libavfilter/af_adeclick.c
e28b1fa6
 /*
  * Copyright (c) 2018 Paul B Mahol
  *
  * This file is part of FFmpeg.
  *
  * FFmpeg is free software; you can redistribute it and/or
  * modify it under the terms of the GNU Lesser General Public
  * License as published by the Free Software Foundation; either
  * version 2.1 of the License, or (at your option) any later version.
  *
  * FFmpeg is distributed in the hope that it will be useful,
  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  * Lesser General Public License for more details.
  *
  * You should have received a copy of the GNU Lesser General Public
  * License along with FFmpeg; if not, write to the Free Software
  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  */
 
 #include "libavutil/audio_fifo.h"
 #include "libavutil/opt.h"
 #include "avfilter.h"
 #include "audio.h"
 #include "formats.h"
 
 typedef struct DeclickChannel {
     double *auxiliary;
     double *detection;
     double *acoefficients;
     double *acorrelation;
     double *tmp;
     double *interpolated;
     double *matrix;
     int matrix_size;
     double *vector;
     int vector_size;
     double *y;
     int y_size;
     uint8_t *click;
     int *index;
     unsigned *histogram;
     int histogram_size;
 } DeclickChannel;
 
 typedef struct AudioDeclickContext {
     const AVClass *class;
 
     double w;
     double overlap;
     double threshold;
     double ar;
     double burst;
     int method;
     int nb_hbins;
 
     int is_declip;
     int ar_order;
     int nb_burst_samples;
     int window_size;
     int hop_size;
     int overlap_skip;
 
     AVFrame *in;
     AVFrame *out;
     AVFrame *buffer;
     AVFrame *is;
 
     DeclickChannel *chan;
 
     int64_t pts;
     int nb_channels;
     uint64_t nb_samples;
     uint64_t detected_errors;
     int samples_left;
 
     AVAudioFifo *fifo;
     double *window_func_lut;
 
     int (*detector)(struct AudioDeclickContext *s, DeclickChannel *c,
                     double sigmae, double *detection,
                     double *acoefficients, uint8_t *click, int *index,
                     const double *src, double *dst);
 } AudioDeclickContext;
 
 #define OFFSET(x) offsetof(AudioDeclickContext, x)
 #define AF AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
 
 static const AVOption adeclick_options[] = {
     { "w", "set window size",          OFFSET(w),         AV_OPT_TYPE_DOUBLE, {.dbl=55}, 10,  100, AF },
     { "o", "set window overlap",       OFFSET(overlap),   AV_OPT_TYPE_DOUBLE, {.dbl=75}, 50,   95, AF },
     { "a", "set autoregression order", OFFSET(ar),        AV_OPT_TYPE_DOUBLE, {.dbl=2},   0,   25, AF },
     { "t", "set threshold",            OFFSET(threshold), AV_OPT_TYPE_DOUBLE, {.dbl=2},   1,  100, AF },
     { "b", "set burst fusion",         OFFSET(burst),     AV_OPT_TYPE_DOUBLE, {.dbl=2},   0,   10, AF },
     { "m", "set overlap method",       OFFSET(method),    AV_OPT_TYPE_INT,    {.i64=0},   0,    1, AF, "m" },
     { "a", "overlap-add",              0,                 AV_OPT_TYPE_CONST,  {.i64=0},   0,    0, AF, "m" },
     { "s", "overlap-save",             0,                 AV_OPT_TYPE_CONST,  {.i64=1},   0,    0, AF, "m" },
     { NULL }
 };
 
 AVFILTER_DEFINE_CLASS(adeclick);
 
 static int query_formats(AVFilterContext *ctx)
 {
     AVFilterFormats *formats = NULL;
     AVFilterChannelLayouts *layouts = NULL;
     static const enum AVSampleFormat sample_fmts[] = {
         AV_SAMPLE_FMT_DBLP,
         AV_SAMPLE_FMT_NONE
     };
     int ret;
 
     formats = ff_make_format_list(sample_fmts);
     if (!formats)
         return AVERROR(ENOMEM);
     ret = ff_set_common_formats(ctx, formats);
     if (ret < 0)
         return ret;
 
     layouts = ff_all_channel_counts();
     if (!layouts)
         return AVERROR(ENOMEM);
 
     ret = ff_set_common_channel_layouts(ctx, layouts);
     if (ret < 0)
         return ret;
 
