Browse code

Apple ProRes decoder

Signed-off-by: Martin Storsjö <martin@martin.st>

Maxim Poliakovski authored on 2011/09/21 20:09:32
Showing 6 changed files
... ...
@@ -47,6 +47,7 @@ easier to use. The changes are:
47 47
 - split filter
48 48
 - libcdio-paranoia input device for audio CD grabbing
49 49
 - select filter
50
+- Apple ProRes decoder
50 51
 
51 52
 
52 53
 version 0.7:
... ...
@@ -341,6 +341,7 @@ following image formats are supported:
341 341
     @tab Used in Chinese MP3 players.
342 342
 @item ANSI/ASCII art         @tab     @tab  X
343 343
 @item Apple MJPEG-B          @tab     @tab  X
344
+@item Apple ProRes           @tab     @tab  X
344 345
 @item Apple QuickDraw        @tab     @tab  X
345 346
     @tab fourcc: qdrw
346 347
 @item Asus v1                @tab  X  @tab  X
... ...
@@ -295,6 +295,7 @@ OBJS-$(CONFIG_PNG_DECODER)             += png.o pngdec.o
295 295
 OBJS-$(CONFIG_PNG_ENCODER)             += png.o pngenc.o
296 296
 OBJS-$(CONFIG_PPM_DECODER)             += pnmdec.o pnm.o
297 297
 OBJS-$(CONFIG_PPM_ENCODER)             += pnmenc.o pnm.o
298
+OBJS-$(CONFIG_PRORES_DECODER)          += proresdec.o
298 299
 OBJS-$(CONFIG_PTX_DECODER)             += ptx.o
299 300
 OBJS-$(CONFIG_QCELP_DECODER)           += qcelpdec.o celp_math.o         \
300 301
                                           celp_filters.o acelp_vectors.o \
... ...
@@ -164,6 +164,7 @@ void avcodec_register_all(void)
164 164
     REGISTER_DECODER (PICTOR, pictor);
165 165
     REGISTER_ENCDEC  (PNG, png);
166 166
     REGISTER_ENCDEC  (PPM, ppm);
167
+    REGISTER_DECODER (PRORES, prores);
167 168
     REGISTER_DECODER (PTX, ptx);
168 169
     REGISTER_DECODER (QDRAW, qdraw);
169 170
     REGISTER_DECODER (QPEG, qpeg);
170 171
new file mode 100644
... ...
@@ -0,0 +1,733 @@
0
+/*
1
+ * Apple ProRes compatible decoder
2
+ *
3
+ * Copyright (c) 2010-2011 Maxim Poliakovski
4
+ *
5
+ * This file is part of Libav.
6
+ *
7
+ * Libav is free software; you can redistribute it and/or
8
+ * modify it under the terms of the GNU Lesser General Public
9
+ * License as published by the Free Software Foundation; either
10
+ * version 2.1 of the License, or (at your option) any later version.
11
+ *
12
+ * Libav is distributed in the hope that it will be useful,
13
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
+ * Lesser General Public License for more details.
16
+ *
17
+ * You should have received a copy of the GNU Lesser General Public
18
+ * License along with Libav; if not, write to the Free Software
19
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
+ */
21
+
22
+/**
23
+ * @file
24
+ * This is a decoder for Apple ProRes 422 SD/HQ/LT/Proxy and ProRes 4444.
25
+ * It is used for storing and editing high definition video data in Apple's Final Cut Pro.
