/* * Copyright (c) 2012 Andrew D'Addesio * Copyright (c) 2013-2014 Mozilla Corporation * Copyright (c) 2016 Rostislav Pehlivanov * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * Opus CELT decoder */ #include "opus_celt.h" #include "opustab.h" #include "opus_pvq.h" /* Use the 2D z-transform to apply prediction in both the time domain (alpha) * and the frequency domain (beta) */ static void celt_decode_coarse_energy(CeltFrame *f, OpusRangeCoder *rc) { int i, j; float prev[2] = { 0 }; float alpha = ff_celt_alpha_coef[f->size]; float beta = ff_celt_beta_coef[f->size]; const uint8_t *model = ff_celt_coarse_energy_dist[f->size][0]; /* intra frame */ if (opus_rc_tell(rc) + 3 <= f->framebits && ff_opus_rc_dec_log(rc, 3)) { alpha = 0.0f; beta = 1.0f - (4915.0f/32768.0f); model = ff_celt_coarse_energy_dist[f->size][1]; } for (i = 0; i < CELT_MAX_BANDS; i++) { for (j = 0; j < f->channels; j++) { CeltBlock *block = &f->block[j]; float value; int available; if (i < f->start_band || i >= f->end_band) { block->energy[i] = 0.0; continue; } available = f->framebits - opus_rc_tell(rc); if (available >= 15) { /* decode using a Laplace distribution */ int k = FFMIN(i, 20) << 1; value = ff_opus_rc_dec_laplace(rc, model[k] << 7, model[k+1] << 6); } else if (available >= 2) { int x = ff_opus_rc_dec_cdf(rc, ff_celt_model_energy_small); value = (x>>1) ^ -(x&1); } else if (available >= 1) { value = -(float)ff_opus_rc_dec_log(rc, 1); } else value = -1; block->energy[i] = FFMAX(-9.0f, block->energy[i]) * alpha + prev[j] + value; prev[j] += beta * value; } } } static void celt_decode_fine_energy(CeltFrame *f, OpusRangeCoder *rc) { int i; for (i = f->start_band; i < f->end_band; i++) { int j; if (!f->fine_bits[i]) continue; for (j = 0; j < f->channels; j++) { CeltBlock *block = &f->block[j]; int q2; float offset; q2 = ff_opus_rc_get_raw(rc, f->fine_bits[i]); offset = (q2 + 0.5f) * (1 << (14 - f->fine_bits[i])) / 16384.0f - 0.5f; block->energy[i] += offset; } } } static void celt_decode_final_energy(CeltFrame *f, OpusRangeCoder *rc) { int priority, i, j; int bits_left = f->framebits - opus_rc_tell(rc); for (priority = 0; priority < 2; priority++) { for (i = f->start_band; i < f->end_band && bits_left >= f->channels; i++) { if (f->fine_priority[i] != priority || f->fine_bits[i] >= CELT_MAX_FINE_BITS) continue; for (j = 0; j < f->channels; j++) { int q2; float offset; q2 = ff_opus_rc_get_raw(rc, 1); offset = (q2 - 0.5f) * (1 << (14 - f->fine_bits[i] - 1)) / 16384.0f; f->block[j].energy[i] += offset; bits_left--; } } } } static void celt_decode_tf_changes(CeltFrame *f, OpusRangeCoder *rc) { int i, diff = 0, tf_select = 0, tf_changed = 0, tf_select_bit; int consumed, bits = f->transient ? 2 : 4; consumed = opus_rc_tell(rc); tf_select_bit = (f->size != 0 && consumed+bits+1 <= f->framebits); for (i = f->start_band; i < f->end_band; i++) { if (consumed+bits+tf_select_bit <= f->framebits) { diff ^= ff_opus_rc_dec_log(rc, bits); consumed = opus_rc_tell(rc); tf_changed |= diff; } f->tf_change[i] = diff; bits = f->transient ? 