libavfilter/af_atempo.c
a1aac8d0
 /*
  * Copyright (c) 2012 Pavel Koshevoy <pkoshevoy at gmail dot com>
  *
  * This file is part of FFmpeg.
  *
  * FFmpeg is free software; you can redistribute it and/or
  * modify it under the terms of the GNU Lesser General Public
  * License as published by the Free Software Foundation; either
  * version 2.1 of the License, or (at your option) any later version.
  *
  * FFmpeg is distributed in the hope that it will be useful,
  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  * Lesser General Public License for more details.
  *
  * You should have received a copy of the GNU Lesser General Public
  * License along with FFmpeg; if not, write to the Free Software
  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  */
 
 /**
  * @file
  * tempo scaling audio filter -- an implementation of WSOLA algorithm
  *
  * Based on MIT licensed yaeAudioTempoFilter.h and yaeAudioFragment.h
  * from Apprentice Video player by Pavel Koshevoy.
  * https://sourceforge.net/projects/apprenticevideo/
  *
  * An explanation of SOLA algorithm is available at
  * http://www.surina.net/article/time-and-pitch-scaling.html
  *
  * WSOLA is very similar to SOLA, only one major difference exists between
  * these algorithms.  SOLA shifts audio fragments along the output stream,
  * where as WSOLA shifts audio fragments along the input stream.
  *
  * The advantage of WSOLA algorithm is that the overlap region size is
  * always the same, therefore the blending function is constant and
  * can be precomputed.
  */
 
 #include <float.h>
 #include "libavcodec/avfft.h"
 #include "libavutil/avassert.h"
 #include "libavutil/avstring.h"
1acd2f6b
 #include "libavutil/channel_layout.h"
a1aac8d0
 #include "libavutil/eval.h"
 #include "libavutil/opt.h"
 #include "libavutil/samplefmt.h"
 #include "avfilter.h"
 #include "audio.h"
 #include "internal.h"
 
 /**
  * A fragment of audio waveform
  */
ed93ed5e
 typedef struct AudioFragment {
a1aac8d0
     // index of the first sample of this fragment in the overall waveform;
     // 0: input sample position
     // 1: output sample position
     int64_t position[2];
 
     // original packed multi-channel samples:
     uint8_t *data;
 
     // number of samples in this fragment:
     int nsamples;
 
     // rDFT transform of the down-mixed mono fragment, used for
     // fast waveform alignment via correlation in frequency domain:
     FFTSample *xdat;
 } AudioFragment;
 
 /**
  * Filter state machine states
  */
 typedef enum {
     YAE_LOAD_FRAGMENT,
     YAE_ADJUST_POSITION,
     YAE_RELOAD_FRAGMENT,
     YAE_OUTPUT_OVERLAP_ADD,
     YAE_FLUSH_OUTPUT,
 } FilterState;
 
 /**
  * Filter state machine
  */
ed93ed5e
 typedef struct ATempoContext {
8f3c440a
     const AVClass *class;
 
a1aac8d0
     // ring-buffer of input samples, necessary because some times
     // input fragment position may be adjusted backwards:
     uint8_t *buffer;
 
     // ring-buffer maximum capacity, expressed in sample rate time base:
     int ring;
 
     // ring-buffer house keeping:
     int size;
     int head;
     int tail;
 
     // 0: input sample position corresponding to the ring buffer tail
     // 1: output sample position
     int64_t position[2];
 
     // sample format:
     enum AVSampleFormat format;
 
     // number of channels:
     int channels;
 
     // row of bytes to skip from one sample to next, across multple channels;
     // stride = (number-of-channels * bits-per-sample-per-channel) / 8
     int stride;
 
     // fragment window size, power-of-two integer:
     int window;
 
     // Hann window coefficients, for feathering
     // (blending) the overlapping fragment region:
     float *hann;
 
     // tempo scaling factor:
     double tempo;
 
0c77cdb4
     // a snapshot of previous fragment input and output position values
     // captured when the tempo scale factor was set most recently:
     int64_t origin[2];
a1aac8d0
 
     // current/previous fragment ring-buffer:
     AudioFragment frag[2];
 
     // current fragment index:
     uint64_t nfrag;
 
     // current state:
     FilterState state;
 
     // for fast correlation calculation in frequency domain:
     RDFTContext *real_to_complex;
     RDFTContext *complex_to_real;
     FFTSample *correlation;
 
cd7febd3
     // for managing AVFilterPad.request_frame and AVFilterPad.filter_frame
a05a44e2
     AVFrame *dst_buffer;
a1aac8d0
     uint8_t *dst;
     uint8_t *dst_end;
     uint64_t nsamples_in;
     uint64_t nsamples_out;
 } ATempoContext;
 
8f3c440a
 #define OFFSET(x) offsetof(ATempoContext, x)
 
 static const AVOption atempo_options[] = {
     { "tempo", "set tempo scale factor",
       OFFSET(tempo), AV_OPT_TYPE_DOUBLE, { .dbl = 1.0 }, 0.5, 2.0,
       AV_OPT_FLAG_AUDIO_PARAM | AV_OPT_FLAG_FILTERING_PARAM },
     { NULL }
 };
 
 AVFILTER_DEFINE_CLASS(atempo);
 