26
+ *
27
+ * @see http://wiki.multimedia.cx/index.php?title=Apple_ProRes
28
+ */
29
+
30
+#define A32_BITSTREAM_READER // some ProRes vlc codes require up to 28 bits to be read at once
31
+
32
+#include <stdint.h>
33
+
34
+#include "libavutil/intmath.h"
35
+#include "avcodec.h"
36
+#include "dsputil.h"
37
+#include "get_bits.h"
38
+
39
+#define BITS_PER_SAMPLE 10                              ///< output precision of that decoder
40
+#define BIAS     (1 << (BITS_PER_SAMPLE - 1))           ///< bias value for converting signed pixels into unsigned ones
41
+#define CLIP_MIN (1 << (BITS_PER_SAMPLE - 8))           ///< minimum value for clipping resulting pixels
42
+#define CLIP_MAX (1 << BITS_PER_SAMPLE) - CLIP_MIN - 1  ///< maximum value for clipping resulting pixels
43
+
44
+
45
+typedef struct {
46
+    DSPContext dsp;
47
+    AVFrame    picture;
48
+    ScanTable  scantable;
49
+    int        scantable_type;           ///< -1 = uninitialized, 0 = progressive, 1/2 = interlaced
50
+
51
+    int        frame_type;               ///< 0 = progressive, 1 = top-field first, 2 = bottom-field first
52
+    int        pic_format;               ///< 2 = 422, 3 = 444
53
+    uint8_t    qmat_luma[64];            ///< dequantization matrix for luma
54
+    uint8_t    qmat_chroma[64];          ///< dequantization matrix for chroma
55
+    int        qmat_changed;             ///< 1 - global quantization matrices changed
56
+    int        prev_slice_sf;            ///< scalefactor of the previous decoded slice
57
+    DECLARE_ALIGNED(16, int16_t, qmat_luma_scaled[64]);
58
+    DECLARE_ALIGNED(16, int16_t, qmat_chroma_scaled[64]);
59
+    DECLARE_ALIGNED(16, DCTELEM, blocks[8 * 4 * 64]);
60
+    int        total_slices;            ///< total number of slices in a picture
61
+    const uint8_t **slice_data_index;   ///< array of pointers to the data of each slice
62
+    int        chroma_factor;
63
+    int        mb_chroma_factor;
64
+    int        num_chroma_blocks;       ///< number of chrominance blocks in a macroblock
65
+    int        num_x_slices;
66
+    int        num_y_slices;
67
+    int        slice_width_factor;
68
+    int        slice_height_factor;
69
+    int        num_x_mbs;
70
+    int        num_y_mbs;
71
+} ProresContext;
72
+
73
+
74
+static const uint8_t progressive_scan[64] = {
75
+     0,  1,  8,  9,  2,  3, 10, 11,
76
+    16, 17, 24, 25, 18, 19, 26, 27,
77
+     4,  5, 12, 20, 13,  6,  7, 14,
78
+    21, 28, 29, 22, 15, 23, 30, 31,
79
+    32, 33, 40, 48, 41, 34, 35, 42,
80
+    49, 56, 57, 50, 43, 36, 37, 44,
81
+    51, 58, 59, 52, 45, 38, 39, 46,
82
+    53, 60, 61, 54, 47, 55, 62, 63
83
+};
84
+
85
+static const uint8_t interlaced_scan[64] = {
86
+     0,  8,  1,  9, 16, 24, 17, 25,
87
+     2, 10,  3, 11, 18, 26, 19, 27,
88
+    32, 40, 33, 34, 41, 48, 56, 49,
89
+    42, 35, 43, 50, 57, 58, 51, 59,
90
+     4, 12,  5,  6, 13, 20, 28, 21,
91
+    14,  7, 15, 22, 29, 36, 44, 37,
92
+    30, 23, 31, 38, 45, 52, 60, 53,
93
+    46, 39, 47, 54, 61, 62, 55, 63
94
+};
95
+
96
+
97
+static av_cold int decode_init(AVCodecContext *avctx)
98
+{
99
+    ProresContext *ctx = avctx->priv_data;
100
+
101
+    ctx->total_slices     = 0;
102
+    ctx->slice_data_index = 0;
103
+
104
+    avctx->pix_fmt = PIX_FMT_YUV422P10; // set default pixel format
105
+
106
+    avctx->bits_per_raw_sample = BITS_PER_SAMPLE;
107
+    dsputil_init(&ctx->dsp, avctx);
108
+
109
+    avctx->coded_frame = &ctx->picture;
110
+    avcodec_get_frame_defaults(&ctx->picture);
111
+    ctx->picture.type      = AV_PICTURE_TYPE_I;
112
+    ctx->picture.key_frame = 1;
113
+
114
+    ctx->scantable_type = -1;   // set scantable type to uninitialized
115
+    memset(ctx->qmat_luma, 4, 64);
116
+    memset(ctx->qmat_chroma, 4, 64);
117
+    ctx->prev_slice_sf = 0;
118
+
119
+    return 0;
120
+}
121
+
122
+
123
+static int decode_frame_header(ProresContext *ctx, const uint8_t *buf,
124
+                               const int data_size, AVCodecContext *avctx)
125
+{
126
+    int hdr_size, version, width, height, flags;
127
+    const uint8_t *ptr;
128
+
129
+    hdr_size = AV_RB16(buf);
130
+    if (hdr_size > data_size) {
131