4 : 5; } if (tf_select_bit && ff_celt_tf_select[f->size][f->transient][0][tf_changed] != ff_celt_tf_select[f->size][f->transient][1][tf_changed]) tf_select = ff_opus_rc_dec_log(rc, 1); for (i = f->start_band; i < f->end_band; i++) { f->tf_change[i] = ff_celt_tf_select[f->size][f->transient][tf_select][f->tf_change[i]]; } } static void celt_decode_allocation(CeltFrame *f, OpusRangeCoder *rc) { // approx. maximum bit allocation for each band before boost/trim int cap[CELT_MAX_BANDS]; int boost[CELT_MAX_BANDS]; int threshold[CELT_MAX_BANDS]; int bits1[CELT_MAX_BANDS]; int bits2[CELT_MAX_BANDS]; int trim_offset[CELT_MAX_BANDS]; int skip_start_band = f->start_band; int dynalloc = 6; int alloctrim = 5; int extrabits = 0; int skip_bit = 0; int intensity_stereo_bit = 0; int dual_stereo_bit = 0; int remaining, bandbits; int low, high, total, done; int totalbits; int consumed; int i, j; consumed = opus_rc_tell(rc); /* obtain spread flag */ f->spread = CELT_SPREAD_NORMAL; if (consumed + 4 <= f->framebits) f->spread = ff_opus_rc_dec_cdf(rc, ff_celt_model_spread); /* generate static allocation caps */ for (i = 0; i < CELT_MAX_BANDS; i++) { cap[i] = (ff_celt_static_caps[f->size][f->channels - 1][i] + 64) * ff_celt_freq_range[i] << (f->channels - 1) << f->size >> 2; } /* obtain band boost */ totalbits = f->framebits << 3; // convert to 1/8 bits consumed = opus_rc_tell_frac(rc); for (i = f->start_band; i < f->end_band; i++) { int quanta, band_dynalloc; boost[i] = 0; quanta = ff_celt_freq_range[i] << (f->channels - 1) << f->size; quanta = FFMIN(quanta << 3, FFMAX(6 << 3, quanta)); band_dynalloc = dynalloc; while (consumed + (band_dynalloc<<3) < totalbits && boost[i] < cap[i]) { int add = ff_opus_rc_dec_log(rc, band_dynalloc); consumed = opus_rc_tell_frac(rc); if (!add) break; boost[i] += quanta; totalbits -= quanta; band_dynalloc = 1; } /* dynalloc is more likely to occur if it's already been used for earlier bands */ if (boost[i]) dynalloc = FFMAX(2, dynalloc - 1); } /* obtain allocation trim */ if (consumed + (6 << 3) <= totalbits) alloctrim = ff_opus_rc_dec_cdf(rc, ff_celt_model_alloc_trim); /* anti-collapse bit reservation */ totalbits = (f->framebits << 3) - opus_rc_tell_frac(rc) - 1; f->anticollapse_needed = 0; if (f->blocks > 1 && f->size >= 2 && totalbits >= ((f->size + 2) << 3)) f->anticollapse_needed = 1 << 3; totalbits -= f->anticollapse_needed; /* band skip bit reservation */ if (totalbits >= 1 << 3) skip_bit = 1 << 3; totalbits -= skip_bit; /* intensity/dual stereo bit reservation */ if (f->channels == 2) { intensity_stereo_bit = ff_celt_log2_frac[f->end_band - f->start_band]; if (intensity_stereo_bit <= totalbits) { totalbits -= intensity_stereo_bit; if (totalbits >= 1 << 3) { dual_stereo_bit = 1 << 3; totalbits -= 1 << 3; } } else intensity_stereo_bit = 0; } for (i = f->start_band; i < f->end_band; i++) { int trim = alloctrim - 5 - f->size; int band = ff_celt_freq_range[i] * (f->end_band - i - 1); int duration = f->size + 3; int scale = duration + f->channels - 1; /* PVQ minimum allocation threshold, below this value the band is * skipped */ threshold[i] = FFMAX(3 * ff_celt_freq_range[i] << duration >> 4, f->channels << 3); trim_offset[i] = trim * (band << scale) >> 6; if (ff_celt_freq_range[i] << f->size == 1) trim_offset[i] -= f->channels << 3; } /* bisection */ low = 1; high = CELT_VECTORS - 1; while (low <= high) { int center = (low + high) >> 1; done = total = 0; for (i = f->end_band - 1; i >= f->start_band; i--) { bandbits = ff_celt_freq_range[i] * ff_celt_static_alloc[center][i] << (f->channels - 1) << f->size >> 2; if (bandbits) bandbits = FFMAX(0, bandbits + trim_offset[i]); bandbits += boost[i]; if (bandbits >= threshold[i] || done) { done = 1; total += FFMIN(bandbits, cap[i]); } else if (bandbits >= f->channels << 3) total += f->channels << 3; } if (total > totalbits) high = center - 1; else low = center + 1; } high = low--; for (i = f->start_band; i < f->end_band; i++) { bits1[i] = ff_celt_freq_range[i] * ff_celt_static_alloc[low][i] << (f->channels - 1) << f->size >> 2; bits2[i] = high >= CELT_VECTORS ? cap[i] : ff_celt_freq_range[i] * ff_celt_static_alloc[high][i] << (f->channels - 1) << f->size >> 2; if (bits1[i]) bits1[i] = FFMAX(0, bits1[i] + trim_offset[i]); if (bits2[i]) bits2[i] = FFMAX(0, bits2[i] + trim_offset[i]); if (low) bits1[i] += boost[i]; bits2[i] += boost[i]; if (boost[i]) skip_start_band = i; bits2[i] = FFMAX(0, bits2[i] - bits1[i]); } /* bisection */ low = 0; high = 1 << CELT_ALLOC_STEPS; for (i = 0; i < CELT_ALLOC_STEPS; i++) { int center = (low + high) >> 1; done = total = 0; for (j = f->end_band - 1; j >= f->start_band; j--) { bandbits = bits1[j] + (center * bits2[j] >> CELT_ALLOC_STEPS); if (bandbits >= threshold[j] || done) { done = 1; total += FFMIN(bandbits, cap[j]); } else if (bandbits >= f->channels << 3) total += f->channels << 3; } if (total > totalbits) high = center; else low = center; } done = total = 0; for (i = f->end_band - 1; i >= f->start_band; i--) { bandbits = bits1[i] + (low * bits2[i] >> CELT_ALLOC_STEPS); if (bandbits >= threshold[i] || done) done = 1; else bandbits = (bandbits >= f->channels << 3) ? f->channels << 3 : 0; bandbits = FFMIN(bandbits, cap[i]); f->pulses[i] = bandbits; total += bandbits; } /* band skipping */ for (f->coded_bands = f->end_band; ; f->coded_bands--) { int allocation; j = f->coded_bands - 1; if (j == skip_start_band) { /* all remaining bands are not skipped */ totalbits += skip_bit; break; } /* determine the number of bits available for coding "do not skip" markers */ remaining = totalbits - total; bandbits = remaining / (ff_celt_freq_bands[j+1] - ff_celt_freq_bands[f->start_band]); remaining -= bandbits * (ff_celt_freq_bands[j+1] - ff_celt_freq_bands[f->start_band]); allocation = f->pulses[j] + bandbits * ff_celt_freq_range[j] + FFMAX(0, remaining - (ff_celt_freq_bands[j] - ff_celt_freq_bands[f->start_band])); /* a "do not skip" marker is only coded if the allocation is above the chosen threshold */ if (allocation >= FFMAX(threshold[j], (f->channels + 1) <<3 )) { if (ff_opus_rc_dec_log(rc, 1)) break; total += 1 << 3; allocation -= 1 << 3; } /* the band is skipped, so reclaim its bits */ total -= f->pulses[j]; if (intensity_stereo_bit) { total -= intensity_stereo_bit; intensity_stereo_bit = ff_celt_log2_frac[j - f->start_band]; total += intensity_stereo_bit; } total += f->pulses[j] = (allocation >= f->channels << 3) ? f->channels << 3 : 0; } /* obtain stereo flags */ f->intensity_stereo = 0; f->dual_stereo = 0; if (intensity_stereo_bit) f->intensity_stereo = f->start_band + ff_opus_rc_dec_uint(rc, f->coded_bands + 1 - f->start_band); if (f->intensity_stereo <= f->start_band) totalbits += dual_stereo_bit; /* no intensity stereo means no dual stereo */ else if (dual_stereo_bit) f->dual_stereo = ff_opus_rc_dec_log(rc, 1); /* supply the remaining bits in this frame to lower bands */ remaining = totalbits - total; bandbits = remaining / (ff_celt_freq_bands[f->coded_bands] - ff_celt_freq_bands[f->start_band]); remaining -= bandbits * (ff_celt_freq_bands[f->coded_bands] - ff_celt_freq_bands[f->start_band]); for (i = f->start_band; i < f->coded_bands; i++) { int bits = FFMIN(remaining, ff_celt_freq_range[i]); f->pulses[i] += bits + bandbits * ff_celt_freq_range[i]; remaining -= bits; } for (i = f->start_band; i < f->coded_bands; i++) { int N = ff_celt_freq_range[i] << f->size; int prev_extra = extrabits; f->pulses[i] += extrabits; if (N > 1) { int dof; // degrees of freedom int temp; // dof * channels * log(dof) int offset; // fine energy quantization offset, i.e. // extra bits assigned over the standard // totalbits/dof int fine_bits, max_bits; extrabits = FFMAX(0, f->pulses[i] - cap[i]); f->pulses[i] -= extrabits; /* intensity stereo makes use of an extra degree of freedom */ dof = N * f->channels + (f->channels == 2 && N > 2 && !f->dual_stereo && i < f->intensity_stereo); temp = dof * (ff_celt_log_freq_range[i] + (f->size<<3)); offset = (temp >> 1) - dof * CELT_FINE_OFFSET; if (N == 2) /* dof=2 is the only case that doesn't fit the model */ offset += dof<<1; /* grant an additional bias for the first and second pulses */ if (f->pulses[i] + offset < 2 * (dof << 3)) offset += temp >> 2; else if (f->pulses[i] + offset < 3 * (dof << 3)) offset += temp >> 3; fine_bits = (f->pulses[i] + offset + (dof << 2)) / (dof << 3); max_bits = FFMIN((f->pulses[i]>>3) >> (f->channels - 1), CELT_MAX_FINE_BITS); max_bits = FFMAX(max_bits, 0); f->fine_bits[i] = av_clip(fine_bits, 0, max_bits); /* if fine_bits was rounded down or capped, give priority for the final fine energy pass */ f->fine_priority[i] = (f->fine_bits[i] * (dof<<3) >= f->pulses[i] + offset); /* the remaining bits are assigned to PVQ */ f->pulses[i] -= f->fine_bits[i] << (f->channels - 1) << 3; } else { /* all bits go to fine energy except for the sign bit */ extrabits = FFMAX(0, f->pulses[i] - (f->channels << 3)); f->pulses[i] -= extrabits; f->fine_bits[i] = 0; f->fine_priority[i] = 1; } /* hand back a limited number of extra fine energy bits to this band */ if (extrabits > 0) { int fineextra = FFMIN(extrabits >> (f->channels + 2), CELT_MAX_FINE_BITS - f->fine_bits[i]); f->fine_bits[i] += fineextra; fineextra <<= f->channels + 2; f->fine_priority[i] = (fineextra >= extrabits - prev_extra); extrabits -= fineextra; } } f->remaining = extrabits; /* skipped bands dedicate all of their bits for fine energy */ for (; i < f->end_band; i++) { f->fine_bits[i] = f->pulses[i] >> (f->channels - 1) >> 3; f->pulses[i] = 0; f->fine_priority[i] = f->fine_bits[i] < 1; } } static void celt_denormalize(CeltFrame *f, CeltBlock *block, float *data) { int i, j; for (i = f->start_band; i < f->end_band; i++) { float *dst = data + (ff_celt_freq_bands[i] << f->size); float norm = exp2f(block->energy[i] + ff_celt_mean_energy[i]); for (j = 0; j < ff_celt_freq_range[i] << f->size; j++) dst[j] *= norm; } } static void celt_postfilter_apply_transition(CeltBlock *block, float *data) { const int T0 = block->pf_period_old; const int T1 = block->pf_period; float g00, g01, g02; float g10, g11, g12; float x0, x1, x2, x3, x4; int i; if (block->pf_gains[0] == 0.0 && block->pf_gains_old[0] == 0.0) return; g00 = block->pf_gains_old[0]; g01 = block->pf_gains_old[1]; g02 = block->pf_gains_old[2]; g10 = block->pf_gains[0]; g11 = block->pf_gains[1]; g12 = block->pf_gains[2]; x1 = data[-T1 + 1]; x2 = data[-T1]; x3 = data[-T1 - 1]; x4 = data[-T1 - 2]; for (i = 0; i < CELT_OVERLAP; i++) { float w = ff_celt_window2[i]; x0 = data[i - T1 + 2]; data[i] += (1.0 - w) * g00 * data[i - T0] + (1.0 - w) * g01 * (data[i - T0 - 1] + data[i - T0 + 1]) + (1.0 - w) * g02 * (data[i - T0 - 2] + data[i - T0 + 2]) + w * g10 * x2 + w * g11 * (x1 + x3) + w * g12 * (x0 + x4); x4 = x3; x3 = x2; x2 = x1; x1 = x0; } } static void celt_postfilter_apply(CeltBlock *block, float *data, int len) { const int T = block->pf_period; float g0, g1, g2; float x0, x1, x2, x3, x4; int i; if (block->pf_gains[0] == 0.0 || len <= 0) return; g0 = block->pf_gains[0]; g1 = block->pf_gains[1]; g2 = block->pf_gains[2]; x4 = data[-T - 2]; x3 = data[-T - 1]; x2 = data[-T]; x1 = data[-T + 1]; for (i = 0; i < len; i++) { x0 = data[i - T + 2]; data[i] += g0 * x2 + g1 * (x1 + x3) + g2 * (x0 + x4); x4 = x3; x3 = x2; x2 = x1; x1 = x0; } } static void celt_postfilter(CeltFrame *f, CeltBlock *block) { int len = f->blocksize * f->blocks; celt_postfilter_apply_transition(block, block->buf + 1024); block->pf_period_old = block->pf_period; memcpy(block->pf_gains_old, block->pf_gains, sizeof(block->pf_gains)); block->pf_period = block->pf_period_new; memcpy(block->pf_gains, block->pf_gains_new, sizeof(block->pf_gains)); if (len > CELT_OVERLAP) { celt_postfilter_apply_transition(block, block->buf + 1024 + CELT_OVERLAP); celt_postfilter_apply(block, block->buf + 1024 + 2 * CELT_OVERLAP, len - 2 * CELT_OVERLAP); block->pf_period_old = block->pf_period; memcpy(block->pf_gains_old, block->pf_gains, sizeof(block->pf_gains)); } memmove(block->buf, block->buf + len, (1024 + CELT_OVERLAP / 2) * sizeof(float)); } static int parse_postfilter(CeltFrame *f, OpusRangeCoder *rc, int consumed) { int i; memset(f->block[0].pf_gains_new, 0, sizeof(f->block[0].pf_gains_new)); memset(f->block[1].pf_gains_new, 0, sizeof(f->block[1].pf_gains_new)); if (f->start_band == 0 && consumed + 16 <= f->framebits) { int has_postfilter = ff_opus_rc_dec_log(rc, 1); if (has_postfilter) { float gain; int tapset, octave, period; octave = ff_opus_rc_dec_uint(rc, 6); period = (16 << octave) + ff_opus_rc_get_raw(rc, 4 + octave) - 1; gain = 0.09375f * (ff_opus_rc_get_raw(rc, 3) + 1); tapset = (opus_rc_tell(rc) + 2 <= f->framebits) ? ff_opus_rc_dec_cdf(rc, ff_celt_model_tapset) : 0; for (i = 0; i < 2; i++) { CeltBlock *block = &f->block[i]; block->pf_period_new = FFMAX(period, CELT_POSTFILTER_MINPERIOD); block->pf_gains_new[0] = gain * ff_celt_postfilter_taps[tapset][0]; block->pf_gains_new[1] = gain * ff_celt_postfilter_taps[tapset][1]; block->pf_gains_new[2] = gain * ff_celt_postfilter_taps[tapset][2]; } } consumed = opus_rc_tell(rc); } return consumed; } static void process_anticollapse(CeltFrame *f, CeltBlock *block, float *X) { int i, j, k; for (i = f->start_band; i < f->end_band; i++) { int renormalize = 0; float *xptr; float prev[2]; float Ediff, r; float thresh, sqrt_1; int depth; /* depth in 1/8 bits */ depth = (1 + f->pulses[i]) / (ff_celt_freq_range[i] << f->size); thresh = exp2f(-1.0 - 0.125f * depth); sqrt_1 = 1.0f / sqrtf(ff_celt_freq_range[i] << f->size); xptr = X + (ff_celt_freq_bands[i] << f->size); prev[0] = block->prev_energy[0][i]; prev[1] = block->prev_energy[1][i]; if (f->channels == 1) { CeltBlock *block1 = &f->block[1]; prev[0] = FFMAX(prev[0], block1->prev_energy[0][i]); prev[1] = FFMAX(prev[1], block1->prev_energy[1][i]); } Ediff = block->energy[i] - FFMIN(prev[0], prev[1]); Ediff = FFMAX(0, Ediff); /* r needs to be multiplied by 2 or 2*sqrt(2) depending on LM because short blocks don't have the same energy as long */ r = exp2f(1 - Ediff); if (f->size == 3) r *= M_SQRT2; r = FFMIN(thresh, r) * sqrt_1; for (k = 0; k < 1 << f->size; k++) { /* Detect collapse */ if (!