0c77cdb4
 inline static AudioFragment *yae_curr_frag(ATempoContext *atempo)
 {
     return &atempo->frag[atempo->nfrag % 2];
 }
 
 inline static AudioFragment *yae_prev_frag(ATempoContext *atempo)
 {
     return &atempo->frag[(atempo->nfrag + 1) % 2];
 }
 
a1aac8d0
 /**
  * Reset filter to initial state, do not deallocate existing local buffers.
  */
 static void yae_clear(ATempoContext *atempo)
 {
     atempo->size = 0;
     atempo->head = 0;
     atempo->tail = 0;
 
     atempo->nfrag = 0;
     atempo->state = YAE_LOAD_FRAGMENT;
 
     atempo->position[0] = 0;
     atempo->position[1] = 0;
 
0c77cdb4
     atempo->origin[0] = 0;
     atempo->origin[1] = 0;
 
a1aac8d0
     atempo->frag[0].position[0] = 0;
     atempo->frag[0].position[1] = 0;
     atempo->frag[0].nsamples    = 0;
 
     atempo->frag[1].position[0] = 0;
     atempo->frag[1].position[1] = 0;
     atempo->frag[1].nsamples    = 0;
 
     // shift left position of 1st fragment by half a window
     // so that no re-normalization would be required for
     // the left half of the 1st fragment:
     atempo->frag[0].position[0] = -(int64_t)(atempo->window / 2);
     atempo->frag[0].position[1] = -(int64_t)(atempo->window / 2);
 
a05a44e2
     av_frame_free(&atempo->dst_buffer);
a1aac8d0
     atempo->dst     = NULL;
     atempo->dst_end = NULL;
 
     atempo->nsamples_in       = 0;
     atempo->nsamples_out      = 0;
 }
 
 /**
  * Reset filter to initial state and deallocate all buffers.
  */
 static void yae_release_buffers(ATempoContext *atempo)
 {
     yae_clear(atempo);
 
     av_freep(&atempo->frag[0].data);
     av_freep(&atempo->frag[1].data);
     av_freep(&atempo->frag[0].xdat);
     av_freep(&atempo->frag[1].xdat);
 
     av_freep(&atempo->buffer);
     av_freep(&atempo->hann);
     av_freep(&atempo->correlation);
 
     av_rdft_end(atempo->real_to_complex);
     atempo->real_to_complex = NULL;
 
     av_rdft_end(atempo->complex_to_real);
     atempo->complex_to_real = NULL;
 }
 
a5704659
 /* av_realloc is not aligned enough; fortunately, the data does not need to
  * be preserved */
 #define RE_MALLOC_OR_FAIL(field, field_size)                    \
a1aac8d0
     do {                                                        \
a5704659
         av_freep(&field);                                       \
         field = av_malloc(field_size);                          \
         if (!field) {                                           \
a1aac8d0
             yae_release_buffers(atempo);                        \
             return AVERROR(ENOMEM);                             \
         }                                                       \
     } while (0)
 
 /**
  * Prepare filter for processing audio data of given format,
  * sample rate and number of channels.
  */
 static int yae_reset(ATempoContext *atempo,
                      enum AVSampleFormat format,
                      int sample_rate,
                      int channels)
 {
     const int sample_size = av_get_bytes_per_sample(format);
     uint32_t nlevels  = 0;
     uint32_t pot;
     int i;
 
     atempo->format   = format;
     atempo->channels = channels;
     atempo->stride   = sample_size * channels;
 
     // pick a segment window size:
     atempo->window = sample_rate / 24;
 
     // adjust window size to be a power-of-two integer:
     nlevels = av_log2(atempo->window);
     pot = 1 << nlevels;
     av_assert0(pot <= atempo->window);
 
     if (pot < atempo->window) {
         atempo->window = pot * 2;
         nlevels++;
     }
 
     // initialize audio fragment buffers:
a5704659
     RE_MALLOC_OR_FAIL(atempo->frag[0].data, atempo->window * atempo->stride);
     RE_MALLOC_OR_FAIL(atempo->frag[1].data, atempo->window * atempo->stride);
     RE_MALLOC_OR_FAIL(atempo->frag[0].xdat, atempo->window * sizeof(FFTComplex));
     RE_MALLOC_OR_FAIL(atempo->frag[1].xdat, atempo->window * sizeof(FFTComplex));
a1aac8d0
 
     // initialize rDFT contexts:
     av_rdft_end(atempo->real_to_complex);
     atempo->real_to_complex = NULL;
 
     av_rdft_end(atempo->complex_to_real);
     atempo->complex_to_real = NULL;
 
     atempo->real_to_complex = av_rdft_init(nlevels + 1, DFT_R2C);
     if (!atempo->real_to_complex) {
         yae_release_buffers(atempo);
         return AVERROR(ENOMEM);
     }
 
     atempo->complex_to_real = av_rdft_init(nlevels + 1, IDFT_C2R);
     if (!atempo->complex_to_real) {
         yae_release_buffers(atempo);
         return AVERROR(ENOMEM);
     }
 
a5704659
     RE_MALLOC_OR_FAIL(atempo->correlation, atempo->window * sizeof(FFTComplex));
a1aac8d0
 
     atempo->ring = atempo->window * 3;
a5704659
     RE_MALLOC_OR_FAIL(atempo->buffer, atempo->ring * atempo->stride);
a1aac8d0
 