+        av_log(avctx, AV_LOG_ERROR, "frame data too short!\n");
132
+        return -1;
133
+    }
134
+
135
+    version = AV_RB16(buf + 2);
136
+    if (version >= 2) {
137
+        av_log(avctx, AV_LOG_ERROR,
138
+               "unsupported header version: %d\n", version);
139
+        return -1;
140
+    }
141
+
142
+    width  = AV_RB16(buf + 8);
143
+    height = AV_RB16(buf + 10);
144
+    if (width != avctx->width || height != avctx->height) {
145
+        av_log(avctx, AV_LOG_ERROR,
146
+               "picture dimension changed! Old: %d x %d, new: %d x %d\n",
147
+               avctx->width, avctx->height, width, height);
148
+        return -1;
149
+    }
150
+
151
+    ctx->frame_type = (buf[12] >> 2) & 3;
152
+    if (ctx->frame_type > 2) {
153
+        av_log(avctx, AV_LOG_ERROR,
154
+               "unsupported frame type: %d!\n", ctx->frame_type);
155
+        return -1;
156
+    }
157
+
158
+    ctx->chroma_factor     = (buf[12] >> 6) & 3;
159
+    ctx->mb_chroma_factor  = ctx->chroma_factor + 2;
160
+    ctx->num_chroma_blocks = (1 << ctx->chroma_factor) >> 1;
161
+    switch (ctx->chroma_factor) {
162
+    case 2:
163
+        avctx->pix_fmt = PIX_FMT_YUV422P10;
164
+        break;
165
+    case 3:
166
+        avctx->pix_fmt = PIX_FMT_YUV444P10;
167
+        break;
168
+    default:
169
+        av_log(avctx, AV_LOG_ERROR,
170
+               "unsupported picture format: %d!\n", ctx->pic_format);
171
+        return -1;
172
+    }
173
+
174
+    if (ctx->scantable_type != ctx->frame_type) {
175
+        if (!ctx->frame_type)
176
+            ff_init_scantable(ctx->dsp.idct_permutation, &ctx->scantable,
177
+                              progressive_scan);
178
+        else
179
+            ff_init_scantable(ctx->dsp.idct_permutation, &ctx->scantable,
180
+                              interlaced_scan);
181
+        ctx->scantable_type = ctx->frame_type;
182
+    }
183
+
184
+    if (ctx->frame_type) {      /* if interlaced */
185
+        ctx->picture.interlaced_frame = 1;
186
+        ctx->picture.top_field_first  = ctx->frame_type & 1;
187
+    }
188
+
189
+    ctx->qmat_changed = 0;
190
+    ptr   = buf + 20;
191
+    flags = buf[19];
192
+    if (flags & 2) {
193
+        if (ptr - buf > hdr_size - 64) {
194
+            av_log(avctx, AV_LOG_ERROR, "Too short header data\n");
195
+            return -1;
196
+        }
197
+        if (memcmp(ctx->qmat_luma, ptr, 64)) {
198
+            memcpy(ctx->qmat_luma, ptr, 64);
199
+            ctx->qmat_changed = 1;
200
+        }
201
+        ptr += 64;
202
+    } else {
203
+        memset(ctx->qmat_luma, 4, 64);
204
+        ctx->qmat_changed = 1;
205
+    }
206
+
207
+    if (flags & 1) {
208
+        if (ptr - buf > hdr_size - 64) {
209
+            av_log(avctx, AV_LOG_ERROR, "Too short header data\n");
210
+            return -1;
211
+        }
212
+        if (memcmp(ctx->qmat_chroma, ptr, 64)) {
213
+            memcpy(ctx->qmat_chroma, ptr, 64);
214
+            ctx->qmat_changed = 1;
215
+        }
216
+    } else {
217
+        memset(ctx->qmat_chroma, 4, 64);
218
+        ctx->qmat_changed = 1;
219
+    }
220
+
221
+    return hdr_size;
222
+}
223
+
224
+
225
+static int decode_picture_header(ProresContext *ctx, const uint8_t *buf,
226
+                                 const int data_size, AVCodecContext *avctx)
227
+{
228
+    int   i, hdr_size, pic_data_size, num_slices;
229
+    int   slice_width_factor, slice_height_factor;
230
+    int   remainder, num_x_slices;
231
+    const uint8_t *data_ptr, *index_ptr;
232
+
233
+    hdr_size = data_size > 0 ? buf[0] >> 3 : 0;
234
+    if (hdr_size < 8 || hdr_size > data_size) {
235
+        av_log(avctx, AV_LOG_ERROR, "picture header too short!\n");
236
+        return -1;
237
+    }
238
+
239
+    pic_data_size = AV_RB32(buf + 1);
240
+    if (pic_data_size > data_size) {
241
+        av_log(avctx, AV_LOG_ERROR, "picture data too short!\n");
242
+        return -1;
243
+    }
244
+
245
+    slice_width_factor  = buf[7] >> 4;
246
+    slice_height_factor = buf[7] & 0xF;
247
+    if (slice_width_factor > 3 || slice_height_factor) {
248
+        av_log(avctx, AV_LOG_ERROR,
249
