libavfilter/af_axcorrelate.c
93414ce8
 /*
  * Copyright (c) 2019 Paul B Mahol
  *
  * This file is part of FFmpeg.
  *
  * FFmpeg is free software; you can redistribute it and/or
  * modify it under the terms of the GNU Lesser General Public
  * License as published by the Free Software Foundation; either
  * version 2.1 of the License, or (at your option) any later version.
  *
  * FFmpeg is distributed in the hope that it will be useful,
  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  * Lesser General Public License for more details.
  *
  * You should have received a copy of the GNU Lesser General Public
  * License along with FFmpeg; if not, write to the Free Software
  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  */
 
 #include "libavutil/avassert.h"
 #include "libavutil/audio_fifo.h"
 #include "libavutil/channel_layout.h"
 #include "libavutil/common.h"
 #include "libavutil/opt.h"
 
 #include "audio.h"
 #include "avfilter.h"
 #include "formats.h"
 #include "filters.h"
 #include "internal.h"
 
 typedef struct AudioXCorrelateContext {
     const AVClass *class;
 
     int size;
     int algo;
     int64_t pts;
 
     AVAudioFifo *fifo[2];
     AVFrame *cache[2];
     AVFrame *mean_sum[2];
     AVFrame *num_sum;
     AVFrame *den_sum[2];
     int used;
 
     int (*xcorrelate)(AVFilterContext *ctx, AVFrame *out);
 } AudioXCorrelateContext;
 
 static int query_formats(AVFilterContext *ctx)
 {
     AVFilterFormats *formats;
     AVFilterChannelLayouts *layouts;
     static const enum AVSampleFormat sample_fmts[] = {
         AV_SAMPLE_FMT_FLTP,
         AV_SAMPLE_FMT_NONE
     };
     int ret;
 
     layouts = ff_all_channel_counts();
     if (!layouts)
         return AVERROR(ENOMEM);
     ret = ff_set_common_channel_layouts(ctx, layouts);
     if (ret < 0)
         return ret;
 
     formats = ff_make_format_list(sample_fmts);
     if (!formats)
         return AVERROR(ENOMEM);
     ret = ff_set_common_formats(ctx, formats);
     if (ret < 0)
         return ret;
 
     formats = ff_all_samplerates();
     if (!formats)
         return AVERROR(ENOMEM);
     return ff_set_common_samplerates(ctx, formats);
 }
 
 static float mean_sum(const float *in, int size)
 {
     float mean_sum = 0.f;
 
     for (int i = 0; i < size; i++)
         mean_sum += in[i];
 
     return mean_sum;
 }
 
 static float square_sum(const float *x, const float *y, int size)
 {
     float square_sum = 0.f;
 
     for (int i = 0; i < size; i++)
         square_sum += x[i] * y[i];
 
     return square_sum;
 }
 
 static float xcorrelate(const float *x, const float *y, float sumx, float sumy, int size)
 {
     const float xm = sumx / size, ym = sumy / size;
     float num = 0.f, den, den0 = 0.f, den1 = 0.f;
 
     for (int i = 0; i < size; i++) {
         float xd = x[i] - xm;
         float yd = y[i] - ym;
 
         num += xd * yd;
         den0 += xd * xd;
         den1 += yd * yd;
     }
 
     num /= size;
     den  = sqrtf((den0 * den1) / (size * size));
 
     return den <= 1e-6f ? 0.f : num / den;
 }
 
 static int xcorrelate_slow(AVFilterContext *ctx, AVFrame *out)
 {
     AudioXCorrelateContext *s = ctx->priv;
     const int size = s->size;
     int used;
 
     for (int ch = 0; ch < out->channels; ch++) {
         const float *x = (const float *)s->cache[0]->extended_data[ch];
         const float *y = (const float *)s->cache[1]->extended_data[ch];
         float *sumx = (float *)s->mean_sum[0]->extended_data[ch];
         float *sumy = (float *)s->mean_sum[1]->extended_data[ch];
         float *dst = (float *)out->extended_data[ch];
 
         used = s->used;
         if (!used) {
             sumx[0] = mean_sum(x, size);
             sumy[0] = mean_sum(y, size);
             used = 1;
         }
 
         for (int n = 0; n < out->nb_samples; n++) {
             dst[n] = xcorrelate(x + n, y + n, sumx[0], sumy[0], size);
 
             sumx[0] -= x[n];
             sumx[0] += x[n + size];
             sumy[0] -= y[n];
             sumy[0] += y[n + size];
         }
     }
 