     // initialize the Hann window function:
a5704659
     RE_MALLOC_OR_FAIL(atempo->hann, atempo->window * sizeof(float));
a1aac8d0
 
     for (i = 0; i < atempo->window; i++) {
         double t = (double)i / (double)(atempo->window - 1);
         double h = 0.5 * (1.0 - cos(2.0 * M_PI * t));
         atempo->hann[i] = (float)h;
     }
 
     yae_clear(atempo);
     return 0;
 }
 
 static int yae_set_tempo(AVFilterContext *ctx, const char *arg_tempo)
 {
0c77cdb4
     const AudioFragment *prev;
a1aac8d0
     ATempoContext *atempo = ctx->priv;
     char   *tail = NULL;
     double tempo = av_strtod(arg_tempo, &tail);
 
     if (tail && *tail) {
         av_log(ctx, AV_LOG_ERROR, "Invalid tempo value '%s'\n", arg_tempo);
         return AVERROR(EINVAL);
     }
 
     if (tempo < 0.5 || tempo > 2.0) {
         av_log(ctx, AV_LOG_ERROR, "Tempo value %f exceeds [0.5, 2.0] range\n",
                tempo);
         return AVERROR(EINVAL);
     }
 
0c77cdb4
     prev = yae_prev_frag(atempo);
     atempo->origin[0] = prev->position[0] + atempo->window / 2;
     atempo->origin[1] = prev->position[1] + atempo->window / 2;
a1aac8d0
     atempo->tempo = tempo;
     return 0;
 }
 
 /**
  * A helper macro for initializing complex data buffer with scalar data
  * of a given type.
  */
 #define yae_init_xdat(scalar_type, scalar_max)                          \
     do {                                                                \
         const uint8_t *src_end = src +                                  \
             frag->nsamples * atempo->channels * sizeof(scalar_type);    \
                                                                         \
         FFTSample *xdat = frag->xdat;                                   \
         scalar_type tmp;                                                \
                                                                         \
         if (atempo->channels == 1) {                                    \
             for (; src < src_end; xdat++) {                             \
                 tmp = *(const scalar_type *)src;                        \
                 src += sizeof(scalar_type);                             \
                                                                         \
                 *xdat = (FFTSample)tmp;                                 \
             }                                                           \
         } else {                                                        \
             FFTSample s, max, ti, si;                                   \
             int i;                                                      \
                                                                         \
             for (; src < src_end; xdat++) {                             \
                 tmp = *(const scalar_type *)src;                        \
                 src += sizeof(scalar_type);                             \
                                                                         \
                 max = (FFTSample)tmp;                                   \
                 s = FFMIN((FFTSample)scalar_max,                        \
                           (FFTSample)fabsf(max));                       \
                                                                         \
                 for (i = 1; i < atempo->channels; i++) {                \
                     tmp = *(const scalar_type *)src;                    \
                     src += sizeof(scalar_type);                         \
                                                                         \
                     ti = (FFTSample)tmp;                                \
                     si = FFMIN((FFTSample)scalar_max,                   \
                                (FFTSample)fabsf(ti));                   \
                                                                         \
                     if (s < si) {                                       \
                         s   = si;                                       \
                         max = ti;                                       \
                     }                                                   \
                 }                                                       \
                                                                         \
                 *xdat = max;                                            \
             }                                                           \
         }                                                               \
     } while (0)
 
 /**
  * Initialize complex data buffer of a given audio fragment
  * with down-mixed mono data of appropriate scalar type.
  */
 static void yae_downmix(ATempoContext *atempo, AudioFragment *frag)
 {
     // shortcuts:
     const uint8_t *src = frag->data;
 
     // init complex data buffer used for FFT and Correlation:
     memset(frag->xdat, 0, sizeof(FFTComplex) * atempo->window);
 
     if (atempo->format == AV_SAMPLE_FMT_U8) {
         yae_init_xdat(uint8_t, 127);
     } else if (atempo->format == AV_SAMPLE_FMT_S16) {
         yae_init_xdat(int16_t, 32767);
     } else if (atempo->format == AV_SAMPLE_FMT_S32) {
         yae_init_xdat(int, 2147483647);
     } else if (atempo->format == AV_SAMPLE_FMT_FLT) {
         yae_init_xdat(float, 1);
     } else if (atempo->format == AV_SAMPLE_FMT_DBL) {
         yae_init_xdat(double, 1);
     }
 }
 
 /**
  * Populate the internal data buffer on as-needed basis.
  *
  * @return
  *   0 if requested data was already available or was successfully loaded,
  *   AVERROR(EAGAIN) if more input data is required.
  */
 static int yae_load_data(ATempoContext *atempo,
                          const uint8_t **src_ref,
                          const uint8_t *src_end,
                          int64_t stop_here)
 {
     // shortcut:
     const uint8_t *src = *src_ref;
     const int read_size = stop_here - atempo->position[0];
 
     if (stop_here <= atempo->position[0]) {
         return 0;
     }
 
     // samples are not expected to be skipped:
     av_assert0(read_size <= atempo->ring);
 
     while (atempo->position[0] < stop_here && src < src_end) {
         int src_samples = (src_end - src) / atempo->stride;
 