+               "unsupported slice dimension: %d x %d!\n",
250
+               1 << slice_width_factor, 1 << slice_height_factor);
251
+        return -1;
252
+    }
253
+
254
+    ctx->slice_width_factor  = slice_width_factor;
255
+    ctx->slice_height_factor = slice_height_factor;
256
+
257
+    ctx->num_x_mbs = (avctx->width + 15) >> 4;
258
+    ctx->num_y_mbs =
259
+        (avctx->height + (1 << (4 + ctx->picture.interlaced_frame)) - 1) >>
260
+        (4 + ctx->picture.interlaced_frame);
261
+
262
+    remainder    = ctx->num_x_mbs & ((1 << slice_width_factor) - 1);
263
+    num_x_slices = (ctx->num_x_mbs >> slice_width_factor) + (remainder & 1) +
264
+                   ((remainder >> 1) & 1) + ((remainder >> 2) & 1);
265
+
266
+    num_slices = num_x_slices * ctx->num_y_mbs;
267
+    if (num_slices != AV_RB16(buf + 5)) {
268
+        av_log(avctx, AV_LOG_ERROR, "invalid number of slices!\n");
269
+        return -1;
270
+    }
271
+
272
+    if (ctx->total_slices != num_slices) {
273
+        av_freep(&ctx->slice_data_index);
274
+        ctx->slice_data_index =
275
+            av_malloc((num_slices + 1) * sizeof(uint8_t*));
276
+        if (!ctx->slice_data_index)
277
+            return AVERROR(ENOMEM);
278
+        ctx->total_slices = num_slices;
279
+    }
280
+
281
+    if (hdr_size + num_slices * 2 > data_size) {
282
+        av_log(avctx, AV_LOG_ERROR, "slice table too short!\n");
283
+        return -1;
284
+    }
285
+
286
+    /* parse slice table allowing quick access to the slice data */
287
+    index_ptr = buf + hdr_size;
288
+    data_ptr = index_ptr + num_slices * 2;
289
+
290
+    for (i = 0; i < num_slices; i++) {
291
+        ctx->slice_data_index[i] = data_ptr;
292
+        data_ptr += AV_RB16(index_ptr + i * 2);
293
+    }
294
+    ctx->slice_data_index[i] = data_ptr;
295
+
296
+    if (data_ptr > buf + data_size) {
297
+        av_log(avctx, AV_LOG_ERROR, "out of slice data!\n");
298
+        return -1;
299
+    }
300
+
301
+    return pic_data_size;
302
+}
303
+
304
+
305
+/**
306
+ * Read an unsigned rice/exp golomb codeword.
307
+ */
308
+static inline int decode_vlc_codeword(GetBitContext *gb, uint8_t codebook)
309
+{
310
+    unsigned int rice_order, exp_order, switch_bits;
311
+    unsigned int buf, code;
312
+    int log, prefix_len, len;
313
+
314
+    OPEN_READER(re, gb);
315
+    UPDATE_CACHE(re, gb);
316
+    buf = GET_CACHE(re, gb);
317
+
318
+    /* number of prefix bits to switch between Rice and expGolomb */
319
+    switch_bits = (codebook & 3) + 1;
320
+    rice_order  = codebook >> 5;        /* rice code order */
321
+    exp_order   = (codebook >> 2) & 7;  /* exp golomb code order */
322
+
323
+    log = 31 - av_log2(buf); /* count prefix bits (zeroes) */
324
+
325
+    if (log < switch_bits) { /* ok, we got a rice code */
326
+        if (!rice_order) {
327
+            /* shortcut for faster decoding of rice codes without remainder */
328
+            code = log;
329
+            LAST_SKIP_BITS(re, gb, log + 1);
330
+        } else {
331
+            prefix_len = log + 1;
332
+            code = (log << rice_order) + NEG_USR32((buf << prefix_len), rice_order);
333
+            LAST_SKIP_BITS(re, gb, prefix_len + rice_order);
334
+        }
335
+    } else { /* otherwise we got a exp golomb code */
336
+        len  = (log << 1) - switch_bits + exp_order + 1;
337
+        code = NEG_USR32(buf, len) - (1 << exp_order) + (switch_bits << rice_order);
338
+        LAST_SKIP_BITS(re, gb, len);
339
+    }
340
+
341
+    CLOSE_READER(re, gb);
342
+
343
+    return code;
344
+}
345
+
346
+#define LSB2SIGN(x) (-((x) & 1))
347
+#define TOSIGNED(x) (((x) >> 1) ^ LSB2SIGN(x))
348
+
349
+#define FIRST_DC_CB 0xB8 // rice_order = 5, exp_golomb_order = 6, switch_bits = 0
350
+
351
+static uint8_t dc_codebook[4] = {
352
+    0x04, // rice_order = 0, exp_golomb_order = 1, switch_bits = 0
353
+    0x28, // rice_order = 1, exp_golomb_order = 2, switch_bits = 0
354
+    0x4D, // rice_order = 2, exp_golomb_order = 3, switch_bits = 1
355
+    0x70  // rice_order = 3, exp_golomb_order = 4, switch_bits = 0
356
+};
357
+
358
+
359
+/**
360
+ * Decode DC coefficients for all blocks in a slice.