     formats = ff_all_samplerates();
     return ff_set_common_samplerates(ctx, formats);
 }
 
 static int config_input(AVFilterLink *inlink)
 {
     AVFilterContext *ctx = inlink->dst;
     AudioDeclickContext *s = ctx->priv;
     int i;
 
     s->pts = AV_NOPTS_VALUE;
     s->window_size = inlink->sample_rate * s->w / 1000.;
     if (s->window_size < 100)
         return AVERROR(EINVAL);
     s->ar_order = FFMAX(s->window_size * s->ar / 100., 1);
     s->nb_burst_samples = s->window_size * s->burst / 1000.;
     s->hop_size = s->window_size * (1. - (s->overlap / 100.));
     if (s->hop_size < 1)
         return AVERROR(EINVAL);
 
     s->window_func_lut = av_calloc(s->window_size, sizeof(*s->window_func_lut));
     if (!s->window_func_lut)
         return AVERROR(ENOMEM);
     for (i = 0; i < s->window_size; i++)
         s->window_func_lut[i] = sin(M_PI * i / s->window_size) *
                                 (1. - (s->overlap / 100.)) * M_PI_2;
 
     av_frame_free(&s->in);
     av_frame_free(&s->out);
     av_frame_free(&s->buffer);
     av_frame_free(&s->is);
     s->in = ff_get_audio_buffer(inlink, s->window_size);
     s->out = ff_get_audio_buffer(inlink, s->window_size);
     s->buffer = ff_get_audio_buffer(inlink, s->window_size * 2);
     s->is = ff_get_audio_buffer(inlink, s->window_size);
     if (!s->in || !s->out || !s->buffer || !s->is)
         return AVERROR(ENOMEM);
 
     s->fifo = av_audio_fifo_alloc(inlink->format, inlink->channels, s->window_size);
     if (!s->fifo)
         return AVERROR(ENOMEM);
     s->overlap_skip = s->method ? (s->window_size - s->hop_size) / 2 : 0;
     if (s->overlap_skip > 0) {
         av_audio_fifo_write(s->fifo, (void **)s->in->extended_data,
                             s->overlap_skip);
     }
 
     s->nb_channels = inlink->channels;
     s->chan = av_calloc(inlink->channels, sizeof(*s->chan));
     if (!s->chan)
         return AVERROR(ENOMEM);
 
     for (i = 0; i < inlink->channels; i++) {
         DeclickChannel *c = &s->chan[i];
 
         c->detection = av_calloc(s->window_size, sizeof(*c->detection));
         c->auxiliary = av_calloc(s->ar_order + 1, sizeof(*c->auxiliary));
         c->acoefficients = av_calloc(s->ar_order + 1, sizeof(*c->acoefficients));
         c->acorrelation = av_calloc(s->ar_order + 1, sizeof(*c->acorrelation));
         c->tmp = av_calloc(s->ar_order, sizeof(*c->tmp));
         c->click = av_calloc(s->window_size, sizeof(*c->click));
         c->index = av_calloc(s->window_size, sizeof(*c->index));
         c->interpolated = av_calloc(s->window_size, sizeof(*c->interpolated));
         if (!c->auxiliary || !c->acoefficients || !c->detection || !c->click ||
             !c->index || !c->interpolated || !c->acorrelation || !c->tmp)
             return AVERROR(ENOMEM);
     }
 
     return 0;
 }
 
 static void autocorrelation(const double *input, int order, int size,
                             double *output, double scale)
 {
     int i, j;
 
     for (i = 0; i <= order; i++) {
         double value = 0.;
 
         for (j = i; j < size; j++)
             value += input[j] * input[j - i];
 
         output[i] = value * scale;
     }
 }
 
 static double autoregression(const double *samples, int ar_order,
                              int nb_samples, double *k, double *r, double *a)
 {
     double alpha;
     int i, j;
 
     memset(a, 0, ar_order * sizeof(*a));
 
     autocorrelation(samples, ar_order, nb_samples, r, 1. / nb_samples);
 