         // load data piece-wise, in order to avoid complicating the logic:
         int nsamples = FFMIN(read_size, src_samples);
         int na;
         int nb;
 
         nsamples = FFMIN(nsamples, atempo->ring);
         na = FFMIN(nsamples, atempo->ring - atempo->tail);
         nb = FFMIN(nsamples - na, atempo->ring);
 
         if (na) {
             uint8_t *a = atempo->buffer + atempo->tail * atempo->stride;
             memcpy(a, src, na * atempo->stride);
 
             src += na * atempo->stride;
             atempo->position[0] += na;
 
             atempo->size = FFMIN(atempo->size + na, atempo->ring);
             atempo->tail = (atempo->tail + na) % atempo->ring;
             atempo->head =
                 atempo->size < atempo->ring ?
                 atempo->tail - atempo->size :
                 atempo->tail;
         }
 
         if (nb) {
             uint8_t *b = atempo->buffer;
             memcpy(b, src, nb * atempo->stride);
 
             src += nb * atempo->stride;
             atempo->position[0] += nb;
 
             atempo->size = FFMIN(atempo->size + nb, atempo->ring);
             atempo->tail = (atempo->tail + nb) % atempo->ring;
             atempo->head =
                 atempo->size < atempo->ring ?
                 atempo->tail - atempo->size :
                 atempo->tail;
         }
     }
 
     // pass back the updated source buffer pointer:
     *src_ref = src;
 
     // sanity check:
     av_assert0(atempo->position[0] <= stop_here);
 
     return atempo->position[0] == stop_here ? 0 : AVERROR(EAGAIN);
 }
 
 /**
  * Populate current audio fragment data buffer.
  *
  * @return
  *   0 when the fragment is ready,
  *   AVERROR(EAGAIN) if more input data is required.
  */
 static int yae_load_frag(ATempoContext *atempo,
                          const uint8_t **src_ref,
                          const uint8_t *src_end)
 {
     // shortcuts:
     AudioFragment *frag = yae_curr_frag(atempo);
     uint8_t *dst;
     int64_t missing, start, zeros;
     uint32_t nsamples;
     const uint8_t *a, *b;
     int i0, i1, n0, n1, na, nb;
 
     int64_t stop_here = frag->position[0] + atempo->window;
     if (src_ref && yae_load_data(atempo, src_ref, src_end, stop_here) != 0) {
         return AVERROR(EAGAIN);
     }
 
     // calculate the number of samples we don't have:
     missing =
         stop_here > atempo->position[0] ?
         stop_here - atempo->position[0] : 0;
 
     nsamples =
         missing < (int64_t)atempo->window ?
         (uint32_t)(atempo->window - missing) : 0;
 
     // setup the output buffer:
     frag->nsamples = nsamples;
     dst = frag->data;
 
     start = atempo->position[0] - atempo->size;
     zeros = 0;
 
     if (frag->position[0] < start) {
         // what we don't have we substitute with zeros:
         zeros = FFMIN(start - frag->position[0], (int64_t)nsamples);
         av_assert0(zeros != nsamples);
 
         memset(dst, 0, zeros * atempo->stride);
         dst += zeros * atempo->stride;
     }
 
     if (zeros == nsamples) {
         return 0;
     }
 
     // get the remaining data from the ring buffer:
     na = (atempo->head < atempo->tail ?
           atempo->tail - atempo->head :
           atempo->ring - atempo->head);
 
     nb = atempo->head < atempo->tail ? 0 : atempo->tail;
 
     // sanity check:
     av_assert0(nsamples <= zeros + na + nb);
 
     a = atempo->buffer + atempo->head * atempo->stride;
     b = atempo->buffer;
 
     i0 = frag->position[0] + zeros - start;
     i1 = i0 < na ? 0 : i0 - na;
 
     n0 = i0 < na ? FFMIN(na - i0, (int)(nsamples - zeros)) : 0;
     n1 = nsamples - zeros - n0;
 
     if (n0) {
         memcpy(dst, a + i0 * atempo->stride, n0 * atempo->stride);
         dst += n0 * atempo->stride;
     }
 
     if (n1) {
         memcpy(dst, b + i1 * atempo->stride, n1 * atempo->stride);
     }
 
     return 0;
 }
 
 /**
  * Prepare for loading next audio fragment.
  */
 static void yae_advance_to_next_frag(ATempoContext *atempo)
 {
     const double fragment_step = atempo->tempo * (double)(atempo->window / 2);
 
     const AudioFragment *prev;
     AudioFragment       *frag;
 
     atempo->nfrag++;
     prev = yae_prev_frag(atempo);
     frag = yae_curr_frag(atempo);
 
     frag->position[0] = prev->position[0] + (int64_t)fragment_step;
     frag->position[1] = prev->position[1] + atempo->window / 2;
     frag->nsamples    = 0;
 }
 
 /**
  * Calculate cross-correlation via rDFT.
  *
  * Multiply two vectors of complex numbers (result of real_to_complex rDFT)
  * and transform back via complex_to_real rDFT.
  */
 static void yae_xcorr_via_rdft(FFTSample *xcorr,
                                RDFTContext *complex_to_real,
                                const FFTComplex *xa,
                                const FFTComplex *xb,
                                const int window)
 {
     FFTComplex *xc = (FFTComplex *)xcorr;
     int i;
 