361
+ */
362
+static inline void decode_dc_coeffs(GetBitContext *gb, DCTELEM *out,
363
+                                    int nblocks)
364
+{
365
+    DCTELEM prev_dc;
366
+    int     i, sign;
367
+    int16_t delta;
368
+    unsigned int code;
369
+
370
+    code   = decode_vlc_codeword(gb, FIRST_DC_CB);
371
+    out[0] = prev_dc = TOSIGNED(code);
372
+
373
+    out   += 64; /* move to the DC coeff of the next block */
374
+    delta  = 3;
375
+
376
+    for (i = 1; i < nblocks; i++, out += 64) {
377
+        code = decode_vlc_codeword(gb, dc_codebook[FFMIN(FFABS(delta), 3)]);
378
+
379
+        sign     = -(((delta >> 15) & 1) ^ (code & 1));
380
+        delta    = (((code + 1) >> 1) ^ sign) - sign;
381
+        prev_dc += delta;
382
+        out[0]   = prev_dc;
383
+    }
384
+}
385
+
386
+
387
+static uint8_t ac_codebook[7] = {
388
+    0x04, // rice_order = 0, exp_golomb_order = 1, switch_bits = 0
389
+    0x28, // rice_order = 1, exp_golomb_order = 2, switch_bits = 0
390
+    0x4C, // rice_order = 2, exp_golomb_order = 3, switch_bits = 0
391
+    0x05, // rice_order = 0, exp_golomb_order = 1, switch_bits = 1
392
+    0x29, // rice_order = 1, exp_golomb_order = 2, switch_bits = 1
393
+    0x06, // rice_order = 0, exp_golomb_order = 1, switch_bits = 2
394
+    0x0A, // rice_order = 0, exp_golomb_order = 2, switch_bits = 2
395
+};
396
+
397
+/**
398
+ * Lookup tables for adaptive switching between codebooks
399
+ * according with previous run/level value.
400
+ */
401
+static uint8_t run_to_cb_index[16] =
402
+    { 5, 5, 3, 3, 0, 4, 4, 4, 4, 1, 1, 1, 1, 1, 1, 2 };
403
+
404
+static uint8_t lev_to_cb_index[10] = { 0, 6, 3, 5, 0, 1, 1, 1, 1, 2 };
405
+
406
+
407
+/**
408
+ * Decode AC coefficients for all blocks in a slice.