(block->collapse_masks[i] & 1 << k)) { /* Fill with noise */ for (j = 0; j < ff_celt_freq_range[i]; j++) xptr[(j << f->size) + k] = (celt_rng(f) & 0x8000) ? r : -r; renormalize = 1; } } /* We just added some energy, so we need to renormalize */ if (renormalize) celt_renormalize_vector(xptr, ff_celt_freq_range[i] << f->size, 1.0f); } } static void celt_decode_bands(CeltFrame *f, OpusRangeCoder *rc) { float lowband_scratch[8 * 22]; float norm[2 * 8 * 100]; int totalbits = (f->framebits << 3) - f->anticollapse_needed; int update_lowband = 1; int lowband_offset = 0; int i, j; memset(f->block[0].coeffs, 0, sizeof(f->block[0].coeffs)); memset(f->block[1].coeffs, 0, sizeof(f->block[0].coeffs)); for (i = f->start_band; i < f->end_band; i++) { uint32_t cm[2] = { (1 << f->blocks) - 1, (1 << f->blocks) - 1 }; int band_offset = ff_celt_freq_bands[i] << f->size; int band_size = ff_celt_freq_range[i] << f->size; float *X = f->block[0].coeffs + band_offset; float *Y = (f->channels == 2) ? f->block[1].coeffs + band_offset : NULL; int consumed = opus_rc_tell_frac(rc); float *norm2 = norm + 8 * 100; int effective_lowband = -1; int b = 0; /* Compute how many bits we want to allocate to this band */ if (i != f->start_band) f->remaining -= consumed; f->remaining2 = totalbits - consumed - 1; if (i <= f->coded_bands - 1) { int curr_balance = f->remaining / FFMIN(3, f->coded_bands-i); b = av_clip_uintp2(FFMIN(f->remaining2 + 1, f->pulses[i] + curr_balance), 14); } if (ff_celt_freq_bands[i] - ff_celt_freq_range[i] >= ff_celt_freq_bands[f->start_band] && (update_lowband || lowband_offset == 0)) lowband_offset = i; /* Get a conservative estimate of the collapse_mask's for the bands we're going to be folding from. */ if (lowband_offset != 0 && (f->spread != CELT_SPREAD_AGGRESSIVE || f->blocks > 1 || f->tf_change[i] < 0)) { int foldstart, foldend; /* This ensures we never repeat spectral content within one band */ effective_lowband = FFMAX(ff_celt_freq_bands[f->start_band], ff_celt_freq_bands[lowband_offset] - ff_celt_freq_range[i]); foldstart = lowband_offset; while (ff_celt_freq_bands[--foldstart] > effective_lowband); foldend = lowband_offset - 1; while (ff_celt_freq_bands[++foldend] < effective_lowband + ff_celt_freq_range[i]); cm[0] = cm[1] = 0; for (j = foldstart; j < foldend; j++) { cm[0] |= f->block[0].collapse_masks[j]; cm[1] |= f->block[f->channels - 1].collapse_masks[j]; } } if (f->dual_stereo && i == f->intensity_stereo) { /* Switch off dual stereo to do intensity */ f->dual_stereo = 0; for (j = ff_celt_freq_bands[f->start_band] << f->size; j < band_offset; j++) norm[j] = (norm[j] + norm2[j]) / 2; } if (f->dual_stereo) { cm[0] = f->pvq->decode_band(f->pvq, f, rc, i, X, NULL, band_size, b / 2, f->blocks, effective_lowband != -1 ? norm + (effective_lowband << f->size) : NULL, f->size, norm + band_offset, 0, 1.0f, lowband_scratch, cm[0]); cm[1] = f->pvq->decode_band(f->pvq, f, rc, i, Y, NULL, band_size, b/2, f->blocks, effective_lowband != -1 ? norm2 + (effective_lowband << f->size) : NULL, f->size, norm2 + band_offset, 