     // NOTE: first element requires special care -- Given Y = rDFT(X),
     // Im(Y[0]) and Im(Y[N/2]) are always zero, therefore av_rdft_calc
     // stores Re(Y[N/2]) in place of Im(Y[0]).
 
     xc->re = xa->re * xb->re;
     xc->im = xa->im * xb->im;
     xa++;
     xb++;
     xc++;
 
     for (i = 1; i < window; i++, xa++, xb++, xc++) {
         xc->re = (xa->re * xb->re + xa->im * xb->im);
         xc->im = (xa->im * xb->re - xa->re * xb->im);
     }
 
     // apply inverse rDFT:
     av_rdft_calc(complex_to_real, xcorr);
 }
 
 /**
  * Calculate alignment offset for given fragment
  * relative to the previous fragment.
  *
  * @return alignment offset of current fragment relative to previous.
  */
 static int yae_align(AudioFragment *frag,
                      const AudioFragment *prev,
                      const int window,
                      const int delta_max,
                      const int drift,
                      FFTSample *correlation,
                      RDFTContext *complex_to_real)
 {
     int       best_offset = -drift;
     FFTSample best_metric = -FLT_MAX;
     FFTSample *xcorr;
 
     int i0;
     int i1;
     int i;
 
     yae_xcorr_via_rdft(correlation,
                        complex_to_real,
                        (const FFTComplex *)prev->xdat,
                        (const FFTComplex *)frag->xdat,
                        window);
 
     // identify search window boundaries:
     i0 = FFMAX(window / 2 - delta_max - drift, 0);
     i0 = FFMIN(i0, window);
 
     i1 = FFMIN(window / 2 + delta_max - drift, window - window / 16);
     i1 = FFMAX(i1, 0);
 
     // identify cross-correlation peaks within search window:
     xcorr = correlation + i0;
 
     for (i = i0; i < i1; i++, xcorr++) {
         FFTSample metric = *xcorr;
 
         // normalize:
         FFTSample drifti = (FFTSample)(drift + i);
5fa82264
         metric *= drifti * (FFTSample)(i - i0) * (FFTSample)(i1 - i);
a1aac8d0
 
         if (metric > best_metric) {
             best_metric = metric;
             best_offset = i - window / 2;
         }
     }
 
     return best_offset;
 }
 
 /**
  * Adjust current fragment position for better alignment
  * with previous fragment.
  *
  * @return alignment correction.
  */
 static int yae_adjust_position(ATempoContext *atempo)
 {
     const AudioFragment *prev = yae_prev_frag(atempo);
     AudioFragment       *frag = yae_curr_frag(atempo);
 
0c77cdb4
     const double prev_output_position =
947fdad9
         (double)(prev->position[1] - atempo->origin[1] + atempo->window / 2) *
         atempo->tempo;
0c77cdb4
 
     const double ideal_output_position =
947fdad9
         (double)(prev->position[0] - atempo->origin[0] + atempo->window / 2);
0c77cdb4
 
     const int drift = (int)(prev_output_position - ideal_output_position);
 
a1aac8d0
     const int delta_max  = atempo->window / 2;
     const int correction = yae_align(frag,
                                      prev,
                                      atempo->window,
                                      delta_max,
0c77cdb4
                                      drift,
a1aac8d0
                                      atempo->correlation,
                                      atempo->complex_to_real);
 
     if (correction) {
         // adjust fragment position:
         frag->position[0] -= correction;
 
         // clear so that the fragment can be reloaded:
         frag->nsamples = 0;
     }
 
     return correction;
 }
 
 /**
  * A helper macro for blending the overlap region of previous
  * and current audio fragment.
  */
 #define yae_blend(scalar_type)                                          \
     do {                                                                \
         const scalar_type *aaa = (const scalar_type *)a;                \
         const scalar_type *bbb = (const scalar_type *)b;                \
                                                                         \
         scalar_type *out     = (scalar_type *)dst;                      \
         scalar_type *out_end = (scalar_type *)dst_end;                  \
         int64_t i;                                                      \
                                                                         \
         for (i = 0; i < overlap && out < out_end;                       \
              i++, atempo->position[1]++, wa++, wb++) {                  \
             float w0 = *wa;                                             \
             float w1 = *wb;                                             \
             int j;                                                      \
                                                                         \
             for (j = 0; j < atempo->channels;                           \
                  j++, aaa++, bbb++, out++) {                            \
                 float t0 = (float)*aaa;                                 \
                 float t1 = (float)*bbb;                                 \
                                                                         \
                 *out =                                                  \
                     frag->position[0] + i < 0 ?                         \
                     *aaa :                                              \
                     (scalar_type)(t0 * w0 + t1 * w1);                   \
             }                                                           \
         }                                                               \
         dst = (uint8_t *)out;                                           \
     } while (0)
 