409
+ */
410
+static inline void decode_ac_coeffs(GetBitContext *gb, DCTELEM *out,
411
+                                    int blocks_per_slice,
412
+                                    int plane_size_factor,
413
+                                    const uint8_t *scan)
414
+{
415
+    int pos, block_mask, run, level, sign, run_cb_index, lev_cb_index;
416
+    int max_coeffs, bits_left;
417
+
418
+    /* set initial prediction values */
419
+    run   = 4;
420
+    level = 2;
421
+
422
+    max_coeffs = blocks_per_slice << 6;
423
+    block_mask = blocks_per_slice - 1;
424
+
425
+    for (pos = blocks_per_slice - 1; pos < max_coeffs;) {
426
+        run_cb_index = run_to_cb_index[FFMIN(run, 15)];
427
+        lev_cb_index = lev_to_cb_index[FFMIN(level, 9)];
428
+
429
+        bits_left = get_bits_left(gb);
430
+        if (bits_left <= 8 && !show_bits(gb, bits_left))
431
+            return;
432
+
433
+        run = decode_vlc_codeword(gb, ac_codebook[run_cb_index]);
434
+
435
+        bits_left = get_bits_left(gb);
436
+        if (bits_left <= 8 && !show_bits(gb, bits_left))
437
+            return;
438
+
439
+        level = decode_vlc_codeword(gb, ac_codebook[lev_cb_index]) + 1;
440
+
441
+        pos += run + 1;
442
+        if (pos >= max_coeffs)
443
+            break;
444
+
445
+        sign = get_sbits(gb, 1);
446
+        out[((pos & block_mask) << 6) + scan[pos >> plane_size_factor]] =
447
+            (level ^ sign) - sign;
448
+    }
449
+}
450
+
451
+
452
+#define CLIP_AND_BIAS(x) (av_clip((x) + BIAS, CLIP_MIN, CLIP_MAX))
453
+
454
+/**
455
+ * Add bias value, clamp and output pixels of a slice
456
+ */
457
+static void put_pixels(const DCTELEM *in, uint16_t *out, int stride,
458
+                       int mbs_per_slice, int blocks_per_mb)
459
+{
460
+    int mb, x, y, src_offset, dst_offset;
461
+    const DCTELEM *src1, *src2;
462
+    uint16_t *dst1, *dst2;
463
+
464
+    src1 = in;
465
+    src2 = in + (blocks_per_mb << 5);
466
+    dst1 = out;
467
+    dst2 = out + (stride << 3);
468
+
469
+    for (mb = 0; mb < mbs_per_slice; mb++) {
470
+        for (y = 0, dst_offset = 0; y < 8; y++, dst_offset += stride) {
471
+            for (x = 0; x < 8; x++) {
472
+                src_offset = (y << 3) + x;
473
+
474
+                dst1[dst_offset + x] = CLIP_AND_BIAS(src1[src_offset]);
475
+                dst2[dst_offset + x] = CLIP_AND_BIAS(src2[src_offset]);
476
+
477
+                if (blocks_per_mb > 2) {
478
+                    dst1[dst_offset + x + 8] =
479
+                        CLIP_AND_BIAS(src1[src_offset + 64]);
480
+                    dst2[dst_offset + x + 8] =
481
+                        CLIP_AND_BIAS(src2[src_offset + 64]);
482
+                }
483
+            }
484
+        }
485
+
486
+        src1 += blocks_per_mb << 6;
487
+        src2 += blocks_per_mb << 6;
488
+        dst1 += blocks_per_mb << 2;
489
+        dst2 += blocks_per_mb << 2;
490
+    }
491
+}
492
+
493
+
494
+/**
495
+ * Decode a slice plane (luma or chroma).
496
+ */
497
+static void decode_slice_plane(ProresContext *ctx, const uint8_t *buf,
498
+                               int data_size, uint16_t *out_ptr,
499
+                               int linesize, int mbs_per_slice,
500
+                               int blocks_per_mb, int plane_size_factor,
501
+                               const int16_t *qmat)
502
+{
503
+    GetBitContext gb;
504
+    DCTELEM *block_ptr;
505
+    int i, blk_num, blocks_per_slice;
506
+
507
+    blocks_per_slice = mbs_per_slice * blocks_per_mb;
508
+
509
+    memset(ctx->blocks, 0, 8 * 4 * 64 * sizeof(*ctx->blocks));
510
+
511
+    init_get_bits(&gb, buf, data_size << 3);
512
+
513
+    decode_dc_coeffs(&gb, ctx->blocks, blocks_per_slice);
514
+
515
+    decode_ac_coeffs(&gb, ctx->blocks, blocks_per_slice,
516
+                     plane_size_factor, ctx->scantable.permutated);
517
+
518
+    /* inverse quantization, inverse transform and output */
519
+    block_ptr = ctx->blocks;
520
+
521
+    for (blk_num = 0; blk_num < blocks_per_slice;
522
+         blk_num++, block_ptr += 64) {
523
+        /* TODO: the correct solution shoud be (block_ptr[i] * qmat[i]) >> 1
524
+         * and the input of the inverse transform should be scaled by 2
525
+         * in order to avoid rounding errors.
