libavcodec/alsdec.c
99971952
 /*
  * MPEG-4 ALS decoder
6a64b23d
  * Copyright (c) 2009 Thilo Borgmann <thilo.borgmann _at_ mail.de>
99971952
  *
  * This file is part of FFmpeg.
  *
  * FFmpeg is free software; you can redistribute it and/or
  * modify it under the terms of the GNU Lesser General Public
  * License as published by the Free Software Foundation; either
  * version 2.1 of the License, or (at your option) any later version.
  *
  * FFmpeg is distributed in the hope that it will be useful,
  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  * Lesser General Public License for more details.
  *
  * You should have received a copy of the GNU Lesser General Public
  * License along with FFmpeg; if not, write to the Free Software
  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  */
 
 /**
ba87f080
  * @file
99971952
  * MPEG-4 ALS decoder
6a64b23d
  * @author Thilo Borgmann <thilo.borgmann _at_ mail.de>
99971952
  */
 
cc8163e1
 #include <inttypes.h>
 
99971952
 #include "avcodec.h"
 #include "get_bits.h"
 #include "unary.h"
 #include "mpeg4audio.h"
25608328
 #include "bgmc.h"
c67b449b
 #include "bswapdsp.h"
594d4d5d
 #include "internal.h"
dcfd24b1
 #include "mlz.h"
7ffe76e5
 #include "libavutil/samplefmt.h"
cbb39648
 #include "libavutil/crc.h"
dcfd24b1
 #include "libavutil/softfloat_ieee754.h"
 #include "libavutil/intfloat.h"
 #include "libavutil/intreadwrite.h"
99971952
 
25c4fdda
 #include <stdint.h>
 
 /** Rice parameters and corresponding index offsets for decoding the
2901cc9a
  *  indices of scaled PARCOR values. The table chosen is set globally
25c4fdda
  *  by the encoder and stored in ALSSpecificConfig.
  */
 static const int8_t parcor_rice_table[3][20][2] = {
     { {-52, 4}, {-29, 5}, {-31, 4}, { 19, 4}, {-16, 4},
       { 12, 3}, { -7, 3}, {  9, 3}, { -5, 3}, {  6, 3},
       { -4, 3}, {  3, 3}, { -3, 2}, {  3, 2}, { -2, 2},
       {  3, 2}, { -1, 2}, {  2, 2}, { -1, 2}, {  2, 2} },
     { {-58, 3}, {-42, 4}, {-46, 4}, { 37, 5}, {-36, 4},
       { 29, 4}, {-29, 4}, { 25, 4}, {-23, 4}, { 20, 4},
       {-17, 4}, { 16, 4}, {-12, 4}, { 12, 3}, {-10, 4},
       {  7, 3}, { -4, 4}, {  3, 3}, { -1, 3}, {  1, 3} },
     { {-59, 3}, {-45, 5}, {-50, 4}, { 38, 4}, {-39, 4},
       { 32, 4}, {-30, 4}, { 25, 3}, {-23, 3}, { 20, 3},
       {-20, 3}, { 16, 3}, {-13, 3}, { 10, 3}, { -7, 3},
       {  3, 3}, {  0, 3}, { -1, 3}, {  2, 3}, { -1, 2} }
 };
 
 
 /** Scaled PARCOR values used for the first two PARCOR coefficients.
  *  To be indexed by the Rice coded indices.
  *  Generated by: parcor_scaled_values[i] = 32 + ((i * (i+1)) << 7) - (1 << 20)
  *  Actual values are divided by 32 in order to be stored in 16 bits.
  */
 static const int16_t parcor_scaled_values[] = {
     -1048544 / 32, -1048288 / 32, -1047776 / 32, -1047008 / 32,
     -1045984 / 32, -1044704 / 32, -1043168 / 32, -1041376 / 32,
     -1039328 / 32, -1037024 / 32, -1034464 / 32, -1031648 / 32,
     -1028576 / 32, -1025248 / 32, -1021664 / 32, -1017824 / 32,
     -1013728 / 32, -1009376 / 32, -1004768 / 32,  -999904 / 32,
      -994784 / 32,  -989408 / 32,  -983776 / 32,  -977888 / 32,
      -971744 / 32,  -965344 / 32,  -958688 / 32,  -951776 / 32,
      -944608 / 32,  -937184 / 32,  -929504 / 32,  -921568 / 32,
      -913376 / 32,  -904928 / 32,  -896224 / 32,  -887264 / 32,
      -878048 / 32,  -868576 / 32,  -858848 / 32,  -848864 / 32,
      -838624 / 32,  -828128 / 32,  -817376 / 32,  -806368 / 32,
      -795104 / 32,  -783584 / 32,  -771808 / 32,  -759776 / 32,
      -747488 / 32,  -734944 / 32,  -722144 / 32,  -709088 / 32,
      -695776 / 32,  -682208 / 32,  -668384 / 32,  -654304 / 32,
      -639968 / 32,  -625376 / 32,  -610528 / 32,  -595424 / 32,
      -580064 / 32,  -564448 / 32,  -548576 / 32,  -532448 / 32,
      -516064 / 32,  -499424 / 32,  -482528 / 32,  -465376 / 32,
      -447968 / 32,  -430304 / 32,  -412384 / 32,  -394208 / 32,
      -375776 / 32,  -357088 / 32,  -338144 / 32,  -318944 / 32,
      -299488 / 32,  -279776 / 32,  -259808 / 32,  -239584 / 32,
      -219104 / 32,  -198368 / 32,  -177376 / 32,  -156128 / 32,
      -134624 / 32,  -112864 / 32,   -90848 / 32,   -68576 / 32,
       -46048 / 32,   -23264 / 32,     -224 / 32,    23072 / 32,
        46624 / 32,    70432 / 32,    94496 / 32,   118816 / 32,
       143392 / 32,   168224 / 32,   193312 / 32,   218656 / 32,
       244256 / 32,   270112 / 32,   296224 / 32,   322592 / 32,
       349216 / 32,   376096 / 32,   403232 / 32,   430624 / 32,
       458272 / 32,   486176 / 32,   514336 / 32,   542752 / 32,
       571424 / 32,   600352 / 32,   629536 / 32,   658976 / 32,
       688672 / 32,   718624 / 32,   748832 / 32,   779296 / 32,
       810016 / 32,   840992 / 32,   872224 / 32,   903712 / 32,
       935456 / 32,   967456 / 32,   999712 / 32,  1032224 / 32
 };
 
 
 /** Gain values of p(0) for long-term prediction.
  *  To be indexed by the Rice coded indices.
  */
 static const uint8_t ltp_gain_values [4][4] = {
     { 0,  8, 16,  24},
     {32, 40, 48,  56},
     {64, 70, 76,  82},
     {88, 92, 96, 100}
 };
 
99971952
 
e38215f2
 /** Inter-channel weighting factors for multi-channel correlation.
  *  To be indexed by the Rice coded indices.
  */
 static const int16_t mcc_weightings[] = {
     204,  192,  179,  166,  153,  140,  128,  115,
     102,   89,   76,   64,   51,   38,   25,   12,
       0,  -12,  -25,  -38,  -51,  -64,  -76,  -89,
    -102, -115, -128, -140, -153, -166, -179, -192
 };
 
 
25608328
 /** Tail codes used in arithmetic coding using block Gilbert-Moore codes.
  */
 static const uint8_t tail_code[16][6] = {
     { 74, 44, 25, 13,  7, 3},
     { 68, 42, 24, 13,  7, 3},
     { 58, 39, 23, 13,  7, 3},
     {126, 70, 37, 19, 10, 5},
     {132, 70, 37, 20, 10, 5},
     {124, 70, 38, 20, 10, 5},
     {120, 69, 37, 20, 11, 5},
     {116, 67, 37, 20, 11, 5},
     {108, 66, 36, 20, 10, 5},
     {102, 62, 36, 20, 10, 5},
     { 88, 58, 34, 19, 10, 5},
     {162, 89, 49, 25, 13, 7},
     {156, 87, 49, 26, 14, 7},
     {150, 86, 47, 26, 14, 7},
     {142, 84, 47, 26, 14, 7},
     {131, 79, 46, 26, 14, 7}
 };
 
 
99971952
 enum RA_Flag {
     RA_FLAG_NONE,
     RA_FLAG_FRAMES,
     RA_FLAG_HEADER
 };
 
 
7f9f771e
 typedef struct ALSSpecificConfig {
99971952
     uint32_t samples;         ///< number of samples, 0xFFFFFFFF if unknown
     int resolution;           ///< 000 = 8-bit; 001 = 16-bit; 010 = 24-bit; 011 = 32-bit
     int floating;             ///< 1 = IEEE 32-bit floating-point, 0 = integer
cbb39648
     int msb_first;            ///< 1 = original CRC calculated on big-endian system, 0 = little-endian
99971952
     int frame_length;         ///< frame length for each frame (last frame may differ)
     int ra_distance;          ///< distance between RA frames (in frames, 0...255)
     enum RA_Flag ra_flag;     ///< indicates where the size of ra units is stored
     int adapt_order;          ///< adaptive order: 1 = on, 0 = off
     int coef_table;           ///< table index of Rice code parameters
     int long_term_prediction; ///< long term prediction (LTP): 1 = on, 0 = off
     int max_order;            ///< maximum prediction order (0..1023)
     int block_switching;      ///< number of block switching levels
     int bgmc;                 ///< "Block Gilbert-Moore Code": 1 = on, 0 = off (Rice coding only)
     int sb_part;              ///< sub-block partition
     int joint_stereo;         ///< joint stereo: 1 = on, 0 = off
     int mc_coding;            ///< extended inter-channel coding (multi channel coding): 1 = on, 0 = off
     int chan_config;          ///< indicates that a chan_config_info field is present
     int chan_sort;            ///< channel rearrangement: 1 = on, 0 = off
     int rlslms;               ///< use "Recursive Least Square-Least Mean Square" predictor: 1 = on, 0 = off
     int chan_config_info;     ///< mapping of channels to loudspeaker locations. Unused until setting channel configuration is implemented.
     int *chan_pos;            ///< original channel positions
cbb39648
     int crc_enabled;          ///< enable Cyclic Redundancy Checksum
99971952
 } ALSSpecificConfig;
 
 
7f9f771e
 typedef struct ALSChannelData {
e38215f2
     int stop_flag;
     int master_channel;
     int time_diff_flag;
     int time_diff_sign;
     int time_diff_index;
     int weighting[6];
 } ALSChannelData;
 