     return used;
 }
 
 static int xcorrelate_fast(AVFilterContext *ctx, AVFrame *out)
 {
     AudioXCorrelateContext *s = ctx->priv;
     const int size = s->size;
     int used;
 
     for (int ch = 0; ch < out->channels; ch++) {
         const float *x = (const float *)s->cache[0]->extended_data[ch];
         const float *y = (const float *)s->cache[1]->extended_data[ch];
         float *num_sum = (float *)s->num_sum->extended_data[ch];
         float *den_sumx = (float *)s->den_sum[0]->extended_data[ch];
         float *den_sumy = (float *)s->den_sum[1]->extended_data[ch];
         float *dst = (float *)out->extended_data[ch];
 
         used = s->used;
         if (!used) {
             num_sum[0]  = square_sum(x, y, size);
             den_sumx[0] = square_sum(x, x, size);
             den_sumy[0] = square_sum(y, y, size);
             used = 1;
         }
 
         for (int n = 0; n < out->nb_samples; n++) {
             float num, den;
 
             num = num_sum[0] / size;
             den = sqrtf((den_sumx[0] * den_sumy[0]) / (size * size));
 
             dst[n] = den <= 1e-6f ? 0.f : num / den;
 
             num_sum[0]  -= x[n] * y[n];
             num_sum[0]  += x[n + size] * y[n + size];
             den_sumx[0] -= x[n] * x[n];
             den_sumx[0]  = FFMAX(den_sumx[0], 0.f);
             den_sumx[0] += x[n + size] * x[n + size];
             den_sumy[0] -= y[n] * y[n];
             den_sumy[0]  = FFMAX(den_sumy[0], 0.f);
             den_sumy[0] += y[n + size] * y[n + size];
         }
     }
 
     return used;
 }
 
 static int activate(AVFilterContext *ctx)
 {
     AudioXCorrelateContext *s = ctx->priv;
     AVFrame *frame = NULL;
     int ret, status;
     int available;
     int64_t pts;
 
     FF_FILTER_FORWARD_STATUS_BACK_ALL(ctx->outputs[0], ctx);
 
     for (int i = 0; i < 2; i++) {
         ret = ff_inlink_consume_frame(ctx->inputs[i], &frame);
         if (ret > 0) {
             if (s->pts == AV_NOPTS_VALUE)
                 s->pts = frame->pts;
             ret = av_audio_fifo_write(s->fifo[i], (void **)frame->extended_data,
                                       frame->nb_samples);
             av_frame_free(&frame);
             if (ret < 0)
                 return ret;
         }
     }
 
     available = FFMIN(av_audio_fifo_size(s->fifo[0]), av_audio_fifo_size(s->fifo[1]));
     if (available > s->size) {
         const int out_samples = available - s->size;
         AVFrame *out;
 
         if (!s->cache[0] || s->cache[0]->nb_samples < available) {
             av_frame_free(&s->cache[0]);
             s->cache[0] = ff_get_audio_buffer(ctx->outputs[0], available);
             if (!s->cache[0])
                 return AVERROR(ENOMEM);
         }
 
         if (!s->cache[1] || s->cache[1]->nb_samples < available) {
             av_frame_free(&s->cache[1]);
             s->cache[1] = ff_get_audio_buffer(ctx->outputs[0], available);
             if (!s->cache[1])
                 return AVERROR(ENOMEM);
         }
 
         ret = av_audio_fifo_peek(s->fifo[0], (void **)s->cache[0]->extended_data, available);
         if (ret < 0)
a0ae4b7d
             return ret;
93414ce8
 
         ret = av_audio_fifo_peek(s->fifo[1], (void **)s->cache[1]->extended_data, available);
         if (ret < 0)
a0ae4b7d
             return ret;
93414ce8
 
         out = ff_get_audio_buffer(ctx->outputs[0], out_samples);
         if (!out)
             return AVERROR(ENOMEM);
 
         s->used = s->xcorrelate(ctx, out);
 
         out->pts = s->pts;
         s->pts += out_samples;
 
         av_audio_fifo_drain(s->fifo[0], out_samples);
         av_audio_fifo_drain(s->fifo[1], out_samples);
 
         return ff_filter_frame(ctx->outputs[0], out);
     }
 
     if (av_audio_fifo_size(s->fifo[0]) > s->size &&
         av_audio_fifo_size(s->fifo[1]) > s->size) {
         ff_filter_set_ready(ctx, 10);
         return 0;
     }
 