     /* Levinson-Durbin algorithm */
     k[0] = a[0] = -r[1] / r[0];
     alpha = r[0] * (1. - k[0] * k[0]);
     for (i = 1; i < ar_order; i++) {
         double epsilon = 0.;
 
         for (j = 0; j < i; j++)
             epsilon += a[j] * r[i - j];
         epsilon += r[i + 1];
 
         k[i] = -epsilon / alpha;
         alpha *= (1. - k[i] * k[i]);
         for (j = i - 1; j >= 0; j--)
             k[j] = a[j] + k[i] * a[i - j - 1];
         for (j = 0; j <= i; j++)
             a[j] = k[j];
     }
 
     k[0] = 1.;
     for (i = 1; i <= ar_order; i++)
         k[i] = a[i - 1];
 
     return sqrt(alpha);
 }
 
 static int isfinite_array(double *samples, int nb_samples)
 {
     int i;
 
     for (i = 0; i < nb_samples; i++)
         if (!isfinite(samples[i]))
             return 0;
 
     return 1;
 }
 
 static int find_index(int *index, int value, int size)
 {
     int i, start, end;
 
     if ((value < index[0]) || (value > index[size - 1]))
         return 1;
 
     i = start = 0;
     end = size - 1;
 
     while (start <= end) {
         i = (end + start) / 2;
         if (index[i] == value)
             return 0;
         if (value < index[i])
             end = i - 1;
         if (value > index[i])
             start = i + 1;
     }
 
     return 1;
 }
 
 static int factorization(double *matrix, int n)
 {
     int i, j, k;
 
     for (i = 0; i < n; i++) {
         const int in = i * n;
         double value;
 
         value = matrix[in + i];
         for (j = 0; j < i; j++)
             value -= matrix[j * n + j] * matrix[in + j] * matrix[in + j];
 
         if (value == 0.) {
             return -1;
         }
 
         matrix[in + i] = value;
         for (j = i + 1; j < n; j++) {
             const int jn = j * n;
             double x;
 
             x = matrix[jn + i];
             for (k = 0; k < i; k++)
                 x -= matrix[k * n + k] * matrix[in + k] * matrix[jn + k];
             matrix[jn + i] = x / matrix[in + i];
         }
     }
 
     return 0;
 }
 
 static int do_interpolation(DeclickChannel *c, double *matrix,
                             double *vector, int n, double *out)
 {
     int i, j, ret;
     double *y;
 
     ret = factorization(matrix, n);
     if (ret < 0)
         return ret;
 
     av_fast_malloc(&c->y, &c->y_size, n * sizeof(*c->y));
     y = c->y;
     if (!y)
         return AVERROR(ENOMEM);
 
     for (i = 0; i < n; i++) {
         const int in = i * n;
         double value;
 
         value = vector[i];
         for (j = 0; j < i; j++)
             value -= matrix[in + j] * y[j];
         y[i] = value;
     }
 
     for (i = n - 1; i >= 0; i--) {
         out[i] = y[i] / matrix[i * n + i];
         for (j = i + 1; j < n; j++)
             out[i] -= matrix[j * n + i] * out[j];
     }
 
     return 0;
 }
 
 static int interpolation(DeclickChannel *c, const double *src, int ar_order,
                          double *acoefficients, int *index, int nb_errors,
                          double *auxiliary, double *interpolated)
 {
     double *vector, *matrix;
     int i, j;
 
     av_fast_malloc(&c->matrix, &c->matrix_size, nb_errors * nb_errors * sizeof(*c->matrix));
     matrix = c->matrix;
     if (!matrix)
         return AVERROR(ENOMEM);
 
     av_fast_malloc(&c->vector, &c->vector_size, nb_errors * sizeof(*c->vector));
     vector = c->vector;
     if (!vector)
         return AVERROR(ENOMEM);
 
     autocorrelation(acoefficients, ar_order, ar_order + 1, auxiliary, 1.);
 
     for (i = 0; i < nb_errors; i++) {
         const int im = i * nb_errors;
 
         for (j = i; j < nb_errors; j++) {
             if (abs(index[j] - index[i]) <= ar_order) {
                 matrix[j * nb_errors + i] = matrix[im + j] = auxiliary[abs(index[j] - index[i])];
             } else {
                 matrix[j * nb_errors + i] = matrix[im + j] = 0;
             }
         }
     }
 
     for (i = 0; i < nb_errors; i++) {
         double value = 0.;
 
         for (j = -ar_order; j <= ar_order; j++)
             if (find_index(index, index[i] - j, nb_errors))
                 value -= src[index[i] - j] * auxiliary[abs(j)];
 