 
7f9f771e
 typedef struct ALSDecContext {
99971952
     AVCodecContext *avctx;
     ALSSpecificConfig sconf;
     GetBitContext gb;
c67b449b
     BswapDSPContext bdsp;
cbb39648
     const AVCRC *crc_table;
     uint32_t crc_org;               ///< CRC value of the original input data
     uint32_t crc;                   ///< CRC value calculated from decoded data
99971952
     unsigned int cur_frame_length;  ///< length of the current frame to decode
     unsigned int frame_id;          ///< the frame ID / number of the current frame
     unsigned int js_switch;         ///< if true, joint-stereo decoding is enforced
bfde6e5c
     unsigned int cs_switch;         ///< if true, channel rearrangement is done
99971952
     unsigned int num_blocks;        ///< number of blocks used in the current frame
11431599
     unsigned int s_max;             ///< maximum Rice parameter allowed in entropy coding
25608328
     uint8_t *bgmc_lut;              ///< pointer at lookup tables used for BGMC
a29039ae
     int *bgmc_lut_status;           ///< pointer at lookup table status flags used for BGMC
93d38cf6
     int ltp_lag_length;             ///< number of bits used for ltp lag value
efd63823
     int *const_block;               ///< contains const_block flags for all channels
     unsigned int *shift_lsbs;       ///< contains shift_lsbs flags for all channels
     unsigned int *opt_order;        ///< contains opt_order flags for all channels
     int *store_prev_samples;        ///< contains store_prev_samples flags for all channels
1261b07f
     int *use_ltp;                   ///< contains use_ltp flags for all channels
     int *ltp_lag;                   ///< contains ltp lag values for all channels
     int **ltp_gain;                 ///< gain values for ltp 5-tap filter for a channel
     int *ltp_gain_buffer;           ///< contains all gain values for ltp 5-tap filter
e38215f2
     int32_t **quant_cof;            ///< quantized parcor coefficients for a channel
     int32_t *quant_cof_buffer;      ///< contains all quantized parcor coefficients
     int32_t **lpc_cof;              ///< coefficients of the direct form prediction filter for a channel
     int32_t *lpc_cof_buffer;        ///< contains all coefficients of the direct form prediction filter
ff9ea0b7
     int32_t *lpc_cof_reversed_buffer; ///< temporary buffer to set up a reversed versio of lpc_cof_buffer
e38215f2
     ALSChannelData **chan_data;     ///< channel data for multi-channel correlation
     ALSChannelData *chan_data_buffer; ///< contains channel data for all channels
     int *reverted_channels;         ///< stores a flag for each reverted channel
99971952
     int32_t *prev_raw_samples;      ///< contains unshifted raw samples from the previous block
     int32_t **raw_samples;          ///< decoded raw samples for each channel
     int32_t *raw_buffer;            ///< contains all decoded raw samples including carryover samples
cbb39648
     uint8_t *crc_buffer;            ///< buffer of byte order corrected samples used for CRC check
dcfd24b1
     MLZ* mlz;                       ///< masked lz decompression structure
     SoftFloat_IEEE754 *acf;         ///< contains common multiplier for all channels
     int *last_acf_mantissa;         ///< contains the last acf mantissa data of common multiplier for all channels
     int *shift_value;               ///< value by which the binary point is to be shifted for all channels
     int *last_shift_value;          ///< contains last shift value for all channels
     int **raw_mantissa;             ///< decoded mantissa bits of the difference signal
     unsigned char *larray;          ///< buffer to store the output of masked lz decompression
     int *nbits;                     ///< contains the number of bits to read for masked lz decompression for all samples
99971952
 } ALSDecContext;
 
 
7f9f771e
 typedef struct ALSBlockData {
1261b07f
     unsigned int block_length;      ///< number of samples within the block
     unsigned int ra_block;          ///< if true, this is a random access block
efd63823
     int          *const_block;      ///< if true, this is a constant value block
1261b07f
     int          js_blocks;         ///< true if this block contains a difference signal
efd63823
     unsigned int *shift_lsbs;       ///< shift of values for this block
     unsigned int *opt_order;        ///< prediction order of this block
     int          *store_prev_samples;///< if true, carryover samples have to be stored
1261b07f
     int          *use_ltp;          ///< if true, long-term prediction is used
     int          *ltp_lag;          ///< lag value for long-term prediction
     int          *ltp_gain;         ///< gain values for ltp 5-tap filter
     int32_t      *quant_cof;        ///< quantized parcor coefficients
     int32_t      *lpc_cof;          ///< coefficients of the direct form prediction
     int32_t      *raw_samples;      ///< decoded raw samples / residuals for this block
     int32_t      *prev_raw_samples; ///< contains unshifted raw samples from the previous block
     int32_t      *raw_other;        ///< decoded raw samples of the other channel of a channel pair
 } ALSBlockData;
 
 
99971952
 static av_cold void dprint_specific_config(ALSDecContext *ctx)
 {
 #ifdef DEBUG
     AVCodecContext *avctx    = ctx->avctx;
     ALSSpecificConfig *sconf = &ctx->sconf;
 
6a85dfc8
     ff_dlog(avctx, "resolution = %i\n",           sconf->resolution);
     ff_dlog(avctx, "floating = %i\n",             sconf->floating);
     ff_dlog(avctx, "frame_length = %i\n",         sconf->frame_length);
     ff_dlog(avctx, "ra_distance = %i\n",          sconf->ra_distance);
     ff_dlog(avctx, "ra_flag = %i\n",              sconf->ra_flag);
     ff_dlog(avctx, "adapt_order = %i\n",          sconf->adapt_order);
     ff_dlog(avctx, "coef_table = %i\n",           sconf->coef_table);
     ff_dlog(avctx, "long_term_prediction = %i\n", sconf->long_term_prediction);
     ff_dlog(avctx, "max_order = %i\n",            sconf->max_order);
     ff_dlog(avctx, "block_switching = %i\n",      sconf->block_switching);
     ff_dlog(avctx, "bgmc = %i\n",                 sconf->bgmc);
     ff_dlog(avctx, "sb_part = %i\n",              sconf->sb_part);
     ff_dlog(avctx, "joint_stereo = %i\n",         sconf->joint_stereo);
     ff_dlog(avctx, "mc_coding = %i\n",            sconf->mc_coding);
     ff_dlog(avctx, "chan_config = %i\n",          sconf->chan_config);
     ff_dlog(avctx, "chan_sort = %i\n",            sconf->chan_sort);
     ff_dlog(avctx, "RLSLMS = %i\n",               sconf->rlslms);
     ff_dlog(avctx, "chan_config_info = %i\n",     sconf->chan_config_info);
99971952
 #endif
 }
 
 
49bd8e4b
 /** Read an ALSSpecificConfig from a buffer into the output struct.
99971952
  */
 static av_cold int read_specific_config(ALSDecContext *ctx)
 {
     GetBitContext gb;
     uint64_t ht_size;
cbb39648
     int i, config_offset;
6e6bd548
     MPEG4AudioConfig m4ac = {0};
99971952
     ALSSpecificConfig *sconf = &ctx->sconf;
     AVCodecContext *avctx    = ctx->avctx;
8e14fbe8
     uint32_t als_id, header_size, trailer_size;
4484c722
     int ret;
99971952
 
4484c722
     if ((ret = init_get_bits8(&gb, avctx->extradata, avctx->extradata_size)) < 0)
         return ret;
99971952
 
59a9a235
     config_offset = avpriv_mpeg4audio_get_config(&m4ac, avctx->extradata,
fd095539
                                                  avctx->extradata_size * 8, 1);
99971952
 
     if (config_offset < 0)
ca488ad4
         return AVERROR_INVALIDDATA;
99971952
 
     skip_bits_long(&gb, config_offset);
 
     if (get_bits_left(&gb) < (30 << 3))
ca488ad4
         return AVERROR_INVALIDDATA;
99971952
 
     // read the fixed items
     als_id                      = get_bits_long(&gb, 32);
     avctx->sample_rate          = m4ac.sample_rate;
     skip_bits_long(&gb, 32); // sample rate already known
     sconf->samples              = get_bits_long(&gb, 32);
     avctx->channels             = m4ac.channels;
d885cc41
     skip_bits(&gb, 16);      // number of channels already known
99971952
     skip_bits(&gb, 3);       // skip file_type
     sconf->resolution           = get_bits(&gb, 3);
     sconf->floating             = get_bits1(&gb);
cbb39648
     sconf->msb_first            = get_bits1(&gb);
99971952
     sconf->frame_length         = get_bits(&gb, 16) + 1;
     sconf->ra_distance          = get_bits(&gb, 8);
     sconf->ra_flag              = get_bits(&gb, 2);
     sconf->adapt_order          = get_bits1(&gb);
     sconf->coef_table           = get_bits(&gb, 2);
     sconf->long_term_prediction = get_bits1(&gb);
     sconf->max_order            = get_bits(&gb, 10);
     sconf->block_switching      = get_bits(&gb, 2);
     sconf->bgmc                 = get_bits1(&gb);
     sconf->sb_part              = get_bits1(&gb);
     sconf->joint_stereo         = get_bits1(&gb);
     sconf->mc_coding            = get_bits1(&gb);
     sconf->chan_config          = get_bits1(&gb);
     sconf->chan_sort            = get_bits1(&gb);
cbb39648
     sconf->crc_enabled          = get_bits1(&gb);
99971952
     sconf->rlslms               = get_bits1(&gb);
     skip_bits(&gb, 5);       // skip 5 reserved bits
     skip_bits1(&gb);         // skip aux_data_enabled
 
 
     // check for ALSSpecificConfig struct
     if (als_id != MKBETAG('A','L','S','\0'))
ca488ad4
         return AVERROR_INVALIDDATA;
99971952
 
e37b9df6
     if (avctx->channels > FF_SANE_NB_CHANNELS) {
         avpriv_request_sample(avctx, "Huge number of channels\n");
         return AVERROR_PATCHWELCOME;
     }
 
99971952
     ctx->cur_frame_length = sconf->frame_length;
 
     // read channel config
     if (sconf->chan_config)
         sconf->chan_config_info = get_bits(&gb, 16);
     // TODO: use this to set avctx->channel_layout
 
 
     // read channel sorting
     if (sconf->chan_sort && avctx->channels > 1) {
         int chan_pos_bits = av_ceil_log2(avctx->channels);
         int bits_needed  = avctx->channels * chan_pos_bits + 7;
         if (get_bits_left(&gb) < bits_needed)
ca488ad4
             return AVERROR_INVALIDDATA;
99971952
 
c2fc4663
         if (!(sconf->chan_pos = av_malloc_array(avctx->channels, sizeof(*sconf->chan_pos))))
99971952
             return AVERROR(ENOMEM);
 
bfde6e5c
         ctx->cs_switch = 1;
 
ae27b70b
         for (i = 0; i < avctx->channels; i++) {
ef16501a
             sconf->chan_pos[i] = -1;
         }
 
         for (i = 0; i < avctx->channels; i++) {
d4211c47
             int idx;
 
             idx = get_bits(&gb, chan_pos_bits);
ef16501a
             if (idx >= avctx->channels || sconf->chan_pos[idx] != -1) {
98fed176
                 av_log(avctx, AV_LOG_WARNING, "Invalid channel reordering.\n");
bfde6e5c
                 ctx->cs_switch = 0;
ae27b70b
                 break;
             }
d4211c47
             sconf->chan_pos[idx] = i;
ae27b70b
         }
99971952
 
         align_get_bits(&gb);
     }
 
 
     // read fixed header and trailer sizes,
     // if size = 0xFFFFFFFF then there is no data field!
     if (get_bits_left(&gb) < 64)
ca488ad4
         return AVERROR_INVALIDDATA;
99971952
 
8e14fbe8
     header_size  = get_bits_long(&gb, 32);
     trailer_size = get_bits_long(&gb, 32);
     if (header_size  == 0xFFFFFFFF)
         header_size  = 0;
     if (trailer_size == 0xFFFFFFFF)
         trailer_size = 0;
99971952
 
8e14fbe8
     ht_size = ((int64_t)(header_size) + (int64_t)(trailer_size)) << 3;
99971952
 
 
     // skip the header and trailer data
     if (get_bits_left(&gb) < ht_size)
ca488ad4
         return AVERROR_INVALIDDATA;
99971952
 
     if (ht_size > INT32_MAX)
ca488ad4
         return AVERROR_PATCHWELCOME;
99971952
 
     skip_bits_long(&gb, ht_size);
 
 
cbb39648
     // initialize CRC calculation
     if (sconf->crc_enabled) {
99971952
         if (get_bits_left(&gb) < 32)
ca488ad4
             return AVERROR_INVALIDDATA;
99971952
 
919c00ba
         if (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL)) {
cbb39648
             ctx->crc_table = av_crc_get_table(AV_CRC_32_IEEE_LE);
             ctx->crc       = 0xFFFFFFFF;
             ctx->crc_org   = ~get_bits_long(&gb, 32);
         } else
             skip_bits_long(&gb, 32);
99971952
     }
 
 
     // no need to read the rest of ALSSpecificConfig (ra_unit_size & aux data)
 
     dprint_specific_config(ctx);
 
     return 0;
 }
 
 
49bd8e4b
 /** Check the ALSSpecificConfig for unsupported features.
99971952
  */
 static int check_specific_config(ALSDecContext *ctx)
 {
     ALSSpecificConfig *sconf = &ctx->sconf;
     int error = 0;
 
     // report unsupported feature and set error value
     #define MISSING_ERR(cond, str, errval)              \
     {                                                   \
         if (cond) {                                     \
63d744e2
             avpriv_report_missing_feature(ctx->avctx,   \
                                           str);         \
99971952
             error = errval;                             \
         }                                               \
     }
 