 /**
  * Blend the overlap region of previous and current audio fragment
  * and output the results to the given destination buffer.
  *
  * @return
  *   0 if the overlap region was completely stored in the dst buffer,
  *   AVERROR(EAGAIN) if more destination buffer space is required.
  */
 static int yae_overlap_add(ATempoContext *atempo,
                            uint8_t **dst_ref,
                            uint8_t *dst_end)
 {
     // shortcuts:
     const AudioFragment *prev = yae_prev_frag(atempo);
     const AudioFragment *frag = yae_curr_frag(atempo);
 
     const int64_t start_here = FFMAX(atempo->position[1],
                                      frag->position[1]);
 
     const int64_t stop_here = FFMIN(prev->position[1] + prev->nsamples,
                                     frag->position[1] + frag->nsamples);
 
     const int64_t overlap = stop_here - start_here;
 
     const int64_t ia = start_here - prev->position[1];
     const int64_t ib = start_here - frag->position[1];
 
     const float *wa = atempo->hann + ia;
     const float *wb = atempo->hann + ib;
 
     const uint8_t *a = prev->data + ia * atempo->stride;
     const uint8_t *b = frag->data + ib * atempo->stride;
 
     uint8_t *dst = *dst_ref;
 
     av_assert0(start_here <= stop_here &&
                frag->position[1] <= start_here &&
                overlap <= frag->nsamples);
 
     if (atempo->format == AV_SAMPLE_FMT_U8) {
         yae_blend(uint8_t);
     } else if (atempo->format == AV_SAMPLE_FMT_S16) {
         yae_blend(int16_t);
     } else if (atempo->format == AV_SAMPLE_FMT_S32) {
         yae_blend(int);
     } else if (atempo->format == AV_SAMPLE_FMT_FLT) {
         yae_blend(float);
     } else if (atempo->format == AV_SAMPLE_FMT_DBL) {
         yae_blend(double);
     }
 
     // pass-back the updated destination buffer pointer:
     *dst_ref = dst;
 
     return atempo->position[1] == stop_here ? 0 : AVERROR(EAGAIN);
 }
 
 /**
  * Feed as much data to the filter as it is able to consume
  * and receive as much processed data in the destination buffer
  * as it is able to produce or store.
  */
 static void
 yae_apply(ATempoContext *atempo,
           const uint8_t **src_ref,
           const uint8_t *src_end,
           uint8_t **dst_ref,
           uint8_t *dst_end)
 {
     while (1) {
         if (atempo->state == YAE_LOAD_FRAGMENT) {
             // load additional data for the current fragment:
             if (yae_load_frag(atempo, src_ref, src_end) != 0) {
                 break;
             }
 
             // down-mix to mono:
             yae_downmix(atempo, yae_curr_frag(atempo));
 
             // apply rDFT:
             av_rdft_calc(atempo->real_to_complex, yae_curr_frag(atempo)->xdat);
 
             // must load the second fragment before alignment can start:
             if (!atempo->nfrag) {
                 yae_advance_to_next_frag(atempo);
                 continue;
             }
 
             atempo->state = YAE_ADJUST_POSITION;
         }
 
         if (atempo->state == YAE_ADJUST_POSITION) {
             // adjust position for better alignment:
             if (yae_adjust_position(atempo)) {
                 // reload the fragment at the corrected position, so that the
                 // Hann window blending would not require normalization:
                 atempo->state = YAE_RELOAD_FRAGMENT;
             } else {
                 atempo->state = YAE_OUTPUT_OVERLAP_ADD;
             }
         }
 
         if (atempo->state == YAE_RELOAD_FRAGMENT) {
             // load additional data if necessary due to position adjustment:
             if (yae_load_frag(atempo, src_ref, src_end) != 0) {
                 break;
             }
 
             // down-mix to mono:
             yae_downmix(atempo, yae_curr_frag(atempo));
 
             // apply rDFT:
             av_rdft_calc(atempo->real_to_complex, yae_curr_frag(atempo)->xdat);
 
             atempo->state = YAE_OUTPUT_OVERLAP_ADD;
         }
 
         if (atempo->state == YAE_OUTPUT_OVERLAP_ADD) {
             // overlap-add and output the result:
             if (yae_overlap_add(atempo, dst_ref, dst_end) != 0) {
                 break;
             }
 
             // advance to the next fragment, repeat:
             yae_advance_to_next_frag(atempo);
             atempo->state = YAE_LOAD_FRAGMENT;
         }
     }
 }
 
 /**
  * Flush any buffered data from the filter.
  *
  * @return
  *   0 if all data was completely stored in the dst buffer,
  *   AVERROR(EAGAIN) if more destination buffer space is required.
  */
 static int yae_flush(ATempoContext *atempo,
                      uint8_t **dst_ref,
                      uint8_t *dst_end)
 {
     AudioFragment *frag = yae_curr_frag(atempo);
     int64_t overlap_end;
     int64_t start_here;
     int64_t stop_here;
     int64_t offset;
 
     const uint8_t *src;
     uint8_t *dst;
 
     int src_size;
     int dst_size;
     int nbytes;
 
     atempo->state = YAE_FLUSH_OUTPUT;
 
