libavcodec/magicyuvenc.c
3729ae65
 /*
  * MagicYUV encoder
  * Copyright (c) 2017 Paul B Mahol
  *
  * This file is part of FFmpeg.
  *
  * FFmpeg is free software; you can redistribute it and/or
  * modify it under the terms of the GNU Lesser General Public
  * License as published by the Free Software Foundation; either
  * version 2.1 of the License, or (at your option) any later version.
  *
  * FFmpeg is distributed in the hope that it will be useful,
  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  * Lesser General Public License for more details.
  *
  * You should have received a copy of the GNU Lesser General Public
  * License along with FFmpeg; if not, write to the Free Software
  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  */
 
 #include <stdlib.h>
 #include <string.h>
 
 #include "libavutil/opt.h"
 #include "libavutil/pixdesc.h"
 #include "libavutil/qsort.h"
 
 #include "avcodec.h"
 #include "bytestream.h"
 #include "put_bits.h"
 #include "internal.h"
 #include "thread.h"
 #include "lossless_videoencdsp.h"
 
 typedef enum Prediction {
     LEFT = 1,
     GRADIENT,
     MEDIAN,
 } Prediction;
 
 typedef struct HuffEntry {
     uint8_t  sym;
     uint8_t  len;
     uint32_t code;
 } HuffEntry;
 
 typedef struct PTable {
     int     value;  ///< input value
     int64_t prob;   ///< number of occurences of this value in input
 } PTable;
 
 typedef struct MagicYUVContext {
     const AVClass       *class;
     int                  frame_pred;
     PutBitContext        pb;
     int                  planes;
     uint8_t              format;
     AVFrame             *p;
     int                  max;
     int                  slice_height;
     int                  nb_slices;
     int                  correlate;
     int                  hshift[4];
     int                  vshift[4];
     uint8_t             *slices[4];
     unsigned             slice_pos[4];
     unsigned             tables_size;
     HuffEntry            he[4][256];
     LLVidEncDSPContext   llvidencdsp;
     void (*predict)(struct MagicYUVContext *s, uint8_t *src, uint8_t *dst,
                     ptrdiff_t stride, int width, int height);
 } MagicYUVContext;
 
 static void left_predict(MagicYUVContext *s,
                          uint8_t *src, uint8_t *dst, ptrdiff_t stride,
                          int width, int height)
 {
     uint8_t prev = 0;
     int i, j;
 
     for (i = 0; i < width; i++) {
         dst[i] = src[i] - prev;
         prev   = src[i];
     }
     dst += width;
     src += stride;
     for (j = 1; j < height; j++) {
         prev = src[-stride];
         for (i = 0; i < width; i++) {
             dst[i] = src[i] - prev;
             prev   = src[i];
         }
         dst += width;
         src += stride;
     }
 }
 
 static void gradient_predict(MagicYUVContext *s,
                              uint8_t *src, uint8_t *dst, ptrdiff_t stride,
                              int width, int height)
 {
     int left = 0, top, lefttop;
     int i, j;
 
     for (i = 0; i < width; i++) {
         dst[i] = src[i] - left;
         left   = src[i];
     }
     dst += width;
     src += stride;
     for (j = 1; j < height; j++) {
         top = src[-stride];
         left = src[0] - top;
         dst[0] = left;
         for (i = 1; i < width; i++) {
             top = src[i - stride];
             lefttop = src[i - (stride + 1)];
             left = src[i-1];
             dst[i] = (src[i] - top) - left + lefttop;
         }
         dst += width;
         src += stride;
     }
 }
 
 static void median_predict(MagicYUVContext *s,
                            uint8_t *src, uint8_t *dst, ptrdiff_t stride,
                            int width, int height)
 {
     int left = 0, lefttop;
     int i, j;
 
     for (i = 0; i < width; i++) {
         dst[i] = src[i] - left;
         left   = src[i];
     }
     dst += width;
     src += stride;
     for (j = 1; j < height; j++) {
         left = lefttop = src[-stride];
         s->llvidencdsp.sub_median_pred(dst, src - stride, src, width, &left, &lefttop);
         dst += width;
         src += stride;
     }
 }
 
 static av_cold int magy_encode_init(AVCodecContext *avctx)
 {
     MagicYUVContext *s = avctx->priv_data;
     int i;
 