717addec
     MISSING_ERR(sconf->rlslms,    "Adaptive RLS-LMS prediction", AVERROR_PATCHWELCOME);
99971952
 
     return error;
 }
 
 
49bd8e4b
 /** Parse the bs_info field to extract the block partitioning used in
99971952
  *  block switching mode, refer to ISO/IEC 14496-3, section 11.6.2.
  */
 static void parse_bs_info(const uint32_t bs_info, unsigned int n,
                           unsigned int div, unsigned int **div_blocks,
                           unsigned int *num_blocks)
 {
     if (n < 31 && ((bs_info << n) & 0x40000000)) {
         // if the level is valid and the investigated bit n is set
         // then recursively check both children at bits (2n+1) and (2n+2)
         n   *= 2;
         div += 1;
         parse_bs_info(bs_info, n + 1, div, div_blocks, num_blocks);
         parse_bs_info(bs_info, n + 2, div, div_blocks, num_blocks);
     } else {
         // else the bit is not set or the last level has been reached
         // (bit implicitly not set)
         **div_blocks = div;
         (*div_blocks)++;
         (*num_blocks)++;
     }
 }
 
 
48966b02
 /** Read and decode a Rice codeword.
99971952
  */
 static int32_t decode_rice(GetBitContext *gb, unsigned int k)
 {
6e44ba15
     int max = get_bits_left(gb) - k;
1ebd25b1
     unsigned q = get_unary(gb, 0, max);
99971952
     int r   = k ? get_bits1(gb) : !(q & 1);
 
     if (k > 1) {
         q <<= (k - 1);
         q  += get_bits_long(gb, k - 1);
     } else if (!k) {
         q >>= 1;
     }
     return r ? q : ~q;
 }
 
 
49bd8e4b
 /** Convert PARCOR coefficient k to direct filter coefficient.
99971952
  */
 static void parcor_to_lpc(unsigned int k, const int32_t *par, int32_t *cof)
 {
     int i, j;
 
     for (i = 0, j = k - 1; i < j; i++, j--) {
71fd0201
         unsigned tmp1 = ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
99971952
         cof[j]  += ((MUL64(par[k], cof[i]) + (1 << 19)) >> 20);
         cof[i]  += tmp1;
     }
     if (i == j)
         cof[i] += ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
 
     cof[k] = par[k];
 }
 
 
48966b02
 /** Read block switching field if necessary and set actual block sizes.
  *  Also assure that the block sizes of the last frame correspond to the
99971952
  *  actual number of samples.
  */
 static void get_block_sizes(ALSDecContext *ctx, unsigned int *div_blocks,
                             uint32_t *bs_info)
 {
     ALSSpecificConfig *sconf     = &ctx->sconf;
     GetBitContext *gb            = &ctx->gb;
     unsigned int *ptr_div_blocks = div_blocks;
     unsigned int b;
 
     if (sconf->block_switching) {
         unsigned int bs_info_len = 1 << (sconf->block_switching + 2);
         *bs_info = get_bits_long(gb, bs_info_len);
         *bs_info <<= (32 - bs_info_len);
     }
 
     ctx->num_blocks = 0;
     parse_bs_info(*bs_info, 0, 0, &ptr_div_blocks, &ctx->num_blocks);
 
     // The last frame may have an overdetermined block structure given in
     // the bitstream. In that case the defined block structure would need
     // more samples than available to be consistent.
     // The block structure is actually used but the block sizes are adapted
     // to fit the actual number of available samples.
     // Example: 5 samples, 2nd level block sizes: 2 2 2 2.
     // This results in the actual block sizes:    2 2 1 0.
     // This is not specified in 14496-3 but actually done by the reference
     // codec RM22 revision 2.
     // This appears to happen in case of an odd number of samples in the last
     // frame which is actually not allowed by the block length switching part
     // of 14496-3.
     // The ALS conformance files feature an odd number of samples in the last
     // frame.
 
     for (b = 0; b < ctx->num_blocks; b++)
         div_blocks[b] = ctx->sconf.frame_length >> div_blocks[b];
 
     if (ctx->cur_frame_length != ctx->sconf.frame_length) {
         unsigned int remaining = ctx->cur_frame_length;
 
         for (b = 0; b < ctx->num_blocks; b++) {
bbe8fa1f
             if (remaining <= div_blocks[b]) {
99971952
                 div_blocks[b] = remaining;
                 ctx->num_blocks = b + 1;
                 break;
             }
 
             remaining -= div_blocks[b];
         }
     }
 }
 
 
49bd8e4b
 /** Read the block data for a constant block
99971952
  */
0ceca269
 static int read_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
99971952
 {
     ALSSpecificConfig *sconf = &ctx->sconf;
     AVCodecContext *avctx    = ctx->avctx;
     GetBitContext *gb        = &ctx->gb;
 
0ceca269
     if (bd->block_length <= 0)
79bfba14
         return AVERROR_INVALIDDATA;
0ceca269
 
efd63823
     *bd->raw_samples = 0;
     *bd->const_block = get_bits1(gb);    // 1 = constant value, 0 = zero block (silence)
1261b07f
     bd->js_blocks    = get_bits1(gb);
99971952
 
     // skip 5 reserved bits
     skip_bits(gb, 5);
 
efd63823
     if (*bd->const_block) {
99971952
         unsigned int const_val_bits = sconf->floating ? 24 : avctx->bits_per_raw_sample;
efd63823
         *bd->raw_samples = get_sbits_long(gb, const_val_bits);
99971952
     }
 
1261b07f
     // ensure constant block decoding by reusing this field
efd63823
     *bd->const_block = 1;
0ceca269
 
     return 0;
1261b07f
 }
 
 
49bd8e4b
 /** Decode the block data for a constant block
1261b07f
  */
 static void decode_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
 {
efd63823
     int      smp = bd->block_length - 1;
     int32_t  val = *bd->raw_samples;
     int32_t *dst = bd->raw_samples + 1;
1261b07f
 
99971952
     // write raw samples into buffer
1261b07f
     for (; smp; smp--)
         *dst++ = val;
99971952
 }
 
 
49bd8e4b
 /** Read the block data for a non-constant block
99971952
  */
1261b07f
 static int read_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
99971952
 {
     ALSSpecificConfig *sconf = &ctx->sconf;
     AVCodecContext *avctx    = ctx->avctx;
     GetBitContext *gb        = &ctx->gb;
     unsigned int k;
     unsigned int s[8];
25608328
     unsigned int sx[8];
99971952
     unsigned int sub_blocks, log2_sub_blocks, sb_length;
     unsigned int start      = 0;
1261b07f
     unsigned int opt_order;
     int          sb;
     int32_t      *quant_cof = bd->quant_cof;
25608328
     int32_t      *current_res;
99971952
 
1261b07f
 
     // ensure variable block decoding by reusing this field
efd63823
     *bd->const_block = 0;
1261b07f
 
efd63823
     *bd->opt_order  = 1;
1261b07f
     bd->js_blocks   = get_bits1(gb);
 
efd63823
     opt_order       = *bd->opt_order;
99971952
 
     // determine the number of subblocks for entropy decoding
     if (!sconf->bgmc && !sconf->sb_part) {
         log2_sub_blocks = 0;
     } else {
         if (sconf->bgmc && sconf->sb_part)
             log2_sub_blocks = get_bits(gb, 2);
         else
             log2_sub_blocks = 2 * get_bits1(gb);
     }
 
     sub_blocks = 1 << log2_sub_blocks;
 
     // do not continue in case of a damaged stream since
     // block_length must be evenly divisible by sub_blocks
c3ab1349
     if (bd->block_length & (sub_blocks - 1) || bd->block_length <= 0) {
99971952
         av_log(avctx, AV_LOG_WARNING,
                "Block length is not evenly divisible by the number of subblocks.\n");
ca488ad4
         return AVERROR_INVALIDDATA;
99971952
     }
 
1261b07f
     sb_length = bd->block_length >> log2_sub_blocks;
99971952
 
     if (sconf->bgmc) {
25608328
         s[0] = get_bits(gb, 8 + (sconf->resolution > 1));
         for (k = 1; k < sub_blocks; k++)
             s[k] = s[k - 1] + decode_rice(gb, 2);
 
         for (k = 0; k < sub_blocks; k++) {
             sx[k]   = s[k] & 0x0F;
             s [k] >>= 4;
         }
99971952
     } else {
         s[0] = get_bits(gb, 4 + (sconf->resolution > 1));
         for (k = 1; k < sub_blocks; k++)
             s[k] = s[k - 1] + decode_rice(gb, 0);
     }
23aae62c
     for (k = 1; k < sub_blocks; k++)
84917288
         if (s[k] > 32) {
6c3d6a21
             av_log(avctx, AV_LOG_ERROR, "k invalid for rice code.\n");
23aae62c
             return AVERROR_INVALIDDATA;
6c3d6a21
         }
99971952
 
     if (get_bits1(gb))
efd63823
         *bd->shift_lsbs = get_bits(gb, 4) + 1;
99971952
 
efd63823
     *bd->store_prev_samples = (bd->js_blocks && bd->raw_other) || *bd->shift_lsbs;
99971952
 
 
     if (!sconf->rlslms) {
58d605ee
         if (sconf->adapt_order && sconf->max_order) {
1261b07f
             int opt_order_length = av_ceil_log2(av_clip((bd->block_length >> 3) - 1,
99971952
                                                 2, sconf->max_order + 1));
efd63823
             *bd->opt_order       = get_bits(gb, opt_order_length);
9d3032b9
             if (*bd->opt_order > sconf->max_order) {
dfacef9e
                 *bd->opt_order = sconf->max_order;
95f81159
                 av_log(avctx, AV_LOG_ERROR, "Predictor order too large.\n");
9853e41a
                 return AVERROR_INVALIDDATA;
9d3032b9
             }
99971952
         } else {
efd63823
             *bd->opt_order = sconf->max_order;
99971952
         }
18f94df8
         if (*bd->opt_order > bd->block_length) {
             *bd->opt_order = bd->block_length;
             av_log(avctx, AV_LOG_ERROR, "Predictor order too large.\n");
             return AVERROR_INVALIDDATA;
         }
efd63823
         opt_order = *bd->opt_order;
1261b07f
 
99971952
         if (opt_order) {
             int add_base;
 
             if (sconf->coef_table == 3) {
                 add_base = 0x7F;
 
                 // read coefficient 0
                 quant_cof[0] = 32 * parcor_scaled_values[get_bits(gb, 7)];
 
                 // read coefficient 1
                 if (opt_order > 1)
                     quant_cof[1] = -32 * parcor_scaled_values[get_bits(gb, 7)];
 
                 // read coefficients 2 to opt_order
                 for (k = 2; k < opt_order; k++)
                     quant_cof[k] = get_bits(gb, 7);
             } else {
                 int k_max;
                 add_base = 1;
 
                 // read coefficient 0 to 19
                 k_max = FFMIN(opt_order, 20);
                 for (k = 0; k < k_max; k++) {
                     int rice_param = parcor_rice_table[sconf->coef_table][k][1];
                     int offset     = parcor_rice_table[sconf->coef_table][k][0];
                     quant_cof[k] = decode_rice(gb, rice_param) + offset;
8534881a
                     if (quant_cof[k] < -64 || quant_cof[k] > 63) {
cc8163e1
                         av_log(avctx, AV_LOG_ERROR,
7d6c264e
                                "quant_cof %"PRId32" is out of range.\n",
cc8163e1
                                quant_cof[k]);
8534881a
                         return AVERROR_INVALIDDATA;
                     }
99971952
                 }
 
                 // read coefficients 20 to 126
                 k_max = FFMIN(opt_order, 127);
                 for (; k < k_max; k++)
                     quant_cof[k] = decode_rice(gb, 2) + (k & 1);
 
                 // read coefficients 127 to opt_order
                 for (; k < opt_order; k++)
                     quant_cof[k] = decode_rice(gb, 1);
 
                 quant_cof[0] = 32 * parcor_scaled_values[quant_cof[0] + 64];
 
                 if (opt_order > 1)
                     quant_cof[1] = -32 * parcor_scaled_values[quant_cof[1] + 64];
             }
 
             for (k = 2; k < opt_order; k++)
cbbd330a
                 quant_cof[k] = (quant_cof[k] * (1 << 14)) + (add_base << 13);
99971952
         }
     }
 
