 const FFPsyModel ff_aac_psy_model =
 {
     .name    = "3GPP TS 26.403-inspired model",
     .init    = psy_3gpp_init,
62147469
     .window  = psy_lame_window,
78e65cd7
     .analyze = psy_3gpp_analyze,
     .end     = psy_3gpp_end,
 };