526
+         * Due to the fact the existing Libav transforms are incompatible with
527
+         * that input I temporally introduced the coarse solution below... */
528
+        for (i = 0; i < 64; i++)
529
+            block_ptr[i] = (block_ptr[i] * qmat[i]) >> 2;
530
+
531
+        ctx->dsp.idct(block_ptr);
532
+    }
533
+
534
+    put_pixels(ctx->blocks, out_ptr, linesize >> 1, mbs_per_slice,
535
+               blocks_per_mb);
536
+}
537
+
538
+
539
+static int decode_slice(ProresContext *ctx, int pic_num, int slice_num,
540
+                        int mb_x_pos, int mb_y_pos, int mbs_per_slice,
541
+                        AVCodecContext *avctx)
542
+{
543
+    const uint8_t *buf;
544
+    uint8_t *y_data, *u_data, *v_data;
545
+    AVFrame *pic = avctx->coded_frame;
546
+    int i, sf, slice_width_factor;
547
+    int slice_data_size, hdr_size, y_data_size, u_data_size, v_data_size;
548
+    int y_linesize, u_linesize, v_linesize;
549
+
550
+    buf             = ctx->slice_data_index[slice_num];
551
+    slice_data_size = ctx->slice_data_index[slice_num + 1] - buf;
552
+
553
+    slice_width_factor = av_log2(mbs_per_slice);
554
+
555
+    y_data     = pic->data[0];
556
+    u_data     = pic->data[1];
557
+    v_data     = pic->data[2];
558
+    y_linesize = pic->linesize[0];
559
+    u_linesize = pic->linesize[1];
560
+    v_linesize = pic->linesize[2];
561
+
562
+    if (pic->interlaced_frame) {
563
+        if (!(pic_num ^ pic->top_field_first)) {
564
+            y_data += y_linesize;
565
+            u_data += u_linesize;
566
+            v_data += v_linesize;
567
+        }
568
+        y_linesize <<= 1;
569
+        u_linesize <<= 1;
570
+        v_linesize <<= 1;
571
+    }
572
+
573
+    if (slice_data_size < 6) {
574
+        av_log(avctx, AV_LOG_ERROR, "slice data too short!\n");
575
+        return -1;
576
+    }
577
+
578
+    /* parse slice header */
579
+    hdr_size    = buf[0] >> 3;
580
+    y_data_size = AV_RB16(buf + 2);
581
+    u_data_size = AV_RB16(buf + 4);
582
+    v_data_size = slice_data_size - y_data_size - u_data_size - hdr_size;
583
+
584
+    if (v_data_size < 0 || hdr_size < 6) {
585
+        av_log(avctx, AV_LOG_ERROR, "invalid data sizes!\n");
586
+        return -1;
587
+    }
588
+
589
+    sf = av_clip(buf[1], 1, 224);
590
+    sf = sf > 128 ? (sf - 96) << 2 : sf;
591
+
592
+    /* scale quantization matrixes according with slice's scale factor */
593
+    /* TODO: this can be SIMD-optimized alot */
594
+    if (ctx->qmat_changed || sf != ctx->prev_slice_sf) {
595
+        ctx->prev_slice_sf = sf;
596
+        for (i = 0; i < 64; i++) {
597
+            ctx->qmat_luma_scaled[i]   = ctx->qmat_luma[i] * sf;
598
+            ctx->qmat_chroma_scaled[i] = ctx->qmat_chroma[i] * sf;
599
+        }
600
+    }
601
+
602
+    /* decode luma plane */
603
+    decode_slice_plane(ctx, buf + hdr_size, y_data_size,
604
+                       (uint16_t*) (y_data + (mb_y_pos << 4) * y_linesize +
605
+                                    (mb_x_pos << 5)), y_linesize,
606
+                       mbs_per_slice, 4, slice_width_factor + 2,
607
+                       ctx->qmat_luma_scaled);
608
+
609
+    /* decode U chroma plane */
610
+    decode_slice_plane(ctx, buf + hdr_size + y_data_size, u_data_size,
611
+                       (uint16_t*) (u_data + (mb_y_pos << 4) * u_linesize +
612
+                                    (mb_x_pos << ctx->mb_chroma_factor)),
613
+                       u_linesize, mbs_per_slice, ctx->num_chroma_blocks,
614
+                       slice_width_factor + ctx->chroma_factor - 1,
615
+                       ctx->qmat_chroma_scaled);
616
+
617
+    /* decode V chroma plane */
618
+    decode_slice_plane(ctx, buf + hdr_size + y_data_size + u_data_size,
619
+                       v_data_size,
620
+                       (uint16_t*) (v_data + (mb_y_pos << 4) * v_linesize +
621