93d38cf6
     // read LTP gain and lag values
     if (sconf->long_term_prediction) {
1261b07f
         *bd->use_ltp = get_bits1(gb);
93d38cf6
 
1261b07f
         if (*bd->use_ltp) {
a8c09ff2
             int r, c;
 
5f576669
             bd->ltp_gain[0]   = decode_rice(gb, 1) * 8;
             bd->ltp_gain[1]   = decode_rice(gb, 2) * 8;
93d38cf6
 
5d64ba9d
             r                 = get_unary(gb, 0, 4);
a8c09ff2
             c                 = get_bits(gb, 2);
c36fc857
             if (r >= 4) {
                 av_log(avctx, AV_LOG_ERROR, "r overflow\n");
                 return AVERROR_INVALIDDATA;
             }
 
a8c09ff2
             bd->ltp_gain[2]   = ltp_gain_values[r][c];
93d38cf6
 
5f576669
             bd->ltp_gain[3]   = decode_rice(gb, 2) * 8;
             bd->ltp_gain[4]   = decode_rice(gb, 1) * 8;
93d38cf6
 
1261b07f
             *bd->ltp_lag      = get_bits(gb, ctx->ltp_lag_length);
             *bd->ltp_lag     += FFMAX(4, opt_order + 1);
93d38cf6
         }
     }
99971952
 
     // read first value and residuals in case of a random access block
1261b07f
     if (bd->ra_block) {
36c27807
         start = FFMIN(opt_order, 3);
         av_assert0(sb_length <= sconf->frame_length);
         if (sb_length <= start) {
             // opt_order or sb_length may be corrupted, either way this is unsupported and not well defined in the specification
             av_log(avctx, AV_LOG_ERROR, "Sub block length smaller or equal start\n");
             return AVERROR_PATCHWELCOME;
         }
 
99971952
         if (opt_order)
1261b07f
             bd->raw_samples[0] = decode_rice(gb, avctx->bits_per_raw_sample - 4);
99971952
         if (opt_order > 1)
11431599
             bd->raw_samples[1] = decode_rice(gb, FFMIN(s[0] + 3, ctx->s_max));
99971952
         if (opt_order > 2)
11431599
             bd->raw_samples[2] = decode_rice(gb, FFMIN(s[0] + 1, ctx->s_max));
99971952
     }
 
     // read all residuals
     if (sconf->bgmc) {
a29039ae
         int          delta[8];
17253f59
         unsigned int k    [8];
25608328
         unsigned int b = av_clip((av_ceil_log2(bd->block_length) - 3) >> 1, 0, 5);
 
         // read most significant bits
         unsigned int high;
         unsigned int low;
         unsigned int value;
 
cb1af09d
         int ret = ff_bgmc_decode_init(gb, &high, &low, &value);
         if (ret < 0)
             return ret;
25608328
 
         current_res = bd->raw_samples + start;
 
4ca6d206
         for (sb = 0; sb < sub_blocks; sb++) {
66197988
             unsigned int sb_len  = sb_length - (sb ? 0 : start);
 
25608328
             k    [sb] = s[sb] > b ? s[sb] - b : 0;
             delta[sb] = 5 - s[sb] + k[sb];
 
a003c985
             if (k[sb] >= 32)
                 return AVERROR_INVALIDDATA;
 
66197988
             ff_bgmc_decode(gb, sb_len, current_res,
25608328
                         delta[sb], sx[sb], &high, &low, &value, ctx->bgmc_lut, ctx->bgmc_lut_status);
 
66197988
             current_res += sb_len;
25608328
         }
 
         ff_bgmc_decode_end(gb);
 
 
         // read least significant bits and tails
         current_res = bd->raw_samples + start;
 
66197988
         for (sb = 0; sb < sub_blocks; sb++, start = 0) {
25608328
             unsigned int cur_tail_code = tail_code[sx[sb]][delta[sb]];
             unsigned int cur_k         = k[sb];
             unsigned int cur_s         = s[sb];
 
66197988
             for (; start < sb_length; start++) {
25608328
                 int32_t res = *current_res;
 
                 if (res == cur_tail_code) {
                     unsigned int max_msb =   (2 + (sx[sb] > 2) + (sx[sb] > 10))
                                           << (5 - delta[sb]);
 
                     res = decode_rice(gb, cur_s);
 
                     if (res >= 0) {
                         res += (max_msb    ) << cur_k;
                     } else {
                         res -= (max_msb - 1) << cur_k;
                     }
                 } else {
                     if (res > cur_tail_code)
                         res--;
 
                     if (res & 1)
                         res = -res;
 
                     res >>= 1;
 
                     if (cur_k) {
3e491e9c
                         res  *= 1U << cur_k;
25608328
                         res  |= get_bits_long(gb, cur_k);
                     }
                 }
 
65760304
                 *current_res++ = res;
25608328
             }
         }
99971952
     } else {
25608328
         current_res = bd->raw_samples + start;
99971952
 
         for (sb = 0; sb < sub_blocks; sb++, start = 0)
             for (; start < sb_length; start++)
                 *current_res++ = decode_rice(gb, s[sb]);
      }
 
1261b07f
     return 0;
 }
 
 
49bd8e4b
 /** Decode the block data for a non-constant block
1261b07f
  */
 static int decode_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
 {
     ALSSpecificConfig *sconf = &ctx->sconf;
     unsigned int block_length = bd->block_length;
     unsigned int smp = 0;
     unsigned int k;
efd63823
     int opt_order             = *bd->opt_order;
1261b07f
     int sb;
     int64_t y;
     int32_t *quant_cof        = bd->quant_cof;
     int32_t *lpc_cof          = bd->lpc_cof;
     int32_t *raw_samples      = bd->raw_samples;
99c5f5cc
     int32_t *raw_samples_end  = bd->raw_samples + bd->block_length;
ff9ea0b7
     int32_t *lpc_cof_reversed = ctx->lpc_cof_reversed_buffer;
1261b07f
 
93d38cf6
     // reverse long-term prediction
1261b07f
     if (*bd->use_ltp) {
93d38cf6
         int ltp_smp;
 
1261b07f
         for (ltp_smp = FFMAX(*bd->ltp_lag - 2, 0); ltp_smp < block_length; ltp_smp++) {
             int center = ltp_smp - *bd->ltp_lag;
93d38cf6
             int begin  = FFMAX(0, center - 2);
             int end    = center + 3;
             int tab    = 5 - (end - begin);
             int base;
 
             y = 1 << 6;
 
             for (base = begin; base < end; base++, tab++)
e80c90ea
                 y += (uint64_t)MUL64(bd->ltp_gain[tab], raw_samples[base]);
93d38cf6
 
             raw_samples[ltp_smp] += y >> 7;
         }
     }
 
99971952
     // reconstruct all samples from residuals
1261b07f
     if (bd->ra_block) {
99971952
         for (smp = 0; smp < opt_order; smp++) {
             y = 1 << 19;
 
             for (sb = 0; sb < smp; sb++)
e80c90ea
                 y += (uint64_t)MUL64(lpc_cof[sb], raw_samples[-(sb + 1)]);
99971952
 
99c5f5cc
             *raw_samples++ -= y >> 20;
99971952
             parcor_to_lpc(smp, quant_cof, lpc_cof);
         }
     } else {
         for (k = 0; k < opt_order; k++)
             parcor_to_lpc(k, quant_cof, lpc_cof);
 
         // store previous samples in case that they have to be altered
efd63823
         if (*bd->store_prev_samples)
1261b07f
             memcpy(bd->prev_raw_samples, raw_samples - sconf->max_order,
                    sizeof(*bd->prev_raw_samples) * sconf->max_order);
99971952
 
         // reconstruct difference signal for prediction (joint-stereo)
1261b07f
         if (bd->js_blocks && bd->raw_other) {
9dd231c4
             uint32_t *left, *right;
99971952
 
1261b07f
             if (bd->raw_other > raw_samples) {  // D = R - L
99971952
                 left  = raw_samples;
1261b07f
                 right = bd->raw_other;
99971952
             } else {                                // D = R - L
1261b07f
                 left  = bd->raw_other;
99971952
                 right = raw_samples;
             }
 
             for (sb = -1; sb >= -sconf->max_order; sb--)
                 raw_samples[sb] = right[sb] - left[sb];
         }
 
         // reconstruct shifted signal
efd63823
         if (*bd->shift_lsbs)
99971952
             for (sb = -1; sb >= -sconf->max_order; sb--)
efd63823
                 raw_samples[sb] >>= *bd->shift_lsbs;
99971952
     }
 
99c5f5cc
     // reverse linear prediction coefficients for efficiency
     lpc_cof = lpc_cof + opt_order;
 
     for (sb = 0; sb < opt_order; sb++)
         lpc_cof_reversed[sb] = lpc_cof[-(sb + 1)];
 
99971952
     // reconstruct raw samples
99c5f5cc
     raw_samples = bd->raw_samples + smp;
     lpc_cof     = lpc_cof_reversed + opt_order;
 
     for (; raw_samples < raw_samples_end; raw_samples++) {
99971952
         y = 1 << 19;
 
99c5f5cc
         for (sb = -opt_order; sb < 0; sb++)
71fd0201
             y += (uint64_t)MUL64(lpc_cof[sb], raw_samples[sb]);
99971952
 
99c5f5cc
         *raw_samples -= y >> 20;
99971952
     }
 
99c5f5cc
     raw_samples = bd->raw_samples;
 
99971952
     // restore previous samples in case that they have been altered
efd63823
     if (*bd->store_prev_samples)
1261b07f
         memcpy(raw_samples - sconf->max_order, bd->prev_raw_samples,
99971952
                sizeof(*raw_samples) * sconf->max_order);
 
     return 0;
 }
 
 
49bd8e4b
 /** Read the block data.
99971952
  */
1261b07f
 static int read_block(ALSDecContext *ctx, ALSBlockData *bd)
99971952
 {
1818a113
     int ret;
99971952
     GetBitContext *gb        = &ctx->gb;
a2ba50b0
     ALSSpecificConfig *sconf = &ctx->sconf;
99971952
 
efd63823
     *bd->shift_lsbs = 0;
99971952
     // read block type flag and read the samples accordingly
     if (get_bits1(gb)) {
ca488ad4
         ret = read_var_block_data(ctx, bd);
99971952
     } else {
80063770
         ret = read_const_block_data(ctx, bd);
99971952
     }
 
a2ba50b0
     if (!sconf->mc_coding || ctx->js_switch)
         align_get_bits(gb);
 
ca488ad4
     return ret;
1261b07f
 }
99971952
 
 
49bd8e4b
 /** Decode the block data.
1261b07f
  */
 static int decode_block(ALSDecContext *ctx, ALSBlockData *bd)
 {
     unsigned int smp;
ca488ad4
     int ret = 0;
1261b07f
 
     // read block type flag and read the samples accordingly
efd63823
     if (*bd->const_block)
1261b07f
         decode_const_block_data(ctx, bd);
ca488ad4
     else
         ret = decode_var_block_data(ctx, bd); // always return 0
 
     if (ret < 0)
         return ret;
1261b07f
 
     // TODO: read RLSLMS extension data
 
efd63823
     if (*bd->shift_lsbs)
1261b07f
         for (smp = 0; smp < bd->block_length; smp++)
49cb2d44
             bd->raw_samples[smp] = (unsigned)bd->raw_samples[smp] << *bd->shift_lsbs;
99971952
 
     return 0;
 }
 
 
48966b02
 /** Read and decode block data successively.
1261b07f
  */
 static int read_decode_block(ALSDecContext *ctx, ALSBlockData *bd)
 {
     int ret;
 
ca488ad4
     if ((ret = read_block(ctx, bd)) < 0)
1261b07f
         return ret;
 
ca488ad4
     return decode_block(ctx, bd);
1261b07f
 }
 
 
49bd8e4b
 /** Compute the number of samples left to decode for the current frame and
99971952
  *  sets these samples to zero.
  */
 static void zero_remaining(unsigned int b, unsigned int b_max,
                            const unsigned int *div_blocks, int32_t *buf)
 {
     unsigned int count = 0;
 
     while (b < b_max)
f0f2babc
         count += div_blocks[b++];
99971952
 
0bb622ba
     if (count)
9349e558
         memset(buf, 0, sizeof(*buf) * count);
99971952
 }
 