25b50964
     if (!atempo->nfrag) {
         // there is nothing to flush:
         return 0;
     }
 
edb4ba5b
     if (atempo->position[0] == frag->position[0] + frag->nsamples &&
         atempo->position[1] == frag->position[1] + frag->nsamples) {
a1aac8d0
         // the current fragment is already flushed:
         return 0;
     }
 
     if (frag->position[0] + frag->nsamples < atempo->position[0]) {
         // finish loading the current (possibly partial) fragment:
         yae_load_frag(atempo, NULL, NULL);
 
         if (atempo->nfrag) {
             // down-mix to mono:
             yae_downmix(atempo, frag);
 
             // apply rDFT:
             av_rdft_calc(atempo->real_to_complex, frag->xdat);
 
             // align current fragment to previous fragment:
             if (yae_adjust_position(atempo)) {
                 // reload the current fragment due to adjusted position:
                 yae_load_frag(atempo, NULL, NULL);
             }
         }
     }
 
     // flush the overlap region:
     overlap_end = frag->position[1] + FFMIN(atempo->window / 2,
                                             frag->nsamples);
 
     while (atempo->position[1] < overlap_end) {
         if (yae_overlap_add(atempo, dst_ref, dst_end) != 0) {
             return AVERROR(EAGAIN);
         }
     }
 
6380f2e3
     // check whether all of the input samples have been consumed:
     if (frag->position[0] + frag->nsamples < atempo->position[0]) {
         yae_advance_to_next_frag(atempo);
         return AVERROR(EAGAIN);
     }
 
     // flush the remainder of the current fragment:
a1aac8d0
     start_here = FFMAX(atempo->position[1], overlap_end);
     stop_here  = frag->position[1] + frag->nsamples;
     offset     = start_here - frag->position[1];
     av_assert0(start_here <= stop_here && frag->position[1] <= start_here);
 
     src = frag->data + offset * atempo->stride;
     dst = (uint8_t *)*dst_ref;
 
     src_size = (int)(stop_here - start_here) * atempo->stride;
     dst_size = dst_end - dst;
     nbytes = FFMIN(src_size, dst_size);
 
     memcpy(dst, src, nbytes);
     dst += nbytes;
 
     atempo->position[1] += (nbytes / atempo->stride);
 
     // pass-back the updated destination buffer pointer:
     *dst_ref = (uint8_t *)dst;
 
     return atempo->position[1] == stop_here ? 0 : AVERROR(EAGAIN);
 }
 
fd6228e6
 static av_cold int init(AVFilterContext *ctx)
a1aac8d0
 {
     ATempoContext *atempo = ctx->priv;
     atempo->format = AV_SAMPLE_FMT_NONE;
     atempo->state  = YAE_LOAD_FRAGMENT;
8f3c440a
     return 0;
a1aac8d0
 }
 
 static av_cold void uninit(AVFilterContext *ctx)
 {
     ATempoContext *atempo = ctx->priv;
     yae_release_buffers(atempo);
 }
 
 static int query_formats(AVFilterContext *ctx)
 {
     AVFilterChannelLayouts *layouts = NULL;
     AVFilterFormats        *formats = NULL;
 
     // WSOLA necessitates an internal sliding window ring buffer
     // for incoming audio stream.
     //
     // Planar sample formats are too cumbersome to store in a ring buffer,
     // therefore planar sample formats are not supported.
     //
185d1f3b
     static const enum AVSampleFormat sample_fmts[] = {
a1aac8d0
         AV_SAMPLE_FMT_U8,
         AV_SAMPLE_FMT_S16,
         AV_SAMPLE_FMT_S32,
         AV_SAMPLE_FMT_FLT,
         AV_SAMPLE_FMT_DBL,
         AV_SAMPLE_FMT_NONE
     };
a0854c08
     int ret;
a1aac8d0
 
bffc2bcd
     layouts = ff_all_channel_counts();
a1aac8d0
     if (!layouts) {
         return AVERROR(ENOMEM);
     }
a0854c08
     ret = ff_set_common_channel_layouts(ctx, layouts);
     if (ret < 0)
         return ret;
a1aac8d0
 
     formats = ff_make_format_list(sample_fmts);
     if (!formats) {
         return AVERROR(ENOMEM);
     }
a0854c08
     ret = ff_set_common_formats(ctx, formats);
     if (ret < 0)
         return ret;
a1aac8d0
 
     formats = ff_all_samplerates();
     if (!formats) {
         return AVERROR(ENOMEM);
     }
a0854c08
     return ff_set_common_samplerates(ctx, formats);
a1aac8d0
 }
 
 static int config_props(AVFilterLink *inlink)
 {
     AVFilterContext  *ctx = inlink->dst;
     ATempoContext *atempo = ctx->priv;
 
     enum AVSampleFormat format = inlink->format;
     int sample_rate = (int)inlink->sample_rate;
 
db3b9331
     return yae_reset(atempo, format, sample_rate, inlink->channels);
a1aac8d0
 }
 
1b0d0e6b
 static int push_samples(ATempoContext *atempo,
                         AVFilterLink *outlink,
                         int n_out)
a1aac8d0
 {
1b0d0e6b
     int ret;
 
a05a44e2
     atempo->dst_buffer->sample_rate = outlink->sample_rate;
     atempo->dst_buffer->nb_samples  = n_out;
a1aac8d0
 
     // adjust the PTS:
     atempo->dst_buffer->pts =
         av_rescale_q(atempo->nsamples_out,
                      (AVRational){ 1, outlink->sample_rate },
                      outlink->time_base);
 