     switch (avctx->pix_fmt) {
     case AV_PIX_FMT_GBRP:
         avctx->codec_tag = MKTAG('M', '8', 'R', 'G');
         s->correlate = 1;
         s->format = 0x65;
         break;
     case AV_PIX_FMT_GBRAP:
         avctx->codec_tag = MKTAG('M', '8', 'R', 'A');
         s->correlate = 1;
         s->format = 0x66;
         break;
     case AV_PIX_FMT_YUV420P:
         avctx->codec_tag = MKTAG('M', '8', 'Y', '0');
         s->hshift[1] =
         s->vshift[1] =
         s->hshift[2] =
         s->vshift[2] = 1;
         s->format = 0x69;
         break;
     case AV_PIX_FMT_YUV422P:
         avctx->codec_tag = MKTAG('M', '8', 'Y', '2');
         s->hshift[1] =
         s->hshift[2] = 1;
         s->format = 0x68;
         break;
     case AV_PIX_FMT_YUV444P:
         avctx->codec_tag = MKTAG('M', '8', 'Y', '4');
         s->format = 0x67;
         break;
     case AV_PIX_FMT_YUVA444P:
         avctx->codec_tag = MKTAG('M', '8', 'Y', 'A');
         s->format = 0x6a;
         break;
     case AV_PIX_FMT_GRAY8:
         avctx->codec_tag = MKTAG('M', '8', 'G', '0');
         s->format = 0x6b;
         break;
     default:
         av_log(avctx, AV_LOG_ERROR, "Unsupported pixel format: %d\n",
                avctx->pix_fmt);
         return AVERROR_INVALIDDATA;
     }
 
     ff_llvidencdsp_init(&s->llvidencdsp);
 
     s->planes = av_pix_fmt_count_planes(avctx->pix_fmt);
 
     s->nb_slices = 1;
 
     for (i = 0; i < s->planes; i++) {
         s->slices[i] = av_malloc(avctx->width * (avctx->height + 2) +
                                  AV_INPUT_BUFFER_PADDING_SIZE);
         if (!s->slices[i]) {
             av_log(avctx, AV_LOG_ERROR, "Cannot allocate temporary buffer.\n");
             return AVERROR(ENOMEM);
         }
     }
 
     switch (s->frame_pred) {
     case LEFT:     s->predict = left_predict;     break;
     case GRADIENT: s->predict = gradient_predict; break;
     case MEDIAN:   s->predict = median_predict;   break;
     }
 
     return 0;
 }
 
 static int magy_huff_cmp_len(const void *a, const void *b)
 {
     const HuffEntry *aa = a, *bb = b;
     return (aa->len - bb->len) * 256 + aa->sym - bb->sym;
 }
 
 static int huff_cmp_sym(const void *a, const void *b)
 {
     const HuffEntry *aa = a, *bb = b;
     return bb->sym - aa->sym;
 }
 
 static void calculate_codes(HuffEntry *he)
 {
     uint32_t code;
     int i;
 
     AV_QSORT(he, 256, HuffEntry, magy_huff_cmp_len);
 
     code = 1;
     for (i = 255; i >= 0; i--) {
         he[i].code  = code >> (32 - he[i].len);
         code       += 0x80000000u >> (he[i].len - 1);
     }
 
     AV_QSORT(he, 256, HuffEntry, huff_cmp_sym);
 }
 
 static void count_usage(uint8_t *src, int width,
                         int height, PTable *counts)
 {
     int i, j;
 
     for (j = 0; j < height; j++) {
         for (i = 0; i < width; i++) {
             counts[src[i]].prob++;
         }
         src += width;
     }
 }
 
 typedef struct PackageMergerList {
     int nitems;             ///< number of items in the list and probability      ex. 4
     int item_idx[515];      ///< index range for each item in items                   0, 2, 5, 9, 13
     int probability[514];   ///< probability of each item                             3, 8, 18, 46
     int items[257 * 16];    ///< chain of all individual values that make up items    A, B, A, B, C, A, B, C, D, C, D, D, E
 } PackageMergerList;
 
 static int compare_by_prob(const void *a, const void *b)
 {
     PTable a_val = *(PTable *)a;
     PTable b_val = *(PTable *)b;
     return a_val.prob - b_val.prob;
 }
 
 static void magy_huffman_compute_bits(PTable *prob_table, HuffEntry *distincts,
                                       int size, int max_length)
 {
     PackageMergerList list_a, list_b, *to = &list_a, *from = &list_b, *temp;
     int times, i, j, k;
     int nbits[257] = {0};
     int min;
 
     av_assert0(max_length > 0);
 
     to->nitems = 0;
     from->nitems = 0;
     to->item_idx[0] = 0;
     from->item_idx[0] = 0;
     AV_QSORT(prob_table, size, PTable, compare_by_prob);
 
     for (times = 0; times <= max_length; times++) {
         to->nitems = 0;
         to->item_idx[0] = 0;
 
         j = 0;
         k = 0;
 