         vector[i] = value;
     }
 
     return do_interpolation(c, matrix, vector, nb_errors, interpolated);
 }
 
 static int detect_clips(AudioDeclickContext *s, DeclickChannel *c,
                         double unused0,
                         double *unused1, double *unused2,
                         uint8_t *clip, int *index,
                         const double *src, double *dst)
 {
     const double threshold = s->threshold;
     double max_amplitude = 0;
     unsigned *histogram;
     int i, nb_clips = 0;
 
     av_fast_malloc(&c->histogram, &c->histogram_size, s->nb_hbins * sizeof(*c->histogram));
     if (!c->histogram)
         return AVERROR(ENOMEM);
     histogram = c->histogram;
     memset(histogram, 0, sizeof(*histogram) * s->nb_hbins);
 
     for (i = 0; i < s->window_size; i++) {
         const unsigned index = fmin(fabs(src[i]), 1) * (s->nb_hbins - 1);
 
         histogram[index]++;
         dst[i] = src[i];
         clip[i] = 0;
     }
 
     for (i = s->nb_hbins - 1; i > 1; i--) {
         if (histogram[i]) {
             if (histogram[i] / (double)FFMAX(histogram[i - 1], 1) > threshold) {
                 max_amplitude = i / (double)s->nb_hbins;
             }
             break;
         }
     }
 
     if (max_amplitude > 0.) {
         for (i = 0; i < s->window_size; i++) {
             clip[i] = fabs(src[i]) >= max_amplitude;
         }
     }
 
     memset(clip, 0, s->ar_order * sizeof(*clip));
     memset(clip + (s->window_size - s->ar_order), 0, s->ar_order * sizeof(*clip));
 
     for (i = s->ar_order; i < s->window_size - s->ar_order; i++)
         if (clip[i])
             index[nb_clips++] = i;
 
     return nb_clips;
 }
 
 static int detect_clicks(AudioDeclickContext *s, DeclickChannel *c,
                          double sigmae,
                          double *detection, double *acoefficients,
                          uint8_t *click, int *index,
                          const double *src, double *dst)
 {
     const double threshold = s->threshold;
     int i, j, nb_clicks = 0, prev = -1;
 
     memset(detection, 0, s->window_size * sizeof(*detection));
 
     for (i = s->ar_order; i < s->window_size; i++) {
         for (j = 0; j <= s->ar_order; j++) {
             detection[i] += acoefficients[j] * src[i - j];
         }
     }
 
     for (i = 0; i < s->window_size; i++) {
         click[i] = fabs(detection[i]) > sigmae * threshold;
         dst[i] = src[i];
     }
 
     for (i = 0; i < s->window_size; i++) {
         if (!click[i])
             continue;
 
         if (prev >= 0 && (i > prev + 1) && (i <= s->nb_burst_samples + prev))
             for (j = prev + 1; j < i; j++)
                 click[j] = 1;
         prev = i;
     }
 
     memset(click, 0, s->ar_order * sizeof(*click));
     memset(click + (s->window_size - s->ar_order), 0, s->ar_order * sizeof(*click));
 
     for (i = s->ar_order; i < s->window_size - s->ar_order; i++)
         if (click[i])
             index[nb_clicks++] = i;
 
     return nb_clicks;
 }
 
 typedef struct ThreadData {
     AVFrame *out;
 } ThreadData;
 
 static int filter_channel(AVFilterContext *ctx, void *arg, int ch, int nb_jobs)
 {
     AudioDeclickContext *s = ctx->priv;
     ThreadData *td = arg;
     AVFrame *out = td->out;
     const double *src = (const double *)s->in->extended_data[ch];
     double *is = (double *)s->is->extended_data[ch];
     double *dst = (double *)s->out->extended_data[ch];
     double *ptr = (double *)out->extended_data[ch];
     double *buf = (double *)s->buffer->extended_data[ch];
     const double *w = s->window_func_lut;
     DeclickChannel *c = &s->chan[ch];
     double sigmae;
     int j, ret;
 
     sigmae = autoregression(src, s->ar_order, s->window_size, c->acoefficients, c->acorrelation, c->tmp);
 
     if (isfinite_array(c->acoefficients, s->ar_order + 1)) {
         double *interpolated = c->interpolated;
         int *index = c->index;
         int nb_errors;
 
         nb_errors = s->detector(s, c, sigmae, c->detection, c->acoefficients,
                                 c->click, index, src, dst);
         if (nb_errors > 0) {
             ret = interpolation(c, src, s->ar_order, c->acoefficients, index,
                                 nb_errors, c->auxiliary, interpolated);
             if (ret < 0)
                 return ret;
 
             for (j = 0; j < nb_errors; j++) {
                 dst[index[j]] = interpolated[j];
                 is[index[j]] = 1;
             }
         }
     } else {
         memcpy(dst, src, s->window_size * sizeof(*dst));
     }
 
     if (s->method == 0) {
         for (j = 0; j < s->window_size; j++)
             buf[j] += dst[j] * w[j];
     } else {
         const int skip = s->overlap_skip;
 
         for (j = 0; j < s->hop_size; j++)
             buf[j] = dst[skip + j];
     }
     for (j = 0; j < s->hop_size; j++)
         ptr[j] = buf[j];
 
     memmove(buf, buf + s->hop_size, (s->window_size * 2 - s->hop_size) * sizeof(*buf));
     memmove(is, is + s->hop_size, (s->window_size - s->hop_size) * sizeof(*is));
     memset(buf + s->window_size * 2 - s->hop_size, 0, s->hop_size * sizeof(*buf));
     memset(is + s->window_size - s->hop_size, 0, s->hop_size * sizeof(*is));
 
     return 0;
 }
 
 static int filter_frame(AVFilterLink *inlink, AVFrame *in)
 {
     AVFilterContext *ctx = inlink->dst;
     AVFilterLink *outlink = ctx->outputs[0];
     AudioDeclickContext *s = ctx->priv;
     AVFrame *out = NULL;
     int ret = 0;
 
     if (s->pts == AV_NOPTS_VALUE)
         s->pts = in->pts;
 
     ret = av_audio_fifo_write(s->fifo, (void **)in->extended_data,
                               in->nb_samples);
     av_frame_free(&in);
 
     while (av_audio_fifo_size(s->fifo) >= s->window_size) {
         int j, ch, detected_errors = 0;
         ThreadData td;
 
         out = ff_get_audio_buffer(outlink, s->hop_size);
         if (!out)
             return AVERROR(ENOMEM);
 
         ret = av_audio_fifo_peek(s->fifo, (void **)s->in->extended_data,
                                  s->window_size);
         if (ret < 0)
             break;
 
         td.out = out;
         ret = ctx->internal->execute(ctx, filter_channel, &td, NULL, inlink->channels);
         if (ret < 0)
             goto fail;
 
         for (ch = 0; ch < s->in->channels; ch++) {
             double *is = (double *)s->is->extended_data[ch];
 
             for (j = 0; j < s->hop_size; j++) {
                 if (is[j])
                     detected_errors++;
             }
         }
 
         av_audio_fifo_drain(s->fifo, s->hop_size);
 
         if (s->samples_left > 0)
             out->nb_samples = FFMIN(s->hop_size, s->samples_left);
 
         out->pts = s->pts;
         s->pts += s->hop_size;
 
         s->detected_errors += detected_errors;
         s->nb_samples += out->nb_samples * inlink->channels;
 
         ret = ff_filter_frame(outlink, out);
         if (ret < 0)
             break;
 
         if (s->samples_left > 0) {
             s->samples_left -= s->hop_size;
             if (s->samples_left <= 0)
                 av_audio_fifo_drain(s->fifo, av_audio_fifo_size(s->fifo));
         }
     }
 
 fail:
     if (ret < 0)
         av_frame_free(&out);
     return ret;
 }
 
 static int request_frame(AVFilterLink *outlink)
 {
     AVFilterContext *ctx = outlink->src;
     AudioDeclickContext *s = ctx->priv;
     int ret = 0;
 
     ret = ff_request_frame(ctx->inputs[0]);
 
     if (ret == AVERROR_EOF && av_audio_fifo_size(s->fifo) > 0) {
         if (!s->samples_left)
             s->samples_left = av_audio_fifo_size(s->fifo) - s->overlap_skip;
 
         if (s->samples_left > 0) {
             AVFrame *in = ff_get_audio_buffer(outlink, s->window_size - s->samples_left);
             if (!in)
                 return AVERROR(ENOMEM);
             ret = filter_frame(ctx->inputs[0], in);
         }
     }
 
     return ret;
 }
 
 static av_cold int init(AVFilterContext *ctx)
 {
     AudioDeclickContext *s = ctx->priv;
 
     s->is_declip = !strcmp(ctx->filter->name, "adeclip");
     if (s->is_declip) {
         s->detector = detect_clips;
     } else {
         s->detector = detect_clicks;
     }
 
     return 0;
 }
 
 static av_cold void uninit(AVFilterContext *ctx)
 {
     AudioDeclickContext *s = ctx->priv;
     int i;
 
     av_log(ctx, AV_LOG_INFO, "Detected %s in %"PRId64" of %"PRId64" samples (%g%%).\n",
            s->is_declip ? "clips" : "clicks", s->detected_errors,
            s->nb_samples, 100. * s->detected_errors / s->nb_samples);
 
     av_audio_fifo_free(s->fifo);
     av_freep(&s->window_func_lut);
     av_frame_free(&s->in);
     av_frame_free(&s->out);
     av_frame_free(&s->buffer);
     av_frame_free(&s->is);
 
     if (s->chan) {
         for (i = 0; i < s->nb_channels; i++) {
             DeclickChannel *c = &s->chan[i];
 
             av_freep(&c->detection);
             av_freep(&c->auxiliary);
             av_freep(&c->acoefficients);
             av_freep(&c->acorrelation);
             av_freep(&c->tmp);
             av_freep(&c->click);
             av_freep(&c->index);
             av_freep(&c->interpolated);
             av_freep(&c->matrix);
             c->matrix_size = 0;
             av_freep(&c->histogram);
             c->histogram_size = 0;
             av_freep(&c->vector);
             c->vector_size = 0;
             av_freep(&c->y);
             c->y_size = 0;
         }
     }
     av_freep(&s->chan);
     s->nb_channels = 0;
 }
 
 static const AVFilterPad inputs[] = {
     {
         .name         = "default",
         .type         = AVMEDIA_TYPE_AUDIO,
         .filter_frame = filter_frame,
         .config_props = config_input,
     },
     { NULL }
 };
 
 static const AVFilterPad outputs[] = {
     {
         .name          = "default",
         .type          = AVMEDIA_TYPE_AUDIO,
         .request_frame = request_frame,
     },
     { NULL }
 };
 
 AVFilter ff_af_adeclick = {
     .name          = "adeclick",
     .description   = NULL_IF_CONFIG_SMALL("Remove impulsive noise from input audio."),
     .query_formats = query_formats,
     .priv_size     = sizeof(AudioDeclickContext),
     .priv_class    = &adeclick_class,
     .init          = init,
     .uninit        = uninit,
     .inputs        = inputs,
     .outputs       = outputs,
     .flags         = AVFILTER_FLAG_SLICE_THREADS,
 };
 
 static const AVOption adeclip_options[] = {
     { "w", "set window size",          OFFSET(w),              AV_OPT_TYPE_DOUBLE, {.dbl=55},     10,  100, AF },
     { "o", "set window overlap",       OFFSET(overlap),        AV_OPT_TYPE_DOUBLE, {.dbl=75},     50,   95, AF },
     { "a", "set autoregression order", OFFSET(ar),             AV_OPT_TYPE_DOUBLE, {.dbl=8},       0,   25, AF },
     { "t", "set threshold",            OFFSET(threshold),      AV_OPT_TYPE_DOUBLE, {.dbl=10},      1,  100, AF },
     { "n", "set histogram size",       OFFSET(nb_hbins),       AV_OPT_TYPE_INT,    {.i64=1000},  100, 9999, AF },
     { "m", "set overlap method",       OFFSET(method),         AV_OPT_TYPE_INT,    {.i64=0},       0,    1, AF, "m" },
     { "a", "overlap-add",              0,                      AV_OPT_TYPE_CONST,  {.i64=0},       0,    0, AF, "m" },
     { "s", "overlap-save",             0,                      AV_OPT_TYPE_CONST,  {.i64=1},       0,    0, AF, "m" },
     { NULL }
 };
 
 AVFILTER_DEFINE_CLASS(adeclip);
 
 AVFilter ff_af_adeclip = {
     .name          = "adeclip",
     .description   = NULL_IF_CONFIG_SMALL("Remove clipping from input audio."),
     .query_formats = query_formats,
     .priv_size     = sizeof(AudioDeclickContext),
     .priv_class    = &adeclip_class,
     .init          = init,
     .uninit        = uninit,
     .inputs        = inputs,
     .outputs       = outputs,
     .flags         = AVFILTER_FLAG_SLICE_THREADS,
 };