1b0d0e6b
     ret = ff_filter_frame(outlink, atempo->dst_buffer);
a1aac8d0
     atempo->dst_buffer = NULL;
     atempo->dst        = NULL;
     atempo->dst_end    = NULL;
bc6901c9
     if (ret < 0)
         return ret;
a1aac8d0
 
     atempo->nsamples_out += n_out;
1b0d0e6b
     return 0;
a1aac8d0
 }
 
a05a44e2
 static int filter_frame(AVFilterLink *inlink, AVFrame *src_buffer)
a1aac8d0
 {
     AVFilterContext  *ctx = inlink->dst;
     ATempoContext *atempo = ctx->priv;
     AVFilterLink *outlink = ctx->outputs[0];
 
1b0d0e6b
     int ret = 0;
a05a44e2
     int n_in = src_buffer->nb_samples;
a1aac8d0
     int n_out = (int)(0.5 + ((double)n_in) / atempo->tempo);
 
     const uint8_t *src = src_buffer->data[0];
     const uint8_t *src_end = src + n_in * atempo->stride;
 
     while (src < src_end) {
         if (!atempo->dst_buffer) {
a05a44e2
             atempo->dst_buffer = ff_get_audio_buffer(outlink, n_out);
c90b8809
             if (!atempo->dst_buffer) {
                 av_frame_free(&src_buffer);
ed8373e7
                 return AVERROR(ENOMEM);
c90b8809
             }
a05a44e2
             av_frame_copy_props(atempo->dst_buffer, src_buffer);
a1aac8d0
 
             atempo->dst = atempo->dst_buffer->data[0];
             atempo->dst_end = atempo->dst + n_out * atempo->stride;
         }
 
         yae_apply(atempo, &src, src_end, &atempo->dst, atempo->dst_end);
 
         if (atempo->dst == atempo->dst_end) {
5a2a0603
             int n_samples = ((atempo->dst - atempo->dst_buffer->data[0]) /
                              atempo->stride);
             ret = push_samples(atempo, outlink, n_samples);
1b0d0e6b
             if (ret < 0)
                 goto end;
a1aac8d0
         }
     }
 
     atempo->nsamples_in += n_in;
1b0d0e6b
 end:
a05a44e2
     av_frame_free(&src_buffer);
1b0d0e6b
     return ret;
a1aac8d0
 }
 
 static int request_frame(AVFilterLink *outlink)
 {
     AVFilterContext  *ctx = outlink->src;
     ATempoContext *atempo = ctx->priv;
     int ret;
 
d38c173d
     ret = ff_request_frame(ctx->inputs[0]);
a1aac8d0
 
     if (ret == AVERROR_EOF) {
         // flush the filter:
         int n_max = atempo->ring;
         int n_out;
         int err = AVERROR(EAGAIN);
 
         while (err == AVERROR(EAGAIN)) {
             if (!atempo->dst_buffer) {
a05a44e2
                 atempo->dst_buffer = ff_get_audio_buffer(outlink, n_max);
ed8373e7
                 if (!atempo->dst_buffer)
                     return AVERROR(ENOMEM);
a1aac8d0
 
                 atempo->dst = atempo->dst_buffer->data[0];
                 atempo->dst_end = atempo->dst + n_max * atempo->stride;
             }
 
             err = yae_flush(atempo, &atempo->dst, atempo->dst_end);
 
             n_out = ((atempo->dst - atempo->dst_buffer->data[0]) /
                      atempo->stride);
 
             if (n_out) {
1b0d0e6b
                 ret = push_samples(atempo, outlink, n_out);
704b774a
                 if (ret < 0)
                     return ret;
a1aac8d0
             }
         }
 
a05a44e2
         av_frame_free(&atempo->dst_buffer);
a1aac8d0
         atempo->dst     = NULL;
         atempo->dst_end = NULL;
 
         return AVERROR_EOF;
     }
 
     return ret;
 }
 
 static int process_command(AVFilterContext *ctx,
                            const char *cmd,
                            const char *arg,
                            char *res,
                            int res_len,
                            int flags)
 {
     return !strcmp(cmd, "tempo") ? yae_set_tempo(ctx, arg) : AVERROR(ENOSYS);
 }
 
2d9d4440
 static const AVFilterPad atempo_inputs[] = {
     {
         .name         = "default",
         .type         = AVMEDIA_TYPE_AUDIO,
         .filter_frame = filter_frame,
         .config_props = config_props,
     },
     { NULL }
 };
 
 static const AVFilterPad atempo_outputs[] = {
     {
         .name          = "default",
         .request_frame = request_frame,
         .type          = AVMEDIA_TYPE_AUDIO,
     },
     { NULL }
 };
 
325f6e0a
 AVFilter ff_af_atempo = {
a1aac8d0
     .name            = "atempo",
     .description     = NULL_IF_CONFIG_SMALL("Adjust audio tempo."),
     .init            = init,
     .uninit          = uninit,
     .query_formats   = query_formats,
     .process_command = process_command,
     .priv_size       = sizeof(ATempoContext),
8f3c440a
     .priv_class      = &atempo_class,
2d9d4440
     .inputs          = atempo_inputs,
     .outputs         = atempo_outputs,
a1aac8d0
 };