+                                    (mb_x_pos << ctx->mb_chroma_factor)),
622
+                       v_linesize, mbs_per_slice, ctx->num_chroma_blocks,
623
+                       slice_width_factor + ctx->chroma_factor - 1,
624
+                       ctx->qmat_chroma_scaled);
625
+
626
+    return 0;
627
+}
628
+
629
+
630
+static int decode_picture(ProresContext *ctx, int pic_num,
631
+                          AVCodecContext *avctx)
632
+{
633
+    int slice_num, slice_width, x_pos, y_pos;
634
+
635
+    slice_num = 0;
636
+
637
+    for (y_pos = 0; y_pos < ctx->num_y_mbs; y_pos++) {
638
+        slice_width = 1 << ctx->slice_width_factor;
639
+
640
+        for (x_pos = 0; x_pos < ctx->num_x_mbs && slice_width;
641
+             x_pos += slice_width) {
642
+            while (ctx->num_x_mbs - x_pos < slice_width)
643
+                slice_width >>= 1;
644
+
645
+            if (decode_slice(ctx, pic_num, slice_num, x_pos, y_pos,
646
+                             slice_width, avctx) < 0)
647
+                return -1;
648
+
649
+            slice_num++;
650
+        }
651
+    }
652
+
653
+    return 0;
654
+}
655
+
656
+
657
+#define FRAME_ID MKBETAG('i', 'c', 'p', 'f')
658
+#define MOVE_DATA_PTR(nbytes) buf += (nbytes); buf_size -= (nbytes)
659
+
660
+static int decode_frame(AVCodecContext *avctx, void *data, int *data_size,
661
+                        AVPacket *avpkt)
662
+{
663
+    ProresContext *ctx = avctx->priv_data;
664
+    AVFrame *picture   = avctx->coded_frame;
665
+    const uint8_t *buf = avpkt->data;
666
+    int buf_size       = avpkt->size;
667
+    int frame_hdr_size, pic_num, pic_data_size;
668
+
669
+    /* check frame atom container */
670
+    if (buf_size < 28 || buf_size < AV_RB32(buf) ||
671
+        AV_RB32(buf + 4) != FRAME_ID) {
672
+        av_log(avctx, AV_LOG_ERROR, "invalid frame\n");
673
+        return -1;
674
+    }
675
+
676
+    MOVE_DATA_PTR(8);
677
+
678
+    frame_hdr_size = decode_frame_header(ctx, buf, buf_size, avctx);
679
+    if (frame_hdr_size < 0)
680
+        return -1;
681
+
682
+    MOVE_DATA_PTR(frame_hdr_size);
683
+
684
+    if (picture->data[0])
685
+        avctx->release_buffer(avctx, picture);
686
+
687
+    picture->reference = 0;
688
+    if (avctx->get_buffer(avctx, picture) < 0)
689
+        return -1;
690
+
691
+    for (pic_num = 0; ctx->picture.interlaced_frame - pic_num + 1; pic_num++) {
692
+        pic_data_size = decode_picture_header(ctx, buf, buf_size, avctx);
693
+        if (pic_data_size < 0)
694
+            return -1;
695
+
696
+        if (decode_picture(ctx, pic_num, avctx))
697
+            return -1;
698
+
699
+        MOVE_DATA_PTR(pic_data_size);
700
+    }
701
+
702
+    *data_size       = sizeof(AVPicture);
703
+    *(AVFrame*) data = *avctx->coded_frame;
704
+
705
+    return avpkt->size;
706
+}
707
+
708
+
709
+static av_cold int decode_close(AVCodecContext *avctx)
710
+{
711
+    ProresContext *ctx = avctx->priv_data;
712
+
713
+    if (ctx->picture.data[0])
714
+        avctx->release_buffer(avctx, &ctx->picture);
715
+
716
+    av_freep(&ctx->slice_data_index);
717
+
718
+    return 0;
719
+}
720
+
721
+
722
+AVCodec ff_prores_decoder = {
723
+    .name           = "ProRes",
724
+    .type           = AVMEDIA_TYPE_VIDEO,
725
+    .id             = CODEC_ID_PRORES,
726
+    .priv_data_size = sizeof(ProresContext),
727
+    .init           = decode_init,
728
+    .close          = decode_close,
729
+    .decode         = decode_frame,
730
+    .capabilities   = CODEC_CAP_DR1,
731
+    .long_name      = NULL_IF_CONFIG_SMALL("Apple ProRes (iCodec Pro)")
732
+};
... ...
@@ -21,7 +21,7 @@
21 21
 #define AVCODEC_VERSION_H
22 22
 
23 23
 #define LIBAVCODEC_VERSION_MAJOR 53
24
-#define LIBAVCODEC_VERSION_MINOR  10
24
+#define LIBAVCODEC_VERSION_MINOR  11
25 25
 #define LIBAVCODEC_VERSION_MICRO  0
26 26
 
27 27
 #define LIBAVCODEC_VERSION_INT  AV_VERSION_INT(LIBAVCODEC_VERSION_MAJOR, \