     for (int i = 0; i < 2; i++) {
         if (ff_inlink_acknowledge_status(ctx->inputs[i], &status, &pts)) {
             ff_outlink_set_status(ctx->outputs[0], status, pts);
             return 0;
         }
     }
 
     if (ff_outlink_frame_wanted(ctx->outputs[0])) {
         for (int i = 0; i < 2; i++) {
             if (av_audio_fifo_size(s->fifo[i]) > s->size)
                 continue;
             ff_inlink_request_frame(ctx->inputs[i]);
             return 0;
         }
     }
 
     return FFERROR_NOT_READY;
 }
 
 static int config_output(AVFilterLink *outlink)
 {
     AVFilterContext *ctx = outlink->src;
     AVFilterLink *inlink = ctx->inputs[0];
     AudioXCorrelateContext *s = ctx->priv;
 
     s->pts = AV_NOPTS_VALUE;
 
     outlink->format = inlink->format;
     outlink->channels = inlink->channels;
     s->fifo[0] = av_audio_fifo_alloc(outlink->format, outlink->channels, s->size);
     s->fifo[1] = av_audio_fifo_alloc(outlink->format, outlink->channels, s->size);
     if (!s->fifo[0] || !s->fifo[1])
         return AVERROR(ENOMEM);
 
     s->mean_sum[0] = ff_get_audio_buffer(outlink, 1);
     s->mean_sum[1] = ff_get_audio_buffer(outlink, 1);
     s->num_sum = ff_get_audio_buffer(outlink, 1);
     s->den_sum[0] = ff_get_audio_buffer(outlink, 1);
     s->den_sum[1] = ff_get_audio_buffer(outlink, 1);
     if (!s->mean_sum[0] || !s->mean_sum[1] || !s->num_sum ||
         !s->den_sum[0] || !s->den_sum[1])
         return AVERROR(ENOMEM);
 
     switch (s->algo) {
     case 0: s->xcorrelate = xcorrelate_slow; break;
     case 1: s->xcorrelate = xcorrelate_fast; break;
     }
 
     return 0;
 }
 
 static av_cold void uninit(AVFilterContext *ctx)
 {
     AudioXCorrelateContext *s = ctx->priv;
 
     av_audio_fifo_free(s->fifo[0]);
     av_audio_fifo_free(s->fifo[1]);
     av_frame_free(&s->cache[0]);
     av_frame_free(&s->cache[1]);
     av_frame_free(&s->mean_sum[0]);
     av_frame_free(&s->mean_sum[1]);
     av_frame_free(&s->num_sum);
     av_frame_free(&s->den_sum[0]);
     av_frame_free(&s->den_sum[1]);
 }
 
 static const AVFilterPad inputs[] = {
     {
         .name = "axcorrelate0",
         .type = AVMEDIA_TYPE_AUDIO,
     },
     {
         .name = "axcorrelate1",
         .type = AVMEDIA_TYPE_AUDIO,
     },
     { NULL }
 };
 
 static const AVFilterPad outputs[] = {
     {
         .name         = "default",
         .type         = AVMEDIA_TYPE_AUDIO,
         .config_props = config_output,
     },
     { NULL }
 };
 
 #define AF AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
 #define OFFSET(x) offsetof(AudioXCorrelateContext, x)
 
 static const AVOption axcorrelate_options[] = {
     { "size", "set segment size", OFFSET(size), AV_OPT_TYPE_INT,   {.i64=256}, 2, 131072, AF },
     { "algo", "set alghorithm",   OFFSET(algo), AV_OPT_TYPE_INT,   {.i64=0},   0,      1, AF, "algo" },
     { "slow", "slow algorithm",   0,            AV_OPT_TYPE_CONST, {.i64=0},   0,      0, AF, "algo" },
     { "fast", "fast algorithm",   0,            AV_OPT_TYPE_CONST, {.i64=1},   0,      0, AF, "algo" },
     { NULL }
 };
 
 AVFILTER_DEFINE_CLASS(axcorrelate);
 
 AVFilter ff_af_axcorrelate = {
     .name           = "axcorrelate",
     .description    = NULL_IF_CONFIG_SMALL("Cross-correlate two audio streams."),
     .priv_size      = sizeof(AudioXCorrelateContext),
     .priv_class     = &axcorrelate_class,
     .query_formats  = query_formats,
     .activate       = activate,
     .uninit         = uninit,
     .inputs         = inputs,
     .outputs        = outputs,
 };