 
49bd8e4b
 /** Decode blocks independently.
99971952
  */
 static int decode_blocks_ind(ALSDecContext *ctx, unsigned int ra_frame,
                              unsigned int c, const unsigned int *div_blocks,
                              unsigned int *js_blocks)
 {
ca488ad4
     int ret;
99971952
     unsigned int b;
a92be9b8
     ALSBlockData bd = { 0 };
1261b07f
 
     bd.ra_block         = ra_frame;
efd63823
     bd.const_block      = ctx->const_block;
     bd.shift_lsbs       = ctx->shift_lsbs;
     bd.opt_order        = ctx->opt_order;
     bd.store_prev_samples = ctx->store_prev_samples;
1261b07f
     bd.use_ltp          = ctx->use_ltp;
     bd.ltp_lag          = ctx->ltp_lag;
     bd.ltp_gain         = ctx->ltp_gain[0];
e38215f2
     bd.quant_cof        = ctx->quant_cof[0];
     bd.lpc_cof          = ctx->lpc_cof[0];
1261b07f
     bd.prev_raw_samples = ctx->prev_raw_samples;
     bd.raw_samples      = ctx->raw_samples[c];
 
99971952
 
     for (b = 0; b < ctx->num_blocks; b++) {
1261b07f
         bd.block_length     = div_blocks[b];
 
ca488ad4
         if ((ret = read_decode_block(ctx, &bd)) < 0) {
99971952
             // damaged block, write zero for the rest of the frame
1261b07f
             zero_remaining(b, ctx->num_blocks, div_blocks, bd.raw_samples);
ca488ad4
             return ret;
99971952
         }
1261b07f
         bd.raw_samples += div_blocks[b];
         bd.ra_block     = 0;
99971952
     }
 
     return 0;
 }
 
 
49bd8e4b
 /** Decode blocks dependently.
99971952
  */
 static int decode_blocks(ALSDecContext *ctx, unsigned int ra_frame,
                          unsigned int c, const unsigned int *div_blocks,
                          unsigned int *js_blocks)
 {
     ALSSpecificConfig *sconf = &ctx->sconf;
     unsigned int offset = 0;
     unsigned int b;
ca488ad4
     int ret;
a92be9b8
     ALSBlockData bd[2] = { { 0 } };
1261b07f
 
     bd[0].ra_block         = ra_frame;
efd63823
     bd[0].const_block      = ctx->const_block;
     bd[0].shift_lsbs       = ctx->shift_lsbs;
     bd[0].opt_order        = ctx->opt_order;
     bd[0].store_prev_samples = ctx->store_prev_samples;
1261b07f
     bd[0].use_ltp          = ctx->use_ltp;
     bd[0].ltp_lag          = ctx->ltp_lag;
     bd[0].ltp_gain         = ctx->ltp_gain[0];
e38215f2
     bd[0].quant_cof        = ctx->quant_cof[0];
     bd[0].lpc_cof          = ctx->lpc_cof[0];
1261b07f
     bd[0].prev_raw_samples = ctx->prev_raw_samples;
     bd[0].js_blocks        = *js_blocks;
 
     bd[1].ra_block         = ra_frame;
efd63823
     bd[1].const_block      = ctx->const_block;
     bd[1].shift_lsbs       = ctx->shift_lsbs;
     bd[1].opt_order        = ctx->opt_order;
     bd[1].store_prev_samples = ctx->store_prev_samples;
1261b07f
     bd[1].use_ltp          = ctx->use_ltp;
     bd[1].ltp_lag          = ctx->ltp_lag;
     bd[1].ltp_gain         = ctx->ltp_gain[0];
e38215f2
     bd[1].quant_cof        = ctx->quant_cof[0];
     bd[1].lpc_cof          = ctx->lpc_cof[0];
1261b07f
     bd[1].prev_raw_samples = ctx->prev_raw_samples;
     bd[1].js_blocks        = *(js_blocks + 1);
99971952
 
     // decode all blocks
     for (b = 0; b < ctx->num_blocks; b++) {
         unsigned int s;
1261b07f
 
         bd[0].block_length = div_blocks[b];
         bd[1].block_length = div_blocks[b];
 
         bd[0].raw_samples  = ctx->raw_samples[c    ] + offset;
         bd[1].raw_samples  = ctx->raw_samples[c + 1] + offset;
 
         bd[0].raw_other    = bd[1].raw_samples;
         bd[1].raw_other    = bd[0].raw_samples;
 
ca488ad4
         if ((ret = read_decode_block(ctx, &bd[0])) < 0 ||
             (ret = read_decode_block(ctx, &bd[1])) < 0)
             goto fail;
99971952
 
         // reconstruct joint-stereo blocks
1261b07f
         if (bd[0].js_blocks) {
             if (bd[1].js_blocks)
5afd9a80
                 av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel pair.\n");
99971952
 
             for (s = 0; s < div_blocks[b]; s++)
fb12d635
                 bd[0].raw_samples[s] = bd[1].raw_samples[s] - (unsigned)bd[0].raw_samples[s];
1261b07f
         } else if (bd[1].js_blocks) {
99971952
             for (s = 0; s < div_blocks[b]; s++)
fb12d635
                 bd[1].raw_samples[s] = bd[1].raw_samples[s] + (unsigned)bd[0].raw_samples[s];
99971952
         }
 
         offset  += div_blocks[b];
1261b07f
         bd[0].ra_block = 0;
         bd[1].ra_block = 0;
99971952
     }
 
     // store carryover raw samples,
     // the others channel raw samples are stored by the calling function.
     memmove(ctx->raw_samples[c] - sconf->max_order,
             ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
             sizeof(*ctx->raw_samples[c]) * sconf->max_order);
 
     return 0;
ca488ad4
 fail:
     // damaged block, write zero for the rest of the frame
     zero_remaining(b, ctx->num_blocks, div_blocks, bd[0].raw_samples);
     zero_remaining(b, ctx->num_blocks, div_blocks, bd[1].raw_samples);
     return ret;
99971952
 }
 
70ecc175
 static inline int als_weighting(GetBitContext *gb, int k, int off)
 {
     int idx = av_clip(decode_rice(gb, k) + off,
                       0, FF_ARRAY_ELEMS(mcc_weightings) - 1);
     return mcc_weightings[idx];
 }
99971952
 
49bd8e4b
 /** Read the channel data.
e38215f2
   */
 static int read_channel_data(ALSDecContext *ctx, ALSChannelData *cd, int c)
 {
     GetBitContext *gb       = &ctx->gb;
     ALSChannelData *current = cd;
     unsigned int channels   = ctx->avctx->channels;
     int entries             = 0;
 
     while (entries < channels && !(current->stop_flag = get_bits1(gb))) {
         current->master_channel = get_bits_long(gb, av_ceil_log2(channels));
 
         if (current->master_channel >= channels) {
95f81159
             av_log(ctx->avctx, AV_LOG_ERROR, "Invalid master channel.\n");
ca488ad4
             return AVERROR_INVALIDDATA;
e38215f2
         }
 
         if (current->master_channel != c) {
             current->time_diff_flag = get_bits1(gb);
70ecc175
             current->weighting[0]   = als_weighting(gb, 1, 16);
             current->weighting[1]   = als_weighting(gb, 2, 14);
             current->weighting[2]   = als_weighting(gb, 1, 16);
e38215f2
 
             if (current->time_diff_flag) {
70ecc175
                 current->weighting[3] = als_weighting(gb, 1, 16);
                 current->weighting[4] = als_weighting(gb, 1, 16);
                 current->weighting[5] = als_weighting(gb, 1, 16);
e38215f2
 
                 current->time_diff_sign  = get_bits1(gb);
                 current->time_diff_index = get_bits(gb, ctx->ltp_lag_length - 3) + 3;
             }
         }
 
         current++;
         entries++;
     }
 
     if (entries == channels) {
95f81159
         av_log(ctx->avctx, AV_LOG_ERROR, "Damaged channel data.\n");
ca488ad4
         return AVERROR_INVALIDDATA;
e38215f2
     }
 
     align_get_bits(gb);
     return 0;
 }
 
 
 /** Recursively reverts the inter-channel correlation for a block.
  */
 static int revert_channel_correlation(ALSDecContext *ctx, ALSBlockData *bd,
                                        ALSChannelData **cd, int *reverted,
                                        unsigned int offset, int c)
 {
     ALSChannelData *ch = cd[c];
     unsigned int   dep = 0;
     unsigned int channels = ctx->avctx->channels;
afc7748d
     unsigned int channel_size = ctx->sconf.frame_length + ctx->sconf.max_order;
e38215f2
 
     if (reverted[c])
         return 0;
 
     reverted[c] = 1;
 
     while (dep < channels && !ch[dep].stop_flag) {
         revert_channel_correlation(ctx, bd, cd, reverted, offset,
                                    ch[dep].master_channel);
 
         dep++;
     }
 
     if (dep == channels) {
5afd9a80
         av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel correlation.\n");
ca488ad4
         return AVERROR_INVALIDDATA;
e38215f2
     }
 
efd63823
     bd->const_block = ctx->const_block + c;
     bd->shift_lsbs  = ctx->shift_lsbs + c;
     bd->opt_order   = ctx->opt_order + c;
     bd->store_prev_samples = ctx->store_prev_samples + c;
e38215f2
     bd->use_ltp     = ctx->use_ltp + c;
     bd->ltp_lag     = ctx->ltp_lag + c;
     bd->ltp_gain    = ctx->ltp_gain[c];
     bd->lpc_cof     = ctx->lpc_cof[c];
     bd->quant_cof   = ctx->quant_cof[c];
     bd->raw_samples = ctx->raw_samples[c] + offset;
 
5c74fa6c
     for (dep = 0; !ch[dep].stop_flag; dep++) {
afc7748d
         ptrdiff_t smp;
         ptrdiff_t begin = 1;
         ptrdiff_t end   = bd->block_length - 1;
e38215f2
         int64_t y;
         int32_t *master = ctx->raw_samples[ch[dep].master_channel] + offset;
 