         if (times < max_length) {
             i = 0;
         }
         while (i < size || j + 1 < from->nitems) {
             to->nitems++;
             to->item_idx[to->nitems] = to->item_idx[to->nitems - 1];
             if (i < size &&
                 (j + 1 >= from->nitems ||
                  prob_table[i].prob <
                      from->probability[j] + from->probability[j + 1])) {
                 to->items[to->item_idx[to->nitems]++] = prob_table[i].value;
                 to->probability[to->nitems - 1] = prob_table[i].prob;
                 i++;
             } else {
                 for (k = from->item_idx[j]; k < from->item_idx[j + 2]; k++) {
                     to->items[to->item_idx[to->nitems]++] = from->items[k];
                 }
                 to->probability[to->nitems - 1] =
                     from->probability[j] + from->probability[j + 1];
                 j += 2;
             }
         }
         temp = to;
         to = from;
         from = temp;
     }
 
     min = (size - 1 < from->nitems) ? size - 1 : from->nitems;
     for (i = 0; i < from->item_idx[min]; i++) {
         nbits[from->items[i]]++;
     }
 
     for (i = 0; i < size; i++) {
         distincts[i].sym = i;
         distincts[i].len = nbits[i];
     }
 }
 
 static int encode_table(AVCodecContext *avctx, uint8_t *dst,
                         int width, int height,
                         PutBitContext *pb, HuffEntry *he)
 {
ee2dfa34
     PTable counts[256] = { {0} };
3729ae65
     int i;
 
     count_usage(dst, width, height, counts);
 
     for (i = 0; i < 256; i++) {
         counts[i].prob++;
ca106d6a
         counts[i].value = 255 - i;
3729ae65
     }
 
     magy_huffman_compute_bits(counts, he, 256, 16);
 
     calculate_codes(he);
 
     for (i = 0; i < 256; i++) {
         put_bits(pb, 1, 0);
         put_bits(pb, 7, he[i].len);
     }
 
     return 0;
 }
 
 static int encode_slice(uint8_t *src, uint8_t *dst, int dst_size,
                         int width, int height, HuffEntry *he, int prediction)
 {
     PutBitContext pb;
     int i, j;
     int count;
 
     init_put_bits(&pb, dst, dst_size);
 
     put_bits(&pb, 8, 0);
     put_bits(&pb, 8, prediction);
 
     for (j = 0; j < height; j++) {
         for (i = 0; i < width; i++) {
             const int idx = src[i];
             put_bits(&pb, he[idx].len, he[idx].code);
         }
 
         src += width;
     }
 
     count = put_bits_count(&pb) & 0x1F;
 
     if (count)
         put_bits(&pb, 32 - count, 0);
 
     count = put_bits_count(&pb);
 
     flush_put_bits(&pb);
 
     return count >> 3;
 }
 
 static int magy_encode_frame(AVCodecContext *avctx, AVPacket *pkt,
                              const AVFrame *frame, int *got_packet)
 {
     MagicYUVContext *s = avctx->priv_data;
     PutByteContext pb;
     const int width = avctx->width, height = avctx->height;
     int pos, slice, i, j, ret = 0;
 
     ret = ff_alloc_packet2(avctx, pkt, (256 + 4 * s->nb_slices + width * height) *
                            s->planes + 256, 0);
     if (ret < 0)
         return ret;
 
     bytestream2_init_writer(&pb, pkt->data, pkt->size);
     bytestream2_put_le32(&pb, MKTAG('M', 'A', 'G', 'Y'));
     bytestream2_put_le32(&pb, 32);
     bytestream2_put_byte(&pb, 7);
     bytestream2_put_byte(&pb, s->format);
     bytestream2_put_byte(&pb, 0);
     bytestream2_put_byte(&pb, 0);
     bytestream2_put_le32(&pb, 0);
 
     bytestream2_put_le32(&pb, avctx->width);
     bytestream2_put_le32(&pb, avctx->height);
     bytestream2_put_le32(&pb, avctx->width);
     bytestream2_put_le32(&pb, avctx->height);
     bytestream2_put_le32(&pb, 0);
 
     for (i = 0; i < s->planes; i++) {
         bytestream2_put_le32(&pb, 0);
         for (j = 1; j < s->nb_slices; j++) {
             bytestream2_put_le32(&pb, 0);
         }
     }
 
     bytestream2_put_byte(&pb, s->planes);
 
     for (i = 0; i < s->planes; i++) {
         for (slice = 0; slice < s->nb_slices; slice++) {
             bytestream2_put_byte(&pb, i);
         }
     }
 
     if (s->correlate) {
         uint8_t *r, *g, *b;
         AVFrame *p = av_frame_clone(frame);
 
         g = p->data[0];
         b = p->data[1];
         r = p->data[2];
 
         for (i = 0; i < height; i++) {
             s->llvidencdsp.diff_bytes(b, b, g, width);
             s->llvidencdsp.diff_bytes(r, r, g, width);
             g += p->linesize[0];
             b += p->linesize[1];
             r += p->linesize[2];
         }
 