0, 1.0f, lowband_scratch, cm[1]); } else { cm[0] = f->pvq->decode_band(f->pvq, f, rc, i, X, Y, band_size, b, f->blocks, effective_lowband != -1 ? norm + (effective_lowband << f->size) : NULL, f->size, norm + band_offset, 0, 1.0f, lowband_scratch, cm[0]|cm[1]); cm[1] = cm[0]; } f->block[0].collapse_masks[i] = (uint8_t)cm[0]; f->block[f->channels - 1].collapse_masks[i] = (uint8_t)cm[1]; f->remaining += f->pulses[i] + consumed; /* Update the folding position only as long as we have 1 bit/sample depth */ update_lowband = (b > band_size << 3); } } int ff_celt_decode_frame(CeltFrame *f, OpusRangeCoder *rc, float **output, int channels, int frame_size, int start_band, int end_band) { int i, j, downmix = 0; int consumed; // bits of entropy consumed thus far for this frame MDCT15Context *imdct; if (channels != 1 && channels != 2) { av_log(f->avctx, AV_LOG_ERROR, "Invalid number of coded channels: %d\n", channels); return AVERROR_INVALIDDATA; } if (start_band < 0 || start_band > end_band || end_band > CELT_MAX_BANDS) { av_log(f->avctx, AV_LOG_ERROR, "Invalid start/end band: %d %d\n", start_band, end_band); return AVERROR_INVALIDDATA; } f->silence = 0; f->transient = 0; f->anticollapse = 0; f->flushed = 0; f->channels = channels; f->start_band = start_band; f->end_band = end_band; f->framebits = rc->rb.bytes * 8; f->size = av_log2(frame_size / CELT_SHORT_BLOCKSIZE); if (f->size > CELT_MAX_LOG_BLOCKS || frame_size != CELT_SHORT_BLOCKSIZE * (1 << f->size)) { av_log(f->avctx, AV_LOG_ERROR, "Invalid CELT frame size: %d\n", frame_size); return AVERROR_INVALIDDATA; } if (!f->output_channels) f->output_channels = channels; memset(f->block[0].collapse_masks, 0, sizeof(f->block[0].collapse_masks)); memset(f->block[1].collapse_masks, 0, sizeof(f->block[1].collapse_masks)); consumed = opus_rc_tell(rc); /* obtain silence flag */ if (consumed >= f->framebits) f->silence = 1; else if (consumed == 1) f->silence = ff_opus_rc_dec_log(rc, 15); if (f->silence) { consumed = f->framebits; rc->total_bits += f->framebits - opus_rc_tell(rc); } /* obtain post-filter options */ consumed = parse_postfilter(f, rc, consumed); /* obtain transient flag */ if (f->size != 0 && consumed+3 <= f->framebits) f->transient = ff_opus_rc_dec_log(rc, 3); f->blocks = f->transient ? 1 << f->size : 1; f->blocksize = frame_size / f->blocks; imdct = f->imdct[f->transient ? 0 : f->size]; if (channels == 1) { for (i = 0; i < CELT_MAX_BANDS; i++) f->block[0].energy[i] = FFMAX(f->block[0].energy[i], f->block[1].energy[i]); } celt_decode_coarse_energy(f, rc); celt_decode_tf_changes (f, rc); celt_decode_allocation (f, rc); celt_decode_fine_energy (f, rc); celt_decode_bands (f, rc); if (f->anticollapse_needed) f->anticollapse = ff_opus_rc_get_raw(rc, 1); celt_decode_final_energy(f, rc); /* apply anti-collapse processing and denormalization to * each coded channel */ for (i = 0; i < f->channels; i++) { CeltBlock *block = &f->block[i]; if (f->anticollapse) process_anticollapse(f, block, f->block[i].coeffs); celt_denormalize(f, block, f->block[i].coeffs); } /* stereo -> mono downmix */ if (f->output_channels < f->channels) { f->dsp->vector_fmac_scalar(f->block[0].coeffs, f->block[1].coeffs, 1.0, FFALIGN(frame_size, 16)); downmix = 1; } else if (f->output_channels > f->channels) memcpy(f->block[1].coeffs, f->block[0].coeffs, frame_size * sizeof(float)); if (f->silence) { for (i = 0; i < 2; i++) { CeltBlock *block = &f->block[i]; for (j = 0; j < FF_ARRAY_ELEMS(block->energy); j++) block->energy[j] = CELT_ENERGY_SILENCE; } memset(f->block[0].coeffs, 0, sizeof(f->block[0].coeffs)); memset(f->block[1].coeffs, 0, sizeof(f->block[1].coeffs)); } /* transform and output for each output channel */ for (i = 0; i < f->output_channels; i++) { CeltBlock *block = &f->block[i]; float m = block->emph_coeff; /* iMDCT and overlap-add */ for (j = 0; j < f->blocks; j++) { float *dst = block->buf + 1024 + j * f->blocksize; imdct->imdct_half(imdct, dst + CELT_OVERLAP / 2, f->block[i].coeffs + j, f->blocks); f->dsp->vector_fmul_window(dst, dst, dst + CELT_OVERLAP / 2, ff_celt_window, CELT_OVERLAP / 2); } if (downmix) f->dsp->vector_fmul_scalar(&block->buf[1024], &block->buf[1024], 0.5f, frame_size); /* postfilter */ celt_postfilter(f, block); /* deemphasis and output scaling */ for (j = 0; j < frame_size; j++) { const float tmp = block->buf[1024 - frame_size + j] + m; m = tmp * CELT_EMPH_COEFF; output[i][j] = tmp; } block->emph_coeff = m; } if (channels == 1) memcpy(f->block[1].energy, f->block[0].energy, sizeof(f->block[0].energy)); for (i = 0; i < 2; i++ ) { CeltBlock *block = &f->block[i]; if (!f->transient) { memcpy(block->prev_energy[1], block->prev_energy[0], sizeof(block->prev_energy[0])); memcpy(block->prev_energy[0], block->energy, sizeof(block->prev_energy[0])); } else { for (j = 0; j < CELT_MAX_BANDS; j++) block->prev_energy[0][j] = FFMIN(block->prev_energy[0][j], block->energy[j]); } for (j = 0; j < f->start_band; j++) { block->prev_energy[0][j] = CELT_ENERGY_SILENCE; block->energy[j] = 0.0; } for (j = f->end_band; j < CELT_MAX_BANDS; j++) { block->prev_energy[0][j] = CELT_ENERGY_SILENCE; block->energy[j] = 0.0; } } f->seed = rc->range; return 0; } void ff_celt_flush(CeltFrame *f) { int i, j; if (f->flushed) return; for (i = 0; i < 2; i++) { CeltBlock *block = &f->block[i]; for (j = 0; j < CELT_MAX_BANDS; j++) block->prev_energy[0][j] = block->prev_energy[1][j] = CELT_ENERGY_SILENCE; memset(block->energy, 0, sizeof(block->energy)); memset(block->buf, 0, sizeof(block->buf)); memset(block->pf_gains, 0, sizeof(block->pf_gains)); memset(block->pf_gains_old, 0, sizeof(block->pf_gains_old)); memset(block->pf_gains_new, 0, sizeof(block->pf_gains_new)); block->emph_coeff = 0.0; } f->seed = 0; f->flushed = 1; } void ff_celt_free(CeltFrame **f) { CeltFrame *frm = *f; int i; if (!frm) return; for (i = 0; i < FF_ARRAY_ELEMS(frm->imdct); i++) ff_mdct15_uninit(&frm->imdct[i]); ff_celt_pvq_uninit(&frm->pvq); av_freep(&frm->dsp); av_freep(f); } int ff_celt_init(AVCodecContext *avctx, CeltFrame **f, int output_channels) { CeltFrame *frm; int i, ret; if (output_channels != 1 && output_channels != 2) { av_log(avctx, AV_LOG_ERROR, "Invalid number of output channels: %d\n", output_channels); return AVERROR(EINVAL); } frm = av_mallocz(sizeof(*frm)); if (!frm) return AVERROR(ENOMEM); frm->avctx = avctx; frm->output_channels = output_channels; for (i = 0; i < FF_ARRAY_ELEMS(frm->imdct); i++) if ((ret = ff_mdct15_init(&frm->imdct[i], 1, i + 3, -1.0f/32768)) < 0) goto fail; if ((ret = ff_celt_pvq_init(&frm->pvq)) < 0) goto fail; frm->dsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT); if (!frm->dsp) { ret = AVERROR(ENOMEM); goto fail; } ff_celt_flush(frm); *f = frm; return 0; fail: ff_celt_free(&frm); return ret; }