5c74fa6c
         if (ch[dep].master_channel == c)
             continue;
 
e38215f2
         if (ch[dep].time_diff_flag) {
             int t = ch[dep].time_diff_index;
 
             if (ch[dep].time_diff_sign) {
                 t      = -t;
afc7748d
                 if (begin < t) {
144ef773
                     av_log(ctx->avctx, AV_LOG_ERROR, "begin %"PTRDIFF_SPECIFIER" smaller than time diff index %d.\n", begin, t);
faf9fe2c
                     return AVERROR_INVALIDDATA;
                 }
e38215f2
                 begin -= t;
             } else {
afc7748d
                 if (end < t) {
144ef773
                     av_log(ctx->avctx, AV_LOG_ERROR, "end %"PTRDIFF_SPECIFIER" smaller than time diff index %d.\n", end, t);
faf9fe2c
                     return AVERROR_INVALIDDATA;
                 }
e38215f2
                 end   -= t;
             }
 
afc7748d
             if (FFMIN(begin - 1, begin - 1 + t) < ctx->raw_buffer - master ||
                 FFMAX(end   + 1,   end + 1 + t) > ctx->raw_buffer + channels * channel_size - master) {
                 av_log(ctx->avctx, AV_LOG_ERROR,
                        "sample pointer range [%p, %p] not contained in raw_buffer [%p, %p].\n",
                        master + FFMIN(begin - 1, begin - 1 + t), master + FFMAX(end + 1,   end + 1 + t),
                        ctx->raw_buffer, ctx->raw_buffer + channels * channel_size);
                 return AVERROR_INVALIDDATA;
             }
 
e38215f2
             for (smp = begin; smp < end; smp++) {
                 y  = (1 << 6) +
                      MUL64(ch[dep].weighting[0], master[smp - 1    ]) +
                      MUL64(ch[dep].weighting[1], master[smp        ]) +
                      MUL64(ch[dep].weighting[2], master[smp + 1    ]) +
                      MUL64(ch[dep].weighting[3], master[smp - 1 + t]) +
                      MUL64(ch[dep].weighting[4], master[smp     + t]) +
                      MUL64(ch[dep].weighting[5], master[smp + 1 + t]);
 
                 bd->raw_samples[smp] += y >> 7;
             }
         } else {
afc7748d
 
             if (begin - 1 < ctx->raw_buffer - master ||
                 end   + 1 > ctx->raw_buffer + channels * channel_size - master) {
                 av_log(ctx->avctx, AV_LOG_ERROR,
                        "sample pointer range [%p, %p] not contained in raw_buffer [%p, %p].\n",
                        master + begin - 1, master + end + 1,
                        ctx->raw_buffer, ctx->raw_buffer + channels * channel_size);
                 return AVERROR_INVALIDDATA;
             }
 
e38215f2
             for (smp = begin; smp < end; smp++) {
                 y  = (1 << 6) +
                      MUL64(ch[dep].weighting[0], master[smp - 1]) +
                      MUL64(ch[dep].weighting[1], master[smp    ]) +
                      MUL64(ch[dep].weighting[2], master[smp + 1]);
 
                 bd->raw_samples[smp] += y >> 7;
             }
         }
     }
 
     return 0;
 }
 
 
dcfd24b1
 /** multiply two softfloats and handle the rounding off
  */
 static SoftFloat_IEEE754 multiply(SoftFloat_IEEE754 a, SoftFloat_IEEE754 b) {
     uint64_t mantissa_temp;
     uint64_t mask_64;
     int cutoff_bit_count;
     unsigned char last_2_bits;
     unsigned int mantissa;
     int32_t sign;
     uint32_t return_val = 0;
     int bit_count       = 48;
 
     sign = a.sign ^ b.sign;
 
     // Multiply mantissa bits in a 64-bit register
     mantissa_temp = (uint64_t)a.mant * (uint64_t)b.mant;
     mask_64       = (uint64_t)0x1 << 47;
 
55fca6e6
     if (!mantissa_temp)
         return FLOAT_0;
 
dcfd24b1
     // Count the valid bit count
     while (!(mantissa_temp & mask_64) && mask_64) {
         bit_count--;
         mask_64 >>= 1;
     }
 
     // Round off
     cutoff_bit_count = bit_count - 24;
     if (cutoff_bit_count > 0) {
         last_2_bits = (unsigned char)(((unsigned int)mantissa_temp >> (cutoff_bit_count - 1)) & 0x3 );
         if ((last_2_bits == 0x3) || ((last_2_bits == 0x1) && ((unsigned int)mantissa_temp & ((0x1UL << (cutoff_bit_count - 1)) - 1)))) {
             // Need to round up
             mantissa_temp += (uint64_t)0x1 << cutoff_bit_count;
         }
     }
 
351381a3
     if (cutoff_bit_count >= 0) {
         mantissa = (unsigned int)(mantissa_temp >> cutoff_bit_count);
     } else {
         mantissa = (unsigned int)(mantissa_temp <<-cutoff_bit_count);
     }
dcfd24b1
 
     // Need one more shift?
     if (mantissa & 0x01000000ul) {
         bit_count++;
         mantissa >>= 1;
     }
 
     if (!sign) {
         return_val = 0x80000000U;
     }
 
428dee1a
     return_val |= ((unsigned)av_clip(a.exp + b.exp + bit_count - 47, -126, 127) << 23) & 0x7F800000;
dcfd24b1
     return_val |= mantissa;
     return av_bits2sf_ieee754(return_val);
 }
 
 
 /** Read and decode the floating point sample data
  */
 static int read_diff_float_data(ALSDecContext *ctx, unsigned int ra_frame) {
     AVCodecContext *avctx   = ctx->avctx;
     GetBitContext *gb       = &ctx->gb;
     SoftFloat_IEEE754 *acf  = ctx->acf;
     int *shift_value        = ctx->shift_value;
     int *last_shift_value   = ctx->last_shift_value;
     int *last_acf_mantissa  = ctx->last_acf_mantissa;
     int **raw_mantissa      = ctx->raw_mantissa;
     int *nbits              = ctx->nbits;
     unsigned char *larray   = ctx->larray;
     int frame_length        = ctx->cur_frame_length;
     SoftFloat_IEEE754 scale = av_int2sf_ieee754(0x1u, 23);
     unsigned int partA_flag;
     unsigned int highest_byte;
     unsigned int shift_amp;
     uint32_t tmp_32;
     int use_acf;
     int nchars;
     int i;
     int c;
     long k;
     long nbits_aligned;
     unsigned long acc;
     unsigned long j;
     uint32_t sign;
     uint32_t e;
     uint32_t mantissa;
 
     skip_bits_long(gb, 32); //num_bytes_diff_float
     use_acf = get_bits1(gb);
 
     if (ra_frame) {
         memset(last_acf_mantissa, 0, avctx->channels * sizeof(*last_acf_mantissa));
         memset(last_shift_value,  0, avctx->channels * sizeof(*last_shift_value) );
         ff_mlz_flush_dict(ctx->mlz);
     }
 
09e942aa
     if (avctx->channels * 8 > get_bits_left(gb))
         return AVERROR_INVALIDDATA;
 
dcfd24b1
     for (c = 0; c < avctx->channels; ++c) {
         if (use_acf) {
             //acf_flag
             if (get_bits1(gb)) {
                 tmp_32 = get_bits(gb, 23);
                 last_acf_mantissa[c] = tmp_32;
             } else {
                 tmp_32 = last_acf_mantissa[c];
             }
             acf[c] = av_bits2sf_ieee754(tmp_32);
         } else {
             acf[c] = FLOAT_1;
         }
 
         highest_byte = get_bits(gb, 2);
         partA_flag   = get_bits1(gb);
         shift_amp    = get_bits1(gb);
 
         if (shift_amp) {
             shift_value[c] = get_bits(gb, 8);
             last_shift_value[c] = shift_value[c];
         } else {
             shift_value[c] = last_shift_value[c];
         }
 
         if (partA_flag) {
             if (!get_bits1(gb)) { //uncompressed
                 for (i = 0; i < frame_length; ++i) {
                     if (ctx->raw_samples[c][i] == 0) {
                         ctx->raw_mantissa[c][i] = get_bits_long(gb, 32);
                     }
                 }
             } else { //compressed
                 nchars = 0;
                 for (i = 0; i < frame_length; ++i) {
                     if (ctx->raw_samples[c][i] == 0) {
                         nchars += 4;
                     }
                 }
 
                 tmp_32 = ff_mlz_decompression(ctx->mlz, gb, nchars, larray);
                 if(tmp_32 != nchars) {
54904525
                     av_log(ctx->avctx, AV_LOG_ERROR, "Error in MLZ decompression (%"PRId32", %d).\n", tmp_32, nchars);
dcfd24b1
                     return AVERROR_INVALIDDATA;
                 }
 
                 for (i = 0; i < frame_length; ++i) {
                     ctx->raw_mantissa[c][i] = AV_RB32(larray);
                 }
             }
         }
 
         //decode part B
         if (highest_byte) {
             for (i = 0; i < frame_length; ++i) {
                 if (ctx->raw_samples[c][i] != 0) {
                     //The following logic is taken from Tabel 14.45 and 14.46 from the ISO spec
                     if (av_cmp_sf_ieee754(acf[c], FLOAT_1)) {
                         nbits[i] = 23 - av_log2(abs(ctx->raw_samples[c][i]));
                     } else {
                         nbits[i] = 23;
                     }
                     nbits[i] = FFMIN(nbits[i], highest_byte*8);
                 }
             }
 
             if (!get_bits1(gb)) { //uncompressed
                 for (i = 0; i < frame_length; ++i) {
                     if (ctx->raw_samples[c][i] != 0) {
4d48add8
                         raw_mantissa[c][i] = get_bitsz(gb, nbits[i]);
dcfd24b1
                     }
                 }
             } else { //compressed
                 nchars = 0;
                 for (i = 0; i < frame_length; ++i) {
                     if (ctx->raw_samples[c][i]) {
                         nchars += (int) nbits[i] / 8;
                         if (nbits[i] & 7) {
                             ++nchars;
                         }
                     }
                 }
 
                 tmp_32 = ff_mlz_decompression(ctx->mlz, gb, nchars, larray);
                 if(tmp_32 != nchars) {
54904525
                     av_log(ctx->avctx, AV_LOG_ERROR, "Error in MLZ decompression (%"PRId32", %d).\n", tmp_32, nchars);
dcfd24b1
                     return AVERROR_INVALIDDATA;
                 }
 
                 j = 0;
                 for (i = 0; i < frame_length; ++i) {
                     if (ctx->raw_samples[c][i]) {
                         if (nbits[i] & 7) {
                             nbits_aligned = 8 * ((unsigned int)(nbits[i] / 8) + 1);
                         } else {
                             nbits_aligned = nbits[i];
                         }
                         acc = 0;
                         for (k = 0; k < nbits_aligned/8; ++k) {
                             acc = (acc << 8) + larray[j++];
                         }
                         acc >>= (nbits_aligned - nbits[i]);
                         raw_mantissa[c][i] = acc;
                     }
                 }
             }
         }
 
         for (i = 0; i < frame_length; ++i) {
             SoftFloat_IEEE754 pcm_sf = av_int2sf_ieee754(ctx->raw_samples[c][i], 0);
             pcm_sf = av_div_sf_ieee754(pcm_sf, scale);
 
             if (ctx->raw_samples[c][i] != 0) {
                 if (!av_cmp_sf_ieee754(acf[c], FLOAT_1)) {
                     pcm_sf = multiply(acf[c], pcm_sf);
                 }
 
                 sign = pcm_sf.sign;
                 e = pcm_sf.exp;
                 mantissa = (pcm_sf.mant | 0x800000) + raw_mantissa[c][i];
 
                 while(mantissa >= 0x1000000) {
                     e++;
                     mantissa >>= 1;
                 }
 
                 if (mantissa) e += (shift_value[c] - 127);
                 mantissa &= 0x007fffffUL;
 
                 tmp_32 = (sign << 31) | ((e + EXP_BIAS) << 23) | (mantissa);
                 ctx->raw_samples[c][i] = tmp_32;
             } else {
                 ctx->raw_samples[c][i] = raw_mantissa[c][i] & 0x007fffffUL;
             }
         }
         align_get_bits(gb);
     }
     return 0;
 }
 
 
49bd8e4b
 /** Read the frame data.
99971952
  */
 static int read_frame_data(ALSDecContext *ctx, unsigned int ra_frame)
 {
     ALSSpecificConfig *sconf = &ctx->sconf;
     AVCodecContext *avctx    = ctx->avctx;
     GetBitContext *gb = &ctx->gb;
     unsigned int div_blocks[32];                ///< block sizes.
     unsigned int c;
     unsigned int js_blocks[2];
     uint32_t bs_info = 0;
ca488ad4
     int ret;
99971952
 
     // skip the size of the ra unit if present in the frame
     if (sconf->ra_flag == RA_FLAG_FRAMES && ra_frame)
         skip_bits_long(gb, 32);
 
     if (sconf->mc_coding && sconf->joint_stereo) {
         ctx->js_switch = get_bits1(gb);
         align_get_bits(gb);
     }
 
     if (!sconf->mc_coding || ctx->js_switch) {
         int independent_bs = !sconf->joint_stereo;
 
         for (c = 0; c < avctx->channels; c++) {
             js_blocks[0] = 0;
             js_blocks[1] = 0;
 
             get_block_sizes(ctx, div_blocks, &bs_info);
 
             // if joint_stereo and block_switching is set, independent decoding
             // is signaled via the first bit of bs_info
             if (sconf->joint_stereo && sconf->block_switching)
                 if (bs_info >> 31)
                     independent_bs = 2;
 
             // if this is the last channel, it has to be decoded independently
c8853568
             if (c == avctx->channels - 1 || (c & 1))
99971952
                 independent_bs = 1;
 
             if (independent_bs) {
ca488ad4
                 ret = decode_blocks_ind(ctx, ra_frame, c,
                                         div_blocks, js_blocks);
                 if (ret < 0)
                     return ret;
99971952
                 independent_bs--;
             } else {
ca488ad4
                 ret = decode_blocks(ctx, ra_frame, c, div_blocks, js_blocks);
                 if (ret < 0)
                     return ret;
99971952
 
                 c++;
             }
 
             // store carryover raw samples
             memmove(ctx->raw_samples[c] - sconf->max_order,
                     ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
                     sizeof(*ctx->raw_samples[c]) * sconf->max_order);
         }
     } else { // multi-channel coding
a92be9b8
         ALSBlockData   bd = { 0 };
ac3f5a68
         int            b, ret;
e38215f2
         int            *reverted_channels = ctx->reverted_channels;
         unsigned int   offset             = 0;
 
         for (c = 0; c < avctx->channels; c++)
             if (ctx->chan_data[c] < ctx->chan_data_buffer) {
95f81159
                 av_log(ctx->avctx, AV_LOG_ERROR, "Invalid channel data.\n");
ca488ad4
                 return AVERROR_INVALIDDATA;
e38215f2
             }
 
         memset(reverted_channels, 0, sizeof(*reverted_channels) * avctx->channels);
 
         bd.ra_block         = ra_frame;
         bd.prev_raw_samples = ctx->prev_raw_samples;
 
99971952
         get_block_sizes(ctx, div_blocks, &bs_info);
 
e38215f2
         for (b = 0; b < ctx->num_blocks; b++) {
             bd.block_length = div_blocks[b];
2a0fb728
             if (bd.block_length <= 0) {
                 av_log(ctx->avctx, AV_LOG_WARNING,
cc8163e1
                        "Invalid block length %u in channel data!\n",
                        bd.block_length);
2a0fb728
                 continue;
             }
e38215f2
 
             for (c = 0; c < avctx->channels; c++) {
efd63823
                 bd.const_block = ctx->const_block + c;
                 bd.shift_lsbs  = ctx->shift_lsbs + c;
                 bd.opt_order   = ctx->opt_order + c;
                 bd.store_prev_samples = ctx->store_prev_samples + c;
e38215f2
                 bd.use_ltp     = ctx->use_ltp + c;
                 bd.ltp_lag     = ctx->ltp_lag + c;
                 bd.ltp_gain    = ctx->ltp_gain[c];
                 bd.lpc_cof     = ctx->lpc_cof[c];
                 bd.quant_cof   = ctx->quant_cof[c];
                 bd.raw_samples = ctx->raw_samples[c] + offset;
                 bd.raw_other   = NULL;
 
ac3f5a68
                 if ((ret = read_block(ctx, &bd)) < 0)
                     return ret;
                 if ((ret = read_channel_data(ctx, ctx->chan_data[c], c)) < 0)
                     return ret;
e38215f2
             }
 
ca488ad4
             for (c = 0; c < avctx->channels; c++) {
                 ret = revert_channel_correlation(ctx, &bd, ctx->chan_data,
                                                  reverted_channels, offset, c);
                 if (ret < 0)
                     return ret;
             }
e38215f2
             for (c = 0; c < avctx->channels; c++) {
efd63823
                 bd.const_block = ctx->const_block + c;
                 bd.shift_lsbs  = ctx->shift_lsbs + c;
                 bd.opt_order   = ctx->opt_order + c;
                 bd.store_prev_samples = ctx->store_prev_samples + c;
e38215f2
                 bd.use_ltp     = ctx->use_ltp + c;
                 bd.ltp_lag     = ctx->ltp_lag + c;
                 bd.ltp_gain    = ctx->ltp_gain[c];
                 bd.lpc_cof     = ctx->lpc_cof[c];
                 bd.quant_cof   = ctx->quant_cof[c];
                 bd.raw_samples = ctx->raw_samples[c] + offset;
4cdc337b
 
ac3f5a68
                 if ((ret = decode_block(ctx, &bd)) < 0)
                     return ret;
e38215f2
             }
 
             memset(reverted_channels, 0, avctx->channels * sizeof(*reverted_channels));
             offset      += div_blocks[b];
             bd.ra_block  = 0;
         }
 
         // store carryover raw samples
         for (c = 0; c < avctx->channels; c++)
             memmove(ctx->raw_samples[c] - sconf->max_order,
                     ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
                     sizeof(*ctx->raw_samples[c]) * sconf->max_order);
99971952
     }
 
dcfd24b1
     if (sconf->floating) {
         read_diff_float_data(ctx, ra_frame);
     }
99971952
 
c2657633
     if (get_bits_left(gb) < 0) {
         av_log(ctx->avctx, AV_LOG_ERROR, "Overread %d\n", -get_bits_left(gb));
         return AVERROR_INVALIDDATA;
     }
 
99971952
     return 0;
 }
 
 
49bd8e4b
 /** Decode an ALS frame.
99971952
  */
0eea2129
 static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr,
99971952
                         AVPacket *avpkt)
 {
     ALSDecContext *ctx       = avctx->priv_data;
9b0b355e
     AVFrame *frame           = data;
99971952
     ALSSpecificConfig *sconf = &ctx->sconf;
     const uint8_t *buffer    = avpkt->data;
     int buffer_size          = avpkt->size;
0eea2129
     int invalid_frame, ret;
99971952
     unsigned int c, sample, ra_frame, bytes_read, shift;
 
dccd648f
     if ((ret = init_get_bits8(&ctx->gb, buffer, buffer_size)) < 0)
         return ret;
99971952
 
     // In the case that the distance between random access frames is set to zero
     // (sconf->ra_distance == 0) no frame is treated as a random access frame.
     // For the first frame, if prediction is used, all samples used from the
     // previous frame are assumed to be zero.
     ra_frame = sconf->ra_distance && !(ctx->frame_id % sconf->ra_distance);
 
     // the last frame to decode might have a different length
     if (sconf->samples != 0xFFFFFFFF)
         ctx->cur_frame_length = FFMIN(sconf->samples - ctx->frame_id * (uint64_t) sconf->frame_length,
                                       sconf->frame_length);
     else
         ctx->cur_frame_length = sconf->frame_length;
 
     // decode the frame data
2f0f9a87
     if ((invalid_frame = read_frame_data(ctx, ra_frame)) < 0)
99971952
         av_log(ctx->avctx, AV_LOG_WARNING,
                "Reading frame data failed. Skipping RA unit.\n");
 
     ctx->frame_id++;
 
0eea2129
     /* get output buffer */
9b0b355e
     frame->nb_samples = ctx->cur_frame_length;
1ec94b0f
     if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
0eea2129
         return ret;
99971952
 
     // transform decoded frame into output format
fb3f28ee
     #define INTERLEAVE_OUTPUT(bps)                                                   \
     {                                                                                \
d13f434d
         int##bps##_t *dest = (int##bps##_t*)frame->data[0];                          \
4aedbf23
         int channels = avctx->channels;                                              \
         int32_t **raw_samples = ctx->raw_samples;                                    \
fb3f28ee
         shift = bps - ctx->avctx->bits_per_raw_sample;                               \
bfde6e5c
         if (!ctx->cs_switch) {                                                       \
fb3f28ee
             for (sample = 0; sample < ctx->cur_frame_length; sample++)               \
4aedbf23
                 for (c = 0; c < channels; c++)                                       \
                     *dest++ = raw_samples[c][sample] * (1U << shift);                \
ae27b70b
         } else {                                                                     \
             for (sample = 0; sample < ctx->cur_frame_length; sample++)               \
4aedbf23
                 for (c = 0; c < channels; c++)                                       \
                     *dest++ = raw_samples[sconf->chan_pos[c]][sample] * (1U << shift);\
ae27b70b
         }                                                                            \
99971952
     }
 
     if (ctx->avctx->bits_per_raw_sample <= 16) {
         INTERLEAVE_OUTPUT(16)
     } else {
         INTERLEAVE_OUTPUT(32)
     }
 
cbb39648
     // update CRC
919c00ba
     if (sconf->crc_enabled && (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL))) {
cbb39648
         int swap = HAVE_BIGENDIAN != sconf->msb_first;
 
         if (ctx->avctx->bits_per_raw_sample == 24) {
9b0b355e
             int32_t *src = (int32_t *)frame->data[0];
cbb39648
 
             for (sample = 0;
                  sample < ctx->cur_frame_length * avctx->channels;
                  sample++) {
                 int32_t v;
 
                 if (swap)
8fc0162a
                     v = av_bswap32(src[sample]);
cbb39648
                 else
                     v = src[sample];
                 if (!HAVE_BIGENDIAN)
                     v >>= 8;
 
                 ctx->crc = av_crc(ctx->crc_table, ctx->crc, (uint8_t*)(&v), 3);
             }
         } else {
             uint8_t *crc_source;
 
             if (swap) {
                 if (ctx->avctx->bits_per_raw_sample <= 16) {
9b0b355e
                     int16_t *src  = (int16_t*) frame->data[0];
cbb39648
                     int16_t *dest = (int16_t*) ctx->crc_buffer;
                     for (sample = 0;
                          sample < ctx->cur_frame_length * avctx->channels;
                          sample++)
8fc0162a
                         *dest++ = av_bswap16(src[sample]);
cbb39648
                 } else {
c67b449b
                     ctx->bdsp.bswap_buf((uint32_t *) ctx->crc_buffer,
                                         (uint32_t *) frame->data[0],
                                         ctx->cur_frame_length * avctx->channels);
cbb39648
                 }
                 crc_source = ctx->crc_buffer;
             } else {
9b0b355e
                 crc_source = frame->data[0];
cbb39648
             }
 
0eea2129
             ctx->crc = av_crc(ctx->crc_table, ctx->crc, crc_source,
                               ctx->cur_frame_length * avctx->channels *
                               av_get_bytes_per_sample(avctx->sample_fmt));
cbb39648
         }
 
 
         // check CRC sums if this is the last frame
         if (ctx->cur_frame_length != sconf->frame_length &&
             ctx->crc_org != ctx->crc) {
95f81159
             av_log(avctx, AV_LOG_ERROR, "CRC error.\n");
23a211cb
             if (avctx->err_recognition & AV_EF_EXPLODE)
                 return AVERROR_INVALIDDATA;
cbb39648
         }
     }
 
9b0b355e
     *got_frame_ptr = 1;
cbb39648
 
99971952
     bytes_read = invalid_frame ? buffer_size :
                                  (get_bits_count(&ctx->gb) + 7) >> 3;
 
     return bytes_read;
 }
 
 
49bd8e4b
 /** Uninitialize the ALS decoder.
99971952
  */
 static av_cold int decode_end(AVCodecContext *avctx)
 {
     ALSDecContext *ctx = avctx->priv_data;
f2192e0f
     int i;
99971952
 
     av_freep(&ctx->sconf.chan_pos);
 
25608328
     ff_bgmc_end(&ctx->bgmc_lut, &ctx->bgmc_lut_status);
 
efd63823
     av_freep(&ctx->const_block);
     av_freep(&ctx->shift_lsbs);
     av_freep(&ctx->opt_order);
     av_freep(&ctx->store_prev_samples);
1261b07f
     av_freep(&ctx->use_ltp);
     av_freep(&ctx->ltp_lag);
     av_freep(&ctx->ltp_gain);
     av_freep(&ctx->ltp_gain_buffer);
99971952
     av_freep(&ctx->quant_cof);
     av_freep(&ctx->lpc_cof);
e38215f2
     av_freep(&ctx->quant_cof_buffer);
     av_freep(&ctx->lpc_cof_buffer);
ff9ea0b7
     av_freep(&ctx->lpc_cof_reversed_buffer);
99971952
     av_freep(&ctx->prev_raw_samples);
     av_freep(&ctx->raw_samples);
     av_freep(&ctx->raw_buffer);
e38215f2
     av_freep(&ctx->chan_data);
     av_freep(&ctx->chan_data_buffer);
     av_freep(&ctx->reverted_channels);
5255acc6
     av_freep(&ctx->crc_buffer);
837e72b0
     if (ctx->mlz) {
         av_freep(&ctx->mlz->dict);
         av_freep(&ctx->mlz);
     }
dcfd24b1
     av_freep(&ctx->acf);
     av_freep(&ctx->last_acf_mantissa);
     av_freep(&ctx->shift_value);
     av_freep(&ctx->last_shift_value);
f2192e0f
     if (ctx->raw_mantissa) {
         for (i = 0; i < avctx->channels; i++) {
             av_freep(&ctx->raw_mantissa[i]);
         }
         av_freep(&ctx->raw_mantissa);
     }
dcfd24b1
     av_freep(&ctx->larray);
     av_freep(&ctx->nbits);
99971952
 
     return 0;
 }
 
 
49bd8e4b
 /** Initialize the ALS decoder.
99971952
  */
 static av_cold int decode_init(AVCodecContext *avctx)
 {
     unsigned int c;
     unsigned int channel_size;
ca488ad4
     int num_buffers, ret;
99971952
     ALSDecContext *ctx = avctx->priv_data;
     ALSSpecificConfig *sconf = &ctx->sconf;
     ctx->avctx = avctx;
 
     if (!avctx->extradata) {
95f81159
         av_log(avctx, AV_LOG_ERROR, "Missing required ALS extradata.\n");
ca488ad4
         return AVERROR_INVALIDDATA;
99971952
     }
 
ca488ad4
     if ((ret = read_specific_config(ctx)) < 0) {
95f81159
         av_log(avctx, AV_LOG_ERROR, "Reading ALSSpecificConfig failed.\n");
ca488ad4
         goto fail;
99971952
     }
 
ca488ad4
     if ((ret = check_specific_config(ctx)) < 0) {
         goto fail;
99971952
     }
 
ca488ad4
     if (sconf->bgmc) {
         ret = ff_bgmc_init(avctx, &ctx->bgmc_lut, &ctx->bgmc_lut_status);
         if (ret < 0)
             goto fail;
     }
99971952
     if (sconf->floating) {
5d6e4c16
         avctx->sample_fmt          = AV_SAMPLE_FMT_FLT;
99971952
         avctx->bits_per_raw_sample = 32;
     } else {
         avctx->sample_fmt          = sconf->resolution > 1
5d6e4c16
                                      ? AV_SAMPLE_FMT_S32 : AV_SAMPLE_FMT_S16;
99971952
         avctx->bits_per_raw_sample = (sconf->resolution + 1) * 8;
4c2b8867
         if (avctx->bits_per_raw_sample > 32) {
             av_log(avctx, AV_LOG_ERROR, "Bits per raw sample %d larger than 32.\n",
                    avctx->bits_per_raw_sample);
             ret = AVERROR_INVALIDDATA;
             goto fail;
         }
99971952
     }
 
11431599
     // set maximum Rice parameter for progressive decoding based on resolution
     // This is not specified in 14496-3 but actually done by the reference
     // codec RM22 revision 2.
     ctx->s_max = sconf->resolution > 1 ? 31 : 15;
 
93d38cf6
     // set lag value for long-term prediction
     ctx->ltp_lag_length = 8 + (avctx->sample_rate >=  96000) +
                               (avctx->sample_rate >= 192000);
 
1261b07f
     // allocate quantized parcor coefficient buffer
     num_buffers = sconf->mc_coding ? avctx->channels : 1;
4852df4a
     if (num_buffers * (uint64_t)num_buffers > INT_MAX) // protect chan_data_buffer allocation
         return AVERROR_INVALIDDATA;
1261b07f
 
c2fc4663
     ctx->quant_cof        = av_malloc_array(num_buffers, sizeof(*ctx->quant_cof));
     ctx->lpc_cof          = av_malloc_array(num_buffers, sizeof(*ctx->lpc_cof));
     ctx->quant_cof_buffer = av_malloc_array(num_buffers * sconf->max_order,
                                             sizeof(*ctx->quant_cof_buffer));
     ctx->lpc_cof_buffer   = av_malloc_array(num_buffers * sconf->max_order,
                                             sizeof(*ctx->lpc_cof_buffer));
     ctx->lpc_cof_reversed_buffer = av_malloc_array(sconf->max_order,
                                                    sizeof(*ctx->lpc_cof_buffer));
e38215f2
 
099809d1
     if (!ctx->quant_cof              || !ctx->lpc_cof        ||
         !ctx->quant_cof_buffer       || !ctx->lpc_cof_buffer ||
ff9ea0b7
         !ctx->lpc_cof_reversed_buffer) {
95f81159
         av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
ca488ad4
         ret = AVERROR(ENOMEM);
         goto fail;
e38215f2
     }
 
     // assign quantized parcor coefficient buffers
     for (c = 0; c < num_buffers; c++) {
         ctx->quant_cof[c] = ctx->quant_cof_buffer + c * sconf->max_order;
         ctx->lpc_cof[c]   = ctx->lpc_cof_buffer   + c * sconf->max_order;
     }
 
1261b07f
     // allocate and assign lag and gain data buffer for ltp mode
c2fc4663
     ctx->const_block     = av_malloc_array(num_buffers, sizeof(*ctx->const_block));
     ctx->shift_lsbs      = av_malloc_array(num_buffers, sizeof(*ctx->shift_lsbs));
     ctx->opt_order       = av_malloc_array(num_buffers, sizeof(*ctx->opt_order));
     ctx->store_prev_samples = av_malloc_array(num_buffers, sizeof(*ctx->store_prev_samples));
     ctx->use_ltp         = av_mallocz_array(num_buffers, sizeof(*ctx->use_ltp));
     ctx->ltp_lag         = av_malloc_array(num_buffers, sizeof(*ctx->ltp_lag));
     ctx->ltp_gain        = av_malloc_array(num_buffers, sizeof(*ctx->ltp_gain));
     ctx->ltp_gain_buffer = av_malloc_array(num_buffers * 5, sizeof(*ctx->ltp_gain_buffer));
1261b07f
 
efd63823
     if (!ctx->const_block || !ctx->shift_lsbs ||
         !ctx->opt_order || !ctx->store_prev_samples ||
         !ctx->use_ltp  || !ctx->ltp_lag ||
1261b07f
         !ctx->ltp_gain || !ctx->ltp_gain_buffer) {
95f81159
         av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
ca488ad4
         ret = AVERROR(ENOMEM);
         goto fail;
1261b07f
     }
 
     for (c = 0; c < num_buffers; c++)
         ctx->ltp_gain[c] = ctx->ltp_gain_buffer + c * 5;
 
e38215f2
     // allocate and assign channel data buffer for mcc mode
     if (sconf->mc_coding) {
7e104647
         ctx->chan_data_buffer  = av_mallocz_array(num_buffers * num_buffers,
c2fc4663
                                                  sizeof(*ctx->chan_data_buffer));
7e104647
         ctx->chan_data         = av_mallocz_array(num_buffers,
c2fc4663
                                                  sizeof(*ctx->chan_data));
         ctx->reverted_channels = av_malloc_array(num_buffers,
                                                  sizeof(*ctx->reverted_channels));
e38215f2
 
         if (!ctx->chan_data_buffer || !ctx->chan_data || !ctx->reverted_channels) {
95f81159
             av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
ca488ad4
             ret = AVERROR(ENOMEM);
             goto fail;
e38215f2
         }
 
         for (c = 0; c < num_buffers; c++)
cd092849
             ctx->chan_data[c] = ctx->chan_data_buffer + c * num_buffers;
e38215f2
     } else {
         ctx->chan_data         = NULL;
         ctx->chan_data_buffer  = NULL;
         ctx->reverted_channels = NULL;
     }
 
99971952
     channel_size      = sconf->frame_length + sconf->max_order;
 
c2fc4663
     ctx->prev_raw_samples = av_malloc_array(sconf->max_order, sizeof(*ctx->prev_raw_samples));
     ctx->raw_buffer       = av_mallocz_array(avctx->channels * channel_size, sizeof(*ctx->raw_buffer));
     ctx->raw_samples      = av_malloc_array(avctx->channels, sizeof(*ctx->raw_samples));
99971952
 
dcfd24b1
     if (sconf->floating) {
         ctx->acf               = av_malloc_array(avctx->channels, sizeof(*ctx->acf));
         ctx->shift_value       = av_malloc_array(avctx->channels, sizeof(*ctx->shift_value));
         ctx->last_shift_value  = av_malloc_array(avctx->channels, sizeof(*ctx->last_shift_value));
         ctx->last_acf_mantissa = av_malloc_array(avctx->channels, sizeof(*ctx->last_acf_mantissa));
f2192e0f
         ctx->raw_mantissa      = av_mallocz_array(avctx->channels, sizeof(*ctx->raw_mantissa));
dcfd24b1
 
         ctx->larray = av_malloc_array(ctx->cur_frame_length * 4, sizeof(*ctx->larray));
         ctx->nbits  = av_malloc_array(ctx->cur_frame_length, sizeof(*ctx->nbits));
837e72b0
         ctx->mlz    = av_mallocz(sizeof(*ctx->mlz));
dcfd24b1
 
         if (!ctx->mlz || !ctx->acf || !ctx->shift_value || !ctx->last_shift_value
             || !ctx->last_acf_mantissa || !ctx->raw_mantissa) {
             av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
             ret = AVERROR(ENOMEM);
             goto fail;
         }
 
         ff_mlz_init_dict(avctx, ctx->mlz);
         ff_mlz_flush_dict(ctx->mlz);
 
         for (c = 0; c < avctx->channels; ++c) {
             ctx->raw_mantissa[c] = av_mallocz_array(ctx->cur_frame_length, sizeof(**ctx->raw_mantissa));
         }
     }
 
99971952
     // allocate previous raw sample buffer
     if (!ctx->prev_raw_samples || !ctx->raw_buffer|| !ctx->raw_samples) {
95f81159
         av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
ca488ad4
         ret = AVERROR(ENOMEM);
         goto fail;
99971952
     }
 
     // assign raw samples buffers
     ctx->raw_samples[0] = ctx->raw_buffer + sconf->max_order;
     for (c = 1; c < avctx->channels; c++)
         ctx->raw_samples[c] = ctx->raw_samples[c - 1] + channel_size;
 
cbb39648
     // allocate crc buffer
     if (HAVE_BIGENDIAN != sconf->msb_first && sconf->crc_enabled &&
919c00ba
         (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL))) {
c2fc4663
         ctx->crc_buffer = av_malloc_array(ctx->cur_frame_length *
                                           avctx->channels *
                                           av_get_bytes_per_sample(avctx->sample_fmt),
                                           sizeof(*ctx->crc_buffer));
cbb39648
         if (!ctx->crc_buffer) {
95f81159
             av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
ca488ad4
             ret = AVERROR(ENOMEM);
             goto fail;
cbb39648
         }
     }
 
c67b449b
     ff_bswapdsp_init(&ctx->bdsp);
cbb39648
 
99971952
     return 0;
ca488ad4
 
 fail:
     return ret;
99971952
 }
 
 
49bd8e4b
 /** Flush (reset) the frame ID after seeking.
99971952
  */
 static av_cold void flush(AVCodecContext *avctx)
 {
     ALSDecContext *ctx = avctx->priv_data;
 
     ctx->frame_id = 0;
 }
 
 
e7e2df27
 AVCodec ff_als_decoder = {
ec6402b7
     .name           = "als",
b2bed932
     .long_name      = NULL_IF_CONFIG_SMALL("MPEG-4 Audio Lossless Coding (ALS)"),
ec6402b7
     .type           = AVMEDIA_TYPE_AUDIO,
36ef5369
     .id             = AV_CODEC_ID_MP4ALS,
ec6402b7
     .priv_data_size = sizeof(ALSDecContext),
     .init           = decode_init,
     .close          = decode_end,
     .decode         = decode_frame,
00c3b67b
     .flush          = flush,
def97856
     .capabilities   = AV_CODEC_CAP_SUBFRAMES | AV_CODEC_CAP_DR1,
5190d3a2
     .caps_internal  = FF_CODEC_CAP_INIT_CLEANUP,
99971952
 };