libavfilter/vf_bm3d.c
544fde1b
 /*
  * Copyright (c) 2015-2016 mawen1250
  * Copyright (c) 2018 Paul B Mahol
  *
  * This file is part of FFmpeg.
  *
  * Permission is hereby granted, free of charge, to any person obtaining a copy
  * of this software and associated documentation files (the "Software"), to deal
  * in the Software without restriction, including without limitation the rights
  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  * copies of the Software, and to permit persons to whom the Software is
  * furnished to do so, subject to the following conditions:
  *
  * The above copyright notice and this permission notice shall be included in all
  * copies or substantial portions of the Software.
  *
  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  * SOFTWARE.
  */
 
 /**
  * @todo
  * - non-power of 2 DCT
  * - opponent color space
  * - temporal support
  */
 
 #include <float.h>
 
 #include "libavutil/avassert.h"
 #include "libavutil/imgutils.h"
 #include "libavutil/opt.h"
 #include "libavutil/pixdesc.h"
 #include "libavcodec/avfft.h"
 #include "avfilter.h"
 #include "filters.h"
 #include "formats.h"
 #include "framesync.h"
 #include "internal.h"
 #include "video.h"
 
 #define MAX_NB_THREADS 32
 
 enum FilterModes {
     BASIC,
     FINAL,
     NB_MODES,
 };
 
 typedef struct ThreadData {
     const uint8_t *src;
     int src_linesize;
     const uint8_t *ref;
     int ref_linesize;
     int plane;
 } ThreadData;
 
 typedef struct PosCode {
     int x, y;
 } PosCode;
 
 typedef struct PosPairCode {
     double score;
     int x, y;
 } PosPairCode;
 
 typedef struct SliceContext {
     DCTContext *gdctf, *gdcti;
     DCTContext *dctf, *dcti;
     FFTSample *bufferh;
     FFTSample *bufferv;
     FFTSample *bufferz;
     FFTSample *buffer;
     FFTSample *rbufferh;
     FFTSample *rbufferv;
     FFTSample *rbufferz;
     FFTSample *rbuffer;
     float *num, *den;
     PosPairCode match_blocks[256];
     int nb_match_blocks;
     PosCode *search_positions;
 } SliceContext;
 
 typedef struct BM3DContext {
     const AVClass *class;
 
     float sigma;
     int block_size;
     int block_step;
     int group_size;
     int bm_range;
     int bm_step;
     float th_mse;
     float hard_threshold;
     int mode;
     int ref;
     int planes;
 
     int depth;
     int max;
     int nb_planes;
     int planewidth[4];
     int planeheight[4];
     int group_bits;
     int pgroup_size;
 
     SliceContext slices[MAX_NB_THREADS];
 
     FFFrameSync fs;
     int nb_threads;
 
     void (*get_block_row)(const uint8_t *srcp, int src_linesize,
                           int y, int x, int block_size, float *dst);
     double (*do_block_ssd)(struct BM3DContext *s, PosCode *pos,
                            const uint8_t *src, int src_stride,
                            int r_y, int r_x);
     void (*do_output)(struct BM3DContext *s, uint8_t *dst, int dst_linesize,
                       int plane, int nb_jobs);
     void (*block_filtering)(struct BM3DContext *s,
                             const uint8_t *src, int src_linesize,
                             const uint8_t *ref, int ref_linesize,
                             int y, int x, int plane, int jobnr);
 } BM3DContext;
 
 #define OFFSET(x) offsetof(BM3DContext, x)
 #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
 static const AVOption bm3d_options[] = {
     { "sigma",  "set denoising strength",
         OFFSET(sigma),          AV_OPT_TYPE_FLOAT, {.dbl=1},     0,      99999.9, FLAGS },
     { "block",  "set log2(size) of local patch",
         OFFSET(block_size),     AV_OPT_TYPE_INT,   {.i64=4},     4,            6, FLAGS },
     { "bstep",  "set sliding step for processing blocks",
         OFFSET(block_step),     AV_OPT_TYPE_INT,   {.i64=4},     1,           64, FLAGS },
     { "group",  "set maximal number of similar blocks",
         OFFSET(group_size),     AV_OPT_TYPE_INT,   {.i64=1},     1,          256, FLAGS },
     { "range",  "set block matching range",
         OFFSET(bm_range),       AV_OPT_TYPE_INT,   {.i64=9},     1,    INT32_MAX, FLAGS },
     { "mstep",  "set step for block matching",
         OFFSET(bm_step),        AV_OPT_TYPE_INT,   {.i64=1},     1,           64, FLAGS },
     { "thmse",  "set threshold of mean square error for block matching",
         OFFSET(th_mse),         AV_OPT_TYPE_FLOAT, {.dbl=0},     0,    INT32_MAX, FLAGS },
     { "hdthr",  "set hard threshold for 3D transfer domain",
         OFFSET(hard_threshold), AV_OPT_TYPE_FLOAT, {.dbl=2.7},   0,    INT32_MAX, FLAGS },
     { "estim",  "set filtering estimation mode",
         OFFSET(mode),           AV_OPT_TYPE_INT,   {.i64=BASIC}, 0,   NB_MODES-1, FLAGS, "mode" },
     { "basic",  "basic estimate",
         0,                      AV_OPT_TYPE_CONST, {.i64=BASIC}, 0,            0, FLAGS, "mode" },
     { "final",  "final estimate",
         0,                      AV_OPT_TYPE_CONST, {.i64=FINAL}, 0,            0, FLAGS, "mode" },
     { "ref",    "have reference stream",
         OFFSET(ref),            AV_OPT_TYPE_INT,    {.i64=0},    0,            1, FLAGS },
     { "planes", "set planes to filter",
         OFFSET(planes),         AV_OPT_TYPE_INT,   {.i64=7},     0,           15, FLAGS },
     { NULL }
 };
 