         FFSWAP(uint8_t*, p->data[0], p->data[1]);
         FFSWAP(int, p->linesize[0], p->linesize[1]);
 
         for (i = 0; i < s->planes; i++) {
             for (slice = 0; slice < s->nb_slices; slice++) {
                 s->predict(s, p->data[i], s->slices[i], p->linesize[i],
                                p->width, p->height);
             }
         }
 
         av_frame_free(&p);
     } else {
         for (i = 0; i < s->planes; i++) {
             for (slice = 0; slice < s->nb_slices; slice++) {
                 s->predict(s, frame->data[i], s->slices[i], frame->linesize[i],
                            AV_CEIL_RSHIFT(frame->width, s->hshift[i]),
                            AV_CEIL_RSHIFT(frame->height, s->vshift[i]));
             }
         }
     }
 
     init_put_bits(&s->pb, pkt->data + bytestream2_tell_p(&pb), bytestream2_get_bytes_left_p(&pb));
 
     for (i = 0; i < s->planes; i++) {
         encode_table(avctx, s->slices[i],
                      AV_CEIL_RSHIFT(frame->width,  s->hshift[i]),
                      AV_CEIL_RSHIFT(frame->height, s->vshift[i]),
                      &s->pb, s->he[i]);
     }
     s->tables_size = (put_bits_count(&s->pb) + 7) >> 3;
     bytestream2_skip_p(&pb, s->tables_size);
 
     for (i = 0; i < s->planes; i++) {
         unsigned slice_size;
 
         s->slice_pos[i] = bytestream2_tell_p(&pb);
         slice_size = encode_slice(s->slices[i], pkt->data + bytestream2_tell_p(&pb),
                                   bytestream2_get_bytes_left_p(&pb),
                                   AV_CEIL_RSHIFT(frame->width,  s->hshift[i]),
                                   AV_CEIL_RSHIFT(frame->height, s->vshift[i]),
                                   s->he[i], s->frame_pred);
         bytestream2_skip_p(&pb, slice_size);
     }
 
     pos = bytestream2_tell_p(&pb);
     bytestream2_seek_p(&pb, 32, SEEK_SET);
     bytestream2_put_le32(&pb, s->slice_pos[0] - 32);
     for (i = 0; i < s->planes; i++) {
         bytestream2_put_le32(&pb, s->slice_pos[i] - 32);
     }
     bytestream2_seek_p(&pb, pos, SEEK_SET);
 
     pkt->size   = bytestream2_tell_p(&pb);
     pkt->flags |= AV_PKT_FLAG_KEY;
 
     *got_packet = 1;
 
     return 0;
 }
 
 static av_cold int magy_encode_close(AVCodecContext *avctx)
 {
     MagicYUVContext *s = avctx->priv_data;
     int i;
 
     for (i = 0; i < s->planes; i++)
         av_freep(&s->slices[i]);
 
     return 0;
 }
 
 #define OFFSET(x) offsetof(MagicYUVContext, x)
 #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
 static const AVOption options[] = {
     { "pred", "Prediction method", OFFSET(frame_pred), AV_OPT_TYPE_INT, {.i64=LEFT}, LEFT, MEDIAN, VE, "pred" },
     { "left",     NULL, 0, AV_OPT_TYPE_CONST, { .i64 = LEFT },     0, 0, VE, "pred" },
     { "gradient", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = GRADIENT }, 0, 0, VE, "pred" },
     { "median",   NULL, 0, AV_OPT_TYPE_CONST, { .i64 = MEDIAN },   0, 0, VE, "pred" },
     { NULL},
 };
 
 static const AVClass magicyuv_class = {
     .class_name = "magicyuv",
     .item_name  = av_default_item_name,
     .option     = options,
     .version    = LIBAVUTIL_VERSION_INT,
 };
 
 AVCodec ff_magicyuv_encoder = {
     .name             = "magicyuv",
     .long_name        = NULL_IF_CONFIG_SMALL("MagicYUV video"),
     .type             = AVMEDIA_TYPE_VIDEO,
     .id               = AV_CODEC_ID_MAGICYUV,
     .priv_data_size   = sizeof(MagicYUVContext),
     .priv_class       = &magicyuv_class,
     .init             = magy_encode_init,
     .close            = magy_encode_close,
     .encode2          = magy_encode_frame,
4078291d
     .capabilities     = AV_CODEC_CAP_FRAME_THREADS | AV_CODEC_CAP_INTRA_ONLY | AV_CODEC_CAP_EXPERIMENTAL,
3729ae65
     .pix_fmts         = (const enum AVPixelFormat[]) {
                           AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRAP, AV_PIX_FMT_YUV422P,
                           AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUVA444P, AV_PIX_FMT_GRAY8,
                           AV_PIX_FMT_NONE
                       },
 };