 AVFILTER_DEFINE_CLASS(bm3d);
 
 static int query_formats(AVFilterContext *ctx)
 {
     static const enum AVPixelFormat pix_fmts[] = {
         AV_PIX_FMT_GRAY8,
         AV_PIX_FMT_GRAY9,   AV_PIX_FMT_GRAY10,
         AV_PIX_FMT_GRAY12,  AV_PIX_FMT_GRAY16,
         AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P,
         AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P,
         AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV444P,
         AV_PIX_FMT_YUVJ420P, AV_PIX_FMT_YUVJ422P,
         AV_PIX_FMT_YUVJ440P, AV_PIX_FMT_YUVJ444P,
         AV_PIX_FMT_YUVJ411P,
         AV_PIX_FMT_YUV420P9, AV_PIX_FMT_YUV422P9, AV_PIX_FMT_YUV444P9,
         AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10,
         AV_PIX_FMT_YUV440P10,
         AV_PIX_FMT_YUV444P12, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV420P12,
         AV_PIX_FMT_YUV440P12,
         AV_PIX_FMT_YUV444P14, AV_PIX_FMT_YUV422P14, AV_PIX_FMT_YUV420P14,
         AV_PIX_FMT_YUV420P16, AV_PIX_FMT_YUV422P16, AV_PIX_FMT_YUV444P16,
         AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10,
         AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16,
         AV_PIX_FMT_NONE
     };
 
     AVFilterFormats *fmts_list = ff_make_format_list(pix_fmts);
     if (!fmts_list)
         return AVERROR(ENOMEM);
     return ff_set_common_formats(ctx, fmts_list);
 }
 
 static int do_search_boundary(int pos, int plane_boundary, int search_range, int search_step)
 {
     int search_boundary;
 
     search_range = search_range / search_step * search_step;
 
     if (pos == plane_boundary) {
         search_boundary = plane_boundary;
     } else if (pos > plane_boundary) {
         search_boundary = pos - search_range;
 
         while (search_boundary < plane_boundary) {
             search_boundary += search_step;
         }
     } else {
         search_boundary = pos + search_range;
 
         while (search_boundary > plane_boundary) {
             search_boundary -= search_step;
         }
     }
 
     return search_boundary;
 }
 
 static int search_boundary(int plane_boundary, int search_range, int search_step, int vertical, int y, int x)
 {
     return do_search_boundary(vertical ? y : x, plane_boundary, search_range, search_step);
 }
 
 static int cmp_scores(const void *a, const void *b)
 {
     const struct PosPairCode *pair1 = a;
     const struct PosPairCode *pair2 = b;
     return FFDIFFSIGN(pair1->score, pair2->score);
 }
 
 static double do_block_ssd(BM3DContext *s, PosCode *pos, const uint8_t *src, int src_stride, int r_y, int r_x)
 {
     const uint8_t *srcp = src + pos->y * src_stride + pos->x;
     const uint8_t *refp = src + r_y * src_stride + r_x;
     const int block_size = s->block_size;
     double dist = 0.;
     int x, y;
 
     for (y = 0; y < block_size; y++) {
         for (x = 0; x < block_size; x++) {
             double temp = refp[x] - srcp[x];
             dist += temp * temp;
         }
 
         srcp += src_stride;
         refp += src_stride;
     }
 
     return dist;
 }
 
 static double do_block_ssd16(BM3DContext *s, PosCode *pos, const uint8_t *src, int src_stride, int r_y, int r_x)
 {
     const uint16_t *srcp = (uint16_t *)src + pos->y * src_stride / 2 + pos->x;
     const uint16_t *refp = (uint16_t *)src + r_y * src_stride / 2 + r_x;
     const int block_size = s->block_size;
     double dist = 0.;
     int x, y;
 
     for (y = 0; y < block_size; y++) {
         for (x = 0; x < block_size; x++) {
             double temp = refp[x] - srcp[x];
             dist += temp * temp;
         }
 
         srcp += src_stride / 2;
         refp += src_stride / 2;
     }
 
     return dist;
 }
 
 static void do_block_matching_multi(BM3DContext *s, const uint8_t *src, int src_stride, int src_range,
                                     const PosCode *search_pos, int search_size, float th_mse,
                                     int r_y, int r_x, int plane, int jobnr)
 {
     SliceContext *sc = &s->slices[jobnr];
     double MSE2SSE = s->group_size * s->block_size * s->block_size * src_range * src_range / (s->max * s->max);
     double distMul = 1. / MSE2SSE;
     double th_sse = th_mse * MSE2SSE;
     int i, index = sc->nb_match_blocks;
 
     for (i = 0; i < search_size; i++) {
         PosCode pos = search_pos[i];
         double dist;
 
         dist = s->do_block_ssd(s, &pos, src, src_stride, r_y, r_x);
 
         // Only match similar blocks but not identical blocks
         if (dist <= th_sse && dist != 0) {
             const double score = dist * distMul;
 
             if (index >= s->group_size && score >= sc->match_blocks[index - 1].score) {
                 continue;
             }
 
             if (index >= s->group_size)
                 index = s->group_size - 1;
 
             sc->match_blocks[index].score = score;
             sc->match_blocks[index].y = pos.y;
             sc->match_blocks[index].x = pos.x;
             index++;
             qsort(sc->match_blocks, index, sizeof(PosPairCode), cmp_scores);
         }
     }
 
     sc->nb_match_blocks = index;
 }
 
 static void block_matching_multi(BM3DContext *s, const uint8_t *ref, int ref_linesize, int y, int x,
                                  int exclude_cur_pos, int plane, int jobnr)
 {
     SliceContext *sc = &s->slices[jobnr];
     const int width = s->planewidth[plane];
     const int height = s->planeheight[plane];
     const int block_size = s->block_size;
     const int step = s->bm_step;
     const int range = s->bm_range / step * step;
     int l = search_boundary(0, range, step, 0, y, x);
     int r = search_boundary(width - block_size, range, step, 0, y, x);
     int t = search_boundary(0, range, step, 1, y, x);
     int b = search_boundary(height - block_size, range, step, 1, y, x);
     int j, i, index = 0;
 
     for (j = t; j <= b; j += step) {
         for (i = l; i <= r; i += step) {
             PosCode pos;
 
             if (exclude_cur_pos > 0 && j == y && i == x) {
                 continue;
             }
 
             pos.y = j;
             pos.x = i;
             sc->search_positions[index++] = pos;
         }
     }
 
     if (exclude_cur_pos == 1) {
         sc->match_blocks[0].score = 0;
         sc->match_blocks[0].y = y;
         sc->match_blocks[0].x = x;
         sc->nb_match_blocks = 1;
     }
 
     do_block_matching_multi(s, ref, ref_linesize, s->bm_range,
                             sc->search_positions, index, s->th_mse, y, x, plane, jobnr);
 }
 
 static void block_matching(BM3DContext *s, const uint8_t *ref, int ref_linesize,
                            int j, int i, int plane, int jobnr)
 {
     SliceContext *sc = &s->slices[jobnr];
 
     if (s->group_size == 1 || s->th_mse <= 0.f) {
         sc->match_blocks[0].score = 1;
         sc->match_blocks[0].x = i;
         sc->match_blocks[0].y = j;
         sc->nb_match_blocks = 1;
         return;
     }
 
     sc->nb_match_blocks = 0;
     block_matching_multi(s, ref, ref_linesize, j, i, 1, plane, jobnr);
 }
 
 static void get_block_row(const uint8_t *srcp, int src_linesize,
                           int y, int x, int block_size, float *dst)
 {
     const uint8_t *src = srcp + y * src_linesize + x;
     int j;
 
     for (j = 0; j < block_size; j++) {
         dst[j] = src[j];
     }
 }
 
 static void get_block_row16(const uint8_t *srcp, int src_linesize,
                             int y, int x, int block_size, float *dst)
 {
     const uint16_t *src = (uint16_t *)srcp + y * src_linesize / 2 + x;
     int j;
 
     for (j = 0; j < block_size; j++) {
         dst[j] = src[j];
     }
 }
 
 static void basic_block_filtering(BM3DContext *s, const uint8_t *src, int src_linesize,
                                   const uint8_t *ref, int ref_linesize,
                                   int y, int x, int plane, int jobnr)
 {
     SliceContext *sc = &s->slices[jobnr];
     const int buffer_linesize = s->block_size * s->block_size;
     const int nb_match_blocks = sc->nb_match_blocks;
     const int block_size = s->block_size;
     const int width = s->planewidth[plane];
     const int pgroup_size = s->pgroup_size;
     const int group_size = s->group_size;
     float *buffer = sc->buffer;
     float *bufferh = sc->bufferh;
     float *bufferv = sc->bufferv;
     float *bufferz = sc->bufferz;
     float threshold[4];
     float den_weight, num_weight;
     int retained = 0;
     int i, j, k;
 
     for (k = 0; k < nb_match_blocks; k++) {
         const int y = sc->match_blocks[k].y;
         const int x = sc->match_blocks[k].x;
 
         for (i = 0; i < block_size; i++) {
             s->get_block_row(src, src_linesize, y + i, x, block_size, bufferh + block_size * i);
             av_dct_calc(sc->dctf, bufferh + block_size * i);
         }
 
         for (i = 0; i < block_size; i++) {
             for (j = 0; j < block_size; j++) {
                 bufferv[i * block_size + j] = bufferh[j * block_size + i];
             }
             av_dct_calc(sc->dctf, bufferv + i * block_size);
         }
 
         for (i = 0; i < block_size; i++) {
             memcpy(buffer + k * buffer_linesize + i * block_size,
                    bufferv + i * block_size, block_size * 4);
         }
     }
 
     for (i = 0; i < block_size; i++) {
         for (j = 0; j < block_size; j++) {
             for (k = 0; k < nb_match_blocks; k++)
                 bufferz[k] = buffer[buffer_linesize * k + i * block_size + j];
             if (group_size > 1)
                 av_dct_calc(sc->gdctf, bufferz);
             bufferz += pgroup_size;
         }
     }
 
     threshold[0] = s->hard_threshold * s->sigma;
     threshold[1] = threshold[0] * sqrtf(2.f);
     threshold[2] = threshold[0] * 2.f;
     threshold[3] = threshold[0] * sqrtf(8.f);
     bufferz = sc->bufferz;
 
     for (i = 0; i < block_size; i++) {
         for (j = 0; j < block_size; j++) {
             for (k = 0; k < nb_match_blocks; k++) {
                 const float thresh = threshold[(j == 0) + (i == 0) + (k == 0)];
 
                 if (bufferz[k] > thresh || bufferz[k] < -thresh) {
                     retained++;
                 } else {
                     bufferz[k] = 0;
                 }
             }
             bufferz += pgroup_size;
         }
     }
 
     bufferz = sc->bufferz;
     buffer = sc->buffer;
     for (i = 0; i < block_size; i++) {
         for (j = 0; j < block_size; j++) {
             if (group_size > 1)
                 av_dct_calc(sc->gdcti, bufferz);
             for (k = 0; k < nb_match_blocks; k++) {
                 buffer[buffer_linesize * k + i * block_size + j] = bufferz[k];
             }
             bufferz += pgroup_size;
         }
     }
 
     den_weight = retained < 1 ? 1.f : 1.f / retained;
     num_weight = den_weight;
 
     buffer = sc->buffer;
     for (k = 0; k < nb_match_blocks; k++) {
         float *num = sc->num + y * width + x;
         float *den = sc->den + y * width + x;
 
         for (i = 0; i < block_size; i++) {
             memcpy(bufferv + i * block_size,
                    buffer + k * buffer_linesize + i * block_size,
                    block_size * 4);
         }
 
         for (i = 0; i < block_size; i++) {
             av_dct_calc(sc->dcti, bufferv + block_size * i);
             for (j = 0; j < block_size; j++) {
                 bufferh[j * block_size + i] = bufferv[i * block_size + j];
             }
         }
 
         for (i = 0; i < block_size; i++) {
             av_dct_calc(sc->dcti, bufferh + block_size * i);
             for (j = 0; j < block_size; j++) {
                 num[j] += bufferh[i * block_size + j] * num_weight;
                 den[j] += den_weight;
             }
             num += width;
             den += width;
         }
     }
 }
 
 static void final_block_filtering(BM3DContext *s, const uint8_t *src, int src_linesize,
                                   const uint8_t *ref, int ref_linesize,
                                   int y, int x, int plane, int jobnr)
 {
     SliceContext *sc = &s->slices[jobnr];
     const int buffer_linesize = s->block_size * s->block_size;
     const int nb_match_blocks = sc->nb_match_blocks;
     const int block_size = s->block_size;
     const int width = s->planewidth[plane];
     const int pgroup_size = s->pgroup_size;
     const int group_size = s->group_size;
     const float sigma_sqr = s->sigma * s->sigma;
     float *buffer = sc->buffer;
     float *bufferh = sc->bufferh;
     float *bufferv = sc->bufferv;
     float *bufferz = sc->bufferz;
     float *rbuffer = sc->rbuffer;
     float *rbufferh = sc->rbufferh;
     float *rbufferv = sc->rbufferv;
     float *rbufferz = sc->rbufferz;
     float den_weight, num_weight;
     float l2_wiener = 0;
     int i, j, k;
 
     for (k = 0; k < nb_match_blocks; k++) {
         const int y = sc->match_blocks[k].y;
         const int x = sc->match_blocks[k].x;
 
         for (i = 0; i < block_size; i++) {
             s->get_block_row(src, src_linesize, y + i, x, block_size, bufferh + block_size * i);
             s->get_block_row(ref, ref_linesize, y + i, x, block_size, rbufferh + block_size * i);
             av_dct_calc(sc->dctf, bufferh + block_size * i);
             av_dct_calc(sc->dctf, rbufferh + block_size * i);
         }
 
         for (i = 0; i < block_size; i++) {
             for (j = 0; j < block_size; j++) {
                 bufferv[i * block_size + j] = bufferh[j * block_size + i];
                 rbufferv[i * block_size + j] = rbufferh[j * block_size + i];
             }
             av_dct_calc(sc->dctf, bufferv + i * block_size);
             av_dct_calc(sc->dctf, rbufferv + i * block_size);
         }
 
         for (i = 0; i < block_size; i++) {
             memcpy(buffer + k * buffer_linesize + i * block_size,
                    bufferv + i * block_size, block_size * 4);
             memcpy(rbuffer + k * buffer_linesize + i * block_size,
                    rbufferv + i * block_size, block_size * 4);
         }
     }
 
     for (i = 0; i < block_size; i++) {
         for (j = 0; j < block_size; j++) {
             for (k = 0; k < nb_match_blocks; k++) {
                 bufferz[k] = buffer[buffer_linesize * k + i * block_size + j];
                 rbufferz[k] = rbuffer[buffer_linesize * k + i * block_size + j];
             }
             if (group_size > 1) {
                 av_dct_calc(sc->gdctf, bufferz);
                 av_dct_calc(sc->gdctf, rbufferz);
             }
             bufferz += pgroup_size;
             rbufferz += pgroup_size;
         }
     }
 
     bufferz = sc->bufferz;
     rbufferz = sc->rbufferz;
 
     for (i = 0; i < block_size; i++) {
         for (j = 0; j < block_size; j++) {
             for (k = 0; k < nb_match_blocks; k++) {
                 const float ref_sqr = rbufferz[k] * rbufferz[k];
                 float wiener_coef = ref_sqr / (ref_sqr + sigma_sqr);
 
                 if (isnan(wiener_coef))
                    wiener_coef = 1;
                 bufferz[k] *= wiener_coef;
                 l2_wiener += wiener_coef * wiener_coef;
             }
             bufferz += pgroup_size;
             rbufferz += pgroup_size;
         }
     }
 
     bufferz = sc->bufferz;
     buffer = sc->buffer;
     for (i = 0; i < block_size; i++) {
         for (j = 0; j < block_size; j++) {
             if (group_size > 1)
                 av_dct_calc(sc->gdcti, bufferz);
             for (k = 0; k < nb_match_blocks; k++) {
                 buffer[buffer_linesize * k + i * block_size + j] = bufferz[k];
             }
             bufferz += pgroup_size;
         }
     }
 
     l2_wiener = FFMAX(l2_wiener, 1e-15f);
     den_weight = 1.f / l2_wiener;
     num_weight = den_weight;
 
     for (k = 0; k < nb_match_blocks; k++) {
         float *num = sc->num + y * width + x;
         float *den = sc->den + y * width + x;
 
         for (i = 0; i < block_size; i++) {
             memcpy(bufferv + i * block_size,
                    buffer + k * buffer_linesize + i * block_size,
                    block_size * 4);
         }
 
         for (i = 0; i < block_size; i++) {
             av_dct_calc(sc->dcti, bufferv + block_size * i);
             for (j = 0; j < block_size; j++) {
                 bufferh[j * block_size + i] = bufferv[i * block_size + j];
             }
         }
 
         for (i = 0; i < block_size; i++) {
             av_dct_calc(sc->dcti, bufferh + block_size * i);
             for (j = 0; j < block_size; j++) {
                 num[j] += bufferh[i * block_size + j] * num_weight;
                 den[j] += den_weight;
             }
             num += width;
             den += width;
         }
     }
 }
 
 static void do_output(BM3DContext *s, uint8_t *dst, int dst_linesize,
                       int plane, int nb_jobs)
 {
     const int height = s->planeheight[plane];
     const int width = s->planewidth[plane];
     int i, j, k;
 
     for (i = 0; i < height; i++) {
         for (j = 0; j < width; j++) {
             uint8_t *dstp = dst + i * dst_linesize;
             float sum_den = 0.f;
             float sum_num = 0.f;
 
             for (k = 0; k < nb_jobs; k++) {
                 SliceContext *sc = &s->slices[k];
                 float num = sc->num[i * width + j];
                 float den = sc->den[i * width + j];
 
                 sum_num += num;
                 sum_den += den;
             }
 
             dstp[j] = av_clip_uint8(sum_num / sum_den);
         }
     }
 }
 
 static void do_output16(BM3DContext *s, uint8_t *dst, int dst_linesize,
                         int plane, int nb_jobs)
 {
     const int height = s->planeheight[plane];
     const int width = s->planewidth[plane];
     const int depth = s->depth;
     int i, j, k;
 
     for (i = 0; i < height; i++) {
         for (j = 0; j < width; j++) {
             uint16_t *dstp = (uint16_t *)dst + i * dst_linesize / 2;
             float sum_den = 0.f;
             float sum_num = 0.f;
 
             for (k = 0; k < nb_jobs; k++) {
                 SliceContext *sc = &s->slices[k];
                 float num = sc->num[i * width + j];
                 float den = sc->den[i * width + j];
 
                 sum_num += num;
                 sum_den += den;
             }
 
e320f957
             dstp[j] = av_clip_uintp2_c(sum_num / sum_den, depth);
544fde1b
         }
     }
 }
 
 static int filter_slice(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
 {
     BM3DContext *s = ctx->priv;
     SliceContext *sc = &s->slices[jobnr];
     const int block_step = s->block_step;
     ThreadData *td = arg;
     const uint8_t *src = td->src;
     const uint8_t *ref = td->ref;
     const int src_linesize = td->src_linesize;
     const int ref_linesize = td->ref_linesize;
     const int plane = td->plane;
     const int width = s->planewidth[plane];
     const int height = s->planeheight[plane];
     const int block_pos_bottom = height - s->block_size;
     const int block_pos_right  = width - s->block_size;
     const int slice_start = (((height + block_step - 1) / block_step) * jobnr / nb_jobs) * block_step;
     const int slice_end = (jobnr == nb_jobs - 1) ? block_pos_bottom + block_step :
                           (((height + block_step - 1) / block_step) * (jobnr + 1) / nb_jobs) * block_step;
     int i, j;
 
     memset(sc->num, 0, width * height * sizeof(FFTSample));
     memset(sc->den, 0, width * height * sizeof(FFTSample));
 
     for (j = slice_start; j < slice_end; j += block_step) {
         if (j > block_pos_bottom) {
             j = block_pos_bottom;
         }
 
         for (i = 0; i < block_pos_right + block_step; i += block_step) {
             if (i > block_pos_right) {
                 i = block_pos_right;
             }
 
             block_matching(s, ref, ref_linesize, j, i, plane, jobnr);
 
             s->block_filtering(s, src, src_linesize,
                                ref, ref_linesize, j, i, plane, jobnr);
         }
     }
 
     return 0;
 }
 
 static int filter_frame(AVFilterContext *ctx, AVFrame **out, AVFrame *in, AVFrame *ref)
 {
     BM3DContext *s = ctx->priv;
     AVFilterLink *outlink = ctx->outputs[0];
     int p;
 
     *out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
     if (!*out)
         return AVERROR(ENOMEM);
     av_frame_copy_props(*out, in);
 
     for (p = 0; p < s->nb_planes; p++) {
         const int nb_jobs = FFMIN(s->nb_threads, s->planeheight[p] / s->block_step);
         ThreadData td;
 
         if (!((1 << p) & s->planes) || ctx->is_disabled) {
             av_image_copy_plane((*out)->data[p], (*out)->linesize[p],
                                 in->data[p], in->linesize[p],
                                 s->planewidth[p], s->planeheight[p]);
             continue;
         }
 
         td.src = in->data[p];
         td.src_linesize = in->linesize[p];
         td.ref = ref->data[p];
         td.ref_linesize = ref->linesize[p];
         td.plane = p;
         ctx->internal->execute(ctx, filter_slice, &td, NULL, nb_jobs);
 
         s->do_output(s, (*out)->data[p], (*out)->linesize[p], p, nb_jobs);
     }
 
     return 0;
 }
 
 #define SQR(x) ((x) * (x))
 
 static int config_input(AVFilterLink *inlink)
 {
     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
     AVFilterContext *ctx = inlink->dst;
     BM3DContext *s = ctx->priv;
     int i, group_bits;
 
     s->nb_threads = FFMIN(ff_filter_get_nb_threads(ctx), MAX_NB_THREADS);
     s->nb_planes = av_pix_fmt_count_planes(inlink->format);
     s->depth = desc->comp[0].depth;
     s->max = (1 << s->depth) - 1;
     s->planeheight[1] = s->planeheight[2] = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h);
     s->planeheight[0] = s->planeheight[3] = inlink->h;
     s->planewidth[1]  = s->planewidth[2]  = AV_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w);
     s->planewidth[0]  = s->planewidth[3]  = inlink->w;
 
     for (group_bits = 4; 1 << group_bits < s->group_size; group_bits++);
     s->group_bits = group_bits;
     s->pgroup_size = 1 << group_bits;
 
     for (i = 0; i < s->nb_threads; i++) {
         SliceContext *sc = &s->slices[i];
 
         sc->num = av_calloc(s->planewidth[0] * s->planeheight[0], sizeof(FFTSample));
         sc->den = av_calloc(s->planewidth[0] * s->planeheight[0], sizeof(FFTSample));
         if (!sc->num || !sc->den)
             return AVERROR(ENOMEM);
 
         sc->dctf = av_dct_init(av_log2(s->block_size), DCT_II);
         sc->dcti = av_dct_init(av_log2(s->block_size), DCT_III);
         if (!sc->dctf || !sc->dcti)
             return AVERROR(ENOMEM);
 
         if (s->group_bits > 1) {
             sc->gdctf = av_dct_init(s->group_bits, DCT_II);
             sc->gdcti = av_dct_init(s->group_bits, DCT_III);
             if (!sc->gdctf || !sc->gdcti)
                 return AVERROR(ENOMEM);
         }
 
         sc->buffer = av_calloc(s->block_size * s->block_size * s->pgroup_size, sizeof(*sc->buffer));
         sc->bufferz = av_calloc(s->block_size * s->block_size * s->pgroup_size, sizeof(*sc->bufferz));
         sc->bufferh = av_calloc(s->block_size * s->block_size, sizeof(*sc->bufferh));
         sc->bufferv = av_calloc(s->block_size * s->block_size, sizeof(*sc->bufferv));
         if (!sc->bufferh || !sc->bufferv || !sc->buffer || !sc->bufferz)
             return AVERROR(ENOMEM);
 
         if (s->mode == FINAL) {
             sc->rbuffer = av_calloc(s->block_size * s->block_size * s->pgroup_size, sizeof(*sc->rbuffer));
             sc->rbufferz = av_calloc(s->block_size * s->block_size * s->pgroup_size, sizeof(*sc->rbufferz));
             sc->rbufferh = av_calloc(s->block_size * s->block_size, sizeof(*sc->rbufferh));
             sc->rbufferv = av_calloc(s->block_size * s->block_size, sizeof(*sc->rbufferv));
             if (!sc->rbufferh || !sc->rbufferv || !sc->rbuffer || !sc->rbufferz)
                 return AVERROR(ENOMEM);
         }
 
         sc->search_positions = av_calloc(SQR(2 * s->bm_range / s->bm_step + 1), sizeof(*sc->search_positions));
         if (!sc->search_positions)
             return AVERROR(ENOMEM);
     }
 
     s->do_output = do_output;
     s->do_block_ssd = do_block_ssd;
     s->get_block_row = get_block_row;
 
     if (s->depth > 8) {
         s->do_output = do_output16;
         s->do_block_ssd = do_block_ssd16;
         s->get_block_row = get_block_row16;
     }
 
     return 0;
 }
 
 static int activate(AVFilterContext *ctx)
 {
     BM3DContext *s = ctx->priv;
 
     if (!s->ref) {
         AVFrame *frame = NULL;
         AVFrame *out = NULL;
         int ret, status;
         int64_t pts;
 
         if ((ret = ff_inlink_consume_frame(ctx->inputs[0], &frame)) > 0) {
             ret = filter_frame(ctx, &out, frame, frame);
             av_frame_free(&frame);
             if (ret < 0)
                 return ret;
             ret = ff_filter_frame(ctx->outputs[0], out);
         }
         if (ret < 0) {
             return ret;
         } else if (ff_inlink_acknowledge_status(ctx->inputs[0], &status, &pts)) {
             ff_outlink_set_status(ctx->outputs[0], status, pts);
             return 0;
         } else {
             if (ff_outlink_frame_wanted(ctx->outputs[0]))
                 ff_inlink_request_frame(ctx->inputs[0]);
             return 0;
         }
     } else {
         return ff_framesync_activate(&s->fs);
     }
 }
 
 static int process_frame(FFFrameSync *fs)
 {
     AVFilterContext *ctx = fs->parent;
     BM3DContext *s = fs->opaque;
     AVFilterLink *outlink = ctx->outputs[0];
     AVFrame *out = NULL, *src, *ref;
     int ret;
 
     if ((ret = ff_framesync_get_frame(&s->fs, 0, &src, 0)) < 0 ||
         (ret = ff_framesync_get_frame(&s->fs, 1, &ref, 0)) < 0)
         return ret;
 
     if ((ret = filter_frame(ctx, &out, src, ref)) < 0)
         return ret;
 
     out->pts = av_rescale_q(src->pts, s->fs.time_base, outlink->time_base);
 
     return ff_filter_frame(outlink, out);
 }
 
 static av_cold int init(AVFilterContext *ctx)
 {
     BM3DContext *s = ctx->priv;
     AVFilterPad pad = { 0 };
     int ret;
 
     if (s->mode == BASIC) {
         if (s->th_mse == 0.f)
             s->th_mse = 400.f + s->sigma * 80.f;
         s->block_filtering = basic_block_filtering;
     } else if (s->mode == FINAL) {
         if (!s->ref) {
             av_log(ctx, AV_LOG_WARNING, "Reference stream is mandatory in final estimation mode.\n");
             s->ref = 1;
         }
         if (s->th_mse == 0.f)
             s->th_mse = 200.f + s->sigma * 10.f;
 
         s->block_filtering = final_block_filtering;
     } else {
         return AVERROR_BUG;
     }
 
     s->block_size = 1 << s->block_size;
 
     if (s->block_step > s->block_size) {
         av_log(ctx, AV_LOG_WARNING, "bstep: %d can't be bigger than block size. Changing to %d.\n",
                s->block_step, s->block_size);
         s->block_step = s->block_size;
     }
     if (s->bm_step > s->bm_range) {
         av_log(ctx, AV_LOG_WARNING, "mstep: %d can't be bigger than block matching range. Changing to %d.\n",
                s->bm_step, s->bm_range);
         s->bm_step = s->bm_range;
     }
 
     pad.type         = AVMEDIA_TYPE_VIDEO;
     pad.name         = av_strdup("source");
     pad.config_props = config_input;
     if (!pad.name)
         return AVERROR(ENOMEM);
 
     if ((ret = ff_insert_inpad(ctx, 0, &pad)) < 0) {
         av_freep(&pad.name);
         return ret;
     }
 
     if (s->ref) {
         pad.type         = AVMEDIA_TYPE_VIDEO;
         pad.name         = av_strdup("reference");
         pad.config_props = NULL;
         if (!pad.name)
             return AVERROR(ENOMEM);
 
         if ((ret = ff_insert_inpad(ctx, 1, &pad)) < 0) {
             av_freep(&pad.name);
             return ret;
         }
     }
 
     return 0;
 }
 
 static int config_output(AVFilterLink *outlink)
 {
     AVFilterContext *ctx = outlink->src;
     BM3DContext *s = ctx->priv;
     AVFilterLink *src = ctx->inputs[0];
     AVFilterLink *ref;
     FFFrameSyncIn *in;
     int ret;
 
     if (s->ref) {
         ref = ctx->inputs[1];
 
         if (src->format != ref->format) {
             av_log(ctx, AV_LOG_ERROR, "inputs must be of same pixel format\n");
             return AVERROR(EINVAL);
         }
         if (src->w                       != ref->w ||
             src->h                       != ref->h) {
             av_log(ctx, AV_LOG_ERROR, "First input link %s parameters "
                    "(size %dx%d) do not match the corresponding "
                    "second input link %s parameters (%dx%d) ",
                    ctx->input_pads[0].name, src->w, src->h,
                    ctx->input_pads[1].name, ref->w, ref->h);
             return AVERROR(EINVAL);
         }
     }
 
     outlink->w = src->w;
     outlink->h = src->h;
     outlink->time_base = src->time_base;
     outlink->sample_aspect_ratio = src->sample_aspect_ratio;
     outlink->frame_rate = src->frame_rate;
 
     if (!s->ref)
         return 0;
 
     if ((ret = ff_framesync_init(&s->fs, ctx, 2)) < 0)
         return ret;
 
     in = s->fs.in;
     in[0].time_base = src->time_base;
     in[1].time_base = ref->time_base;
     in[0].sync   = 1;
     in[0].before = EXT_STOP;
     in[0].after  = EXT_STOP;
     in[1].sync   = 1;
     in[1].before = EXT_STOP;
     in[1].after  = EXT_STOP;
     s->fs.opaque   = s;
     s->fs.on_event = process_frame;
 
     return ff_framesync_configure(&s->fs);
 }
 
 static av_cold void uninit(AVFilterContext *ctx)
 {
     BM3DContext *s = ctx->priv;
     int i;
 
     for (i = 0; i < ctx->nb_inputs; i++)
         av_freep(&ctx->input_pads[i].name);
 
     if (s->ref)
         ff_framesync_uninit(&s->fs);
 
     for (i = 0; i < s->nb_threads; i++) {
         SliceContext *sc = &s->slices[i];
 
         av_freep(&sc->num);
         av_freep(&sc->den);
 
         av_dct_end(sc->gdctf);
         av_dct_end(sc->gdcti);
         av_dct_end(sc->dctf);
         av_dct_end(sc->dcti);
 
         av_freep(&sc->buffer);
         av_freep(&sc->bufferh);
         av_freep(&sc->bufferv);
         av_freep(&sc->bufferz);
         av_freep(&sc->rbuffer);
         av_freep(&sc->rbufferh);
         av_freep(&sc->rbufferv);
         av_freep(&sc->rbufferz);
 
         av_freep(&sc->search_positions);
     }
 }
 
 static const AVFilterPad bm3d_outputs[] = {
     {
         .name         = "default",
         .type         = AVMEDIA_TYPE_VIDEO,
         .config_props = config_output,
     },
     { NULL }
 };
 
 AVFilter ff_vf_bm3d = {
     .name          = "bm3d",
     .description   = NULL_IF_CONFIG_SMALL("Block-Matching 3D denoiser."),
     .priv_size     = sizeof(BM3DContext),
     .init          = init,
     .uninit        = uninit,
     .activate      = activate,
     .query_formats = query_formats,
     .inputs        = NULL,
     .outputs       = bm3d_outputs,
     .priv_class    = &bm3d_class,
     .flags         = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL |
                      AVFILTER_FLAG_DYNAMIC_INPUTS |
                      AVFILTER_FLAG_SLICE